im Fall einer Longitudinalwelle angeregt wird und die sich in die positive x-richtung eines Koordinatensystems ausbreitet.

Größe: px
Ab Seite anzeigen:

Download "im Fall einer Longitudinalwelle angeregt wird und die sich in die positive x-richtung eines Koordinatensystems ausbreitet."

Transkript

1 Name: Datum: Harmonishe Wellen - Mathematishe eshreibung Da eine Welle sowohl eine räumlihe als auh eine zeitlihe Änderung eines physikalishen Systems darstellt, ist sowohl ihre graphishe Darstellung als auh ihre mathematishe eshreibung shwierig Ziel der folgenden Überlegungen ist die Herleitung einer Funktion, die für jeden beliebigen Ort x die Auslenkung des dort befindlihen Oszillators zu jedem beliebigen Zeitpunkt t beshreibt Wir betrahten dazu eine Harmonishe Welle, die durh eine Harmonishe Shwingung der Form y(t) = ŷ im Fall einer ransversalwelle bzw ξ ( t) = ξˆ im Fall einer Longitudinalwelle angeregt wird und die sih in die positive x-rihtung eines Koordinatensystems ausbreitet 1 eshreibung an einem festen Ort Im ersten Shritt der Überlegungen wählt man einen beliebigen, aber festen Ort x auf der x-ahse und beobahtet über einen gewissen Zeitraum die Auslenkung y(x ; t) bzw ξ ( x ;t) des an diesem Ort befindlihen Oszillator Dabei kann man die folgenden eobahtungen mahen: Arbeitsauftrag: ollziehe die folgenden eobahtungen anhand der hier aufgeführten JAA-Applets nah: ransverse raveling Wave (Fu-Kwun Hwang): Entstehung von ransversalwellen ransverse Waves (Surendranath Reddy): Entstehung von ransversalwellen ransverse Wave (Surendranath Reddy): Entstehung einer ransversalwelle durh einen Harmonishen Oszillator a) Der beobahtete Oszillator führt eine harmonishe Shwingung aus b) Die Amplitude der harmonishen Shwingung des Oszillators stimmt mit der Amplitude ŷ (bzw ξˆ ) des Erregers überein Dies maht folgende Definition sinnvoll: Die Amplitude einer Welle ist die für alle Oszillatoren gleihe und mit der Amplitude der anregenden Shwingung übereinstimmende Amplitude der einzelnen Oszillatoren Das Formelzeihen für die Amplitude ist ŷ bzw ξˆ, die Einheit der Amplitude ist abhängig von den physikalishen Eigenshaften des Systems ) Die Shwingungsdauer (und damit auh die Kreisfrequenz und die Frequenz) der harmonishen Shwingung des Oszillators stimmt mit der Shwingungsdauer (bzw der Kreisfrequenz ω und der Frequenz f ) des Erregers überein Dies maht folgende Definitionen sinnvoll: Die Shwingungsdauer ( Zeitperiode ) einer Welle ist der für alle Oszillatoren gleihe und mit der Shwingungsdauer der anregenden Shwingung übereinstimmende kleinste zeitlihe Abstand zwishen zwei gleihen ewegungszuständen der einzelnen Oszillatoren Das Formelze ihen für die Shwingungsdauer ist, die Einheit der Shwingungsdauer: [ ] = 1s Die Kreisfrequenz ( zeitlihe Geshwindigkeit ) einer Welle ist die für alle Oszillatoren gleihe und mit der Kreisfrequenz der anregenden Shwingung übereinstimmende Kreisfrequenz der einzelnen Oszillatoren 1 Das Formelzeihen für die Kreisfrequenz ist ω, die Einheit der Kreisfrequenz: [ ω ] = s 2003 homas Unkelbah Seite 1 von 6

2 Die Frequenz einer Welle ist der für alle Oszillatoren gleihe und mit der Frequenz der anregenden Shwingung übereinstimmende Kehrwert der Shwingungsdauer der einzelnen Oszillatoren 1 Das Formelzeihen für die Frequenz ist f, die Einheit der Frequenz: [ f] = = 1Hz (1 HERZ) s Für den Zusammenhang zwishen der Kreisfrequenz ω, der Shwingungsdauer und der Frequenz f einer Harmonishen Welle gilt demnah wie bei einer Harmonishen Shwingung: ω = = f d) Die Auslenkung des Oszillators ist wenn er sih niht zufällig an ganz bestimmten Orten befindet gegenüber der Auslenkung des Erregers zeitlih versetzt, dh phasenvershoben Die Größe ϕ dieser Phasenvershiebung ist abhängig von dem Ort x des Systems, an dem sih der betrahtete Oszillator befindet, dh ϕ = ϕ( x ) Mit diesen eobahtungen und Definitionen können wird die Auslenkung eines an einem beliebigen, aber festen Ort x des Systems befindlihen Oszillators vorläufig beshreiben: Für eine Harmonishe Welle, die durh eine Harmonishe Shwingung der Form y(t) = ŷ im Fall einer ransversalwelle bzw ξ ( t) = ξˆ im Fall einer Longitudinalwelle angeregt wird und die sih in die positive x-rihtung eines Koordinatensystems ausbreitet, kann die Auslenkung y(x ; t) bzw ξ ( x ;t) eines an einem beliebigen, aber festen Ort x des Systems befindlihen Oszillators beshrieben werden durh die Funktion y(x ;t) = ŷ sin( ωt ϕ(x )) bzw ξ x ; t) = ξˆ sin( ωt ϕ(x )) ( Arbeitsaufträge: Starte das JAA-Applet von Peter Krahmer Setze dort f(x,t)= 3*sin(pi*t-pi/2) und beobahte das erhalten der horizontalen Linie Erläutere, was durh das zeitlihe erhalten dieser Linie beshrieben wird estimme Amplitude, Shwingungsdauer, Kreisfrequenz und Frequenz des erhaltens der dargestellten Shwingung sowie die Phasenvershiebung gegenüber einer normalen Sinusshwingung erändere die relevanten Größen im Funktionsterm, beobahte insbesondere die eränderungen des zeitlihen erhaltens der horizontalen Linie und dokumentiere deine eobahtungen 2003 homas Unkelbah Seite 2 von 6

3 2 eshreibung zu einem festen Zeitpunkt Im zweiten Shritt der Überlegungen wählt man einen beliebigen, aber festen Zeitpunkt t und beobahtet zu diesem Zeitpunkt gewissermaßen als Momentaufnahme den räumlihen Zustand des physikalishen Systems, dh die Auslenkungen y(x;t ) bzw ξ ( x; t ) aller Oszillatoren in Abhängigkeit von ihrem Ort x Dabei kann man die folgenden eobahtungen mahen: Arbeitsauftrag: ollziehe die folgenden eobahtungen anhand des hier aufgeführten JAA-Applets nah: ransverse Waves (Surendranath Reddy): Entstehung von ransversalwellen a) Die Momentaufnahme der Welle entspriht dem Graph einer Sinusfunktion b) Die Amplitude des Graphen stimmt mit der Amplitude ŷ bzw ξˆ des Erregers überein Dies rehtfertigt nahträglih die im ersten Shritt gemahte Definition der Amplitude einer Welle ) Die räumlihe Form des Graphen maht zwei weitere Definitionen sinnvoll: Die Wellenlänge ( Raumperiode ) einer Welle ist der kleinste räumlihe Abstand zweier Oszillatoren mit gleihem Shwingungszustand z der räumlihe Abstand von einem Wellenberg bis zum nähsten oder von einem Wellental zum nähsten Das Formelzeihen für die Wellenlänge ist ( Lambda ), die Einheit der Wellenlänge: [ ] = 1m Die Wellenzahl ( räumlihe Geshwindigkeit ) einer Welle ist die Anzahl von Wellenlängen pro Entfernung m Das Formelzeihen für die Wellenzahl ist k, die Einheit der Wellenzahl: 1 [ k] = m Für den Zusammenhang zwishen der Wellenzahl k und der Wellenlänge gilt demnah: k = d) Die Momentanaufnahme der Welle ist wenn sie niht zufällig zu ganz bestimmten Zeitpunkten aufgenommen wird gegenüber dem Graph einer normalen Sinusfunktion räumlih vershoben Die Größe d dieser ershiebung ist abhängig von dem Zeitpunkt t, zu dem die Momentanaufnahme der Welle aufgenommen wird, dh d = d(t ) Mit diesen eobahtungen und Definitionen können wird die Momentanaufnahme einer Welle zu einem beliebigen, aber festen Zeitpunkt t vorläufig beshreiben: Für eine Harmonishe Welle, die durh eine Harmonishe Shwingung der Form y(t) = ŷ im Fall einer ransversalwelle bzw ξ ( t) = ξˆ im Fall einer Longitudinalwelle angeregt wird und die sih in die positive x-rihtung eines Koordinatensystems ausbreitet, kann die Momentaufnahme y(x;t ) bzw ξ ( x; t ) zu einem beliebigen, aber festen Zeitpunkt t beshrieben werden durh die Funktion y(x; t 2003 homas Unkelbah Seite 3 von 6 ) = ŷ sin( d(t ) k x) bzw ξ x; t ) = ξˆ sin( d(x ) k x) (

4 Arbeitsaufträge: Starte das JAA-Applet von Peter Krahmer Setze dort f(x,t)= 3*sin(pi-pi/2*x) und beobahte den entstehenden Graphen Erläutere, was durh den Graphen beshrieben wird estimme Amplitude, Wellenlänge und Wellenzahl des dargestellten Graphen sowie die Phasenvershiebung gegenüber dem Graphen einer normalen Sinusfunktion erändere die relevanten Größen im Funktionsterm, beobahte insbesondere die eränderungen des Graphen und dokumentiere deine eobahtungen 2003 homas Unkelbah Seite 4 von 6

5 3 Zusammenhang zwishen der Ausbreitungsgeshwindigkeit, der Periode und der Wellenlänge Im dritten Shritt der Überlegungen wird nun zusätzlih die Ausbreitungsgeshwindigkeit mit einbezogen Die Ausbreitungsgeshwindigkeit, die Periode und die Wellenlänge einer Welle hängen in einfaher Weise zusammen: Während ein maximal ausgelenkter Oszillator in der Zeit eine volle Shwingung ausführt, er also über die minimale Auslenkung wieder in die maximale Auslenkung übergeht, sind über ihn ausgehend von einem Wellenberg ein Wellental wieder ein Wellenberg hinweggelaufen Die Welle ist also in der Zeit genau um die Streke vorangekommen Daher können wir entsprehend der ewegungsgesetze der gleihförmigen ewegung die Ausbreitungsgeshwindigkeit angeben als x = = = f t Die Ausbreitungsgeshwindigkeit einer Welle ist also gleih dem Quotienten aus Wellenlänge und Shwingungsdauer bzw dem Produkt aus Wellenlänge und Frequenz f Allerdings muss man sih klarmahen, dass sih eigentlih die Wellenlänge aus der Ausbreitungsgeshwindigkeit, die eine Eigenshaft des Systems ist, und der Shwingungsdauer bzw der Frequenz f, die Eigenshaften des Erregers sind, ergibt Sinnvoller wäre demnah eher eine Formulierung des Zusammenhangs in der Form = = f Weiter ergibt sih mit ω k = = = die ebenfalls nützlihe eziehung ω k = Arbeitsaufträge: ollziehe die obenstehenden Überlegungen anhand der hier aufgeführten JAA-Applets nah: Wellenmodell (Peter Krahmer): ua Entstehung von ransversalwellen; Zusammenhang Frequenz - Ausbreitungsgeshwindigkeit - Wellenlänge Wavelength and Period (Andrew Duffy): Wellenlänge und Periodendauer bei ransversalwellen Wave Speed (Andrew Duffy): Ausbreitungsgeshwindigkeit bei ransversalwellen Frequeny, Wavelength, and eloity (Andrew Duffy): Frequenz, Wellenlänge und Ausbreitungsgeshwindigkeit bei ransversalwellen 2003 homas Unkelbah Seite 5 von 6

6 4 eshreibung an einem beliebigem Ort und zu einem beliebigem Zeitpunkt Im vierten und letzten Shritt der Überlegungen wird nun mit Hilfe der Ausbreitungsgeshwindigkeit, die einen Zusammenhang zwishen der zeitlihen und der räumlihe eshreibung liefert, die endgültige mathematishe eshreibung der raum-zeitlihen Ausbreitung einer Welle hergeleitet Dazu muss eine Funktion angegeben werden, die für jeden beliebigen Ort x und für jeden beliebigen Zeitpunkt t die Auslenkung y bzw ξ des an diesem Ort befindlihen Oszillators angibt Diese Funktion wird demnah von den beiden ariablen x und t abhängen, dh y = y(x, t) bzw ξ = ξ(x, t) Zur Herleitung dieser Funktion betrahten wir wieder die bekannte Harmonishe Welle, die am Ort x 0 = 0 durh eine Harmonishe Shwingung der Form y(t) = ŷ bzw ξ ( t) = ξˆ angeregt wird und die sih in die positive x-rihtung eines Koordinatensystems mit der allein durh die physikalishen Eigenshaften des Systems bestimmten Ausbreitungsgeshwindigkeit ausbreitet Da sih die Welle mit der Geshwindigkeit ausbreitet, beginnt ein Oszillator, der sih an einem beliebigen Ort x in dem System befindet, erst nah einer gewissen erzögerungszeit t zu shwingen an, und zwar dann mit der Winkelgeshwindigkeit ω Diese erzögerungszeit t lässt sih nah den e- x wegungsgesetzen der gleihförmigen ewegung leiht zu t = bestimmen Die Elongation des Oszillators ist dann y(x; t) = ŷ sin( ω(t t )) = ŷ sin( ωt ωt ) bzw ξ ( x; t) = ξˆ sin( ω(t t )) ˆ = ξ sin( ωt ωt ) x x Durh die Umformung ω t = ω = = x = kx erhält man shließlih das Ergebnis: x t = ω= k= Für eine Harmonishe Welle, die am Ort x 0 = 0 durh eine Harmonishe Shwingung der Form y(t) = ŷ im Fall einer ransversalwelle bzw ξ ( t) = ξˆ im Fall einer Longitudinalwelle erregt wird und die sih mit der Ausbreitungsgeshwindigkeit in die positive x-rihtung eines Koordinatensystems ausbreitet, kann die Auslenkung y (x; t) bzw ξ (x; t) eines am Ort x befindlihen Oszillators zum Zeitpunkt t beshrieben werden durh die Funktion y(x; t) = ŷ sin( ωt kx) bzw ˆ ω ξ ( x; t) = ξ sin( ωt kx) mit k = Die eziehungen ω = und k = erlauben auh eine Darstellung in der Form t x t x y(x; t) = ŷ sin( ( )) bzw ξ (x; t) = ξˆ sin( ( )) Arbeitsaufträge: Starte das JAA-Applet von Peter Krahmer Setze dort f(x,t)= 3*sin(pi*t-pi/2*x) und beobahte die entstehende Darstellung Erläutere, was durh diese Darstellung beshrieben wird estimme Amplitude, Shwingungsdauer, Kreisfrequenz und Frequenz, Wellenlänge, Wellenzahl sowie die Ausbreitungsgeshwindigkeit der dargestellten Harmonishen Welle erändere die relevanten Größen im Funktionsterm, beobahte insbesondere die eränderungen in der Darstellung und dokumentiere deine eobahtungen 2003 homas Unkelbah Seite 6 von 6

Wellen. Wellen treten in der Natur in großer Zahl auf: Wasserwellen, Schallwellen, Lichtwellen, Radiowellen, La Ola im Stadion

Wellen. Wellen treten in der Natur in großer Zahl auf: Wasserwellen, Schallwellen, Lichtwellen, Radiowellen, La Ola im Stadion Wellen Wellen treten in der Natur in großer Zahl au: Wasserwellen, Shallwellen, Lihtwellen, Radiowellen, La Ola im Stadion Von den oben genannten allen die ersten beiden in die Kategorie mehanishe Wellen,

Mehr

Klausur 1 Kurs Ph12 Physik Lk

Klausur 1 Kurs Ph12 Physik Lk 16.03.2005 Klausur 1 Kurs Ph12 Physik Lk Lösung 1 Eine an einem Faden befestigte Metallkette shwingt, wenn man sie (wie nebenstehend abgebildet) über eine Rollsheibe hängt. Der Faden sei masselos, die

Mehr

Zusammenfassung: Lineare mechanische Wellen

Zusammenfassung: Lineare mechanische Wellen LGÖ Ks Ph -stündig 0.09.0 Zusammenfassung: Lineare mehanishe Wellen Alle Shwingungen und Wellen werden als ungedämpft angesehen. Mehanishe Wellen benötigen zu ihrer Ausbreitung einen Wellenträger, d. h.

Mehr

Schallwellen II. Krystian Gaus. Wintersemester 2012/2013

Schallwellen II. Krystian Gaus. Wintersemester 2012/2013 Shallwellen II Krystian Gaus Wintersemester 01/013 Erinnerung. ρ = ρ 0 + ρ ist die Gasdihte, p = p 0 + p der Gasdruk und u = ũ die Gasgeshwindigkeit. Dabei sind p, ρ, ũ kleine Amplituden-Störungen. ist

Mehr

11. David Bohm und die Implizite Ordnung

11. David Bohm und die Implizite Ordnung David Bohm und die Implizite Ordnung Mathematisher Anhang 1 11 David Bohm und die Implizite Ordnung Mathematisher Anhang Streng stetig, streng kausal, streng lokal Relativitätstheorie In der speziellen

Mehr

12. Lagrange-Formalismus III

12. Lagrange-Formalismus III Übungen zur T: Theoretishe Mehanik, SoSe3 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45. Lagrange-Formalismus III Dr. James Gray James.Gray@hysik.uni-muenhen.de Übung.: Eine Gitarrensaite Wir betrahten

Mehr

Polarisation, Interferenz, Beugung, Doppler-Effekt (Selbststudium)

Polarisation, Interferenz, Beugung, Doppler-Effekt (Selbststudium) Zusatz-Augaben 4 Grundlagen der Wellenlehre Polarisation, Intererenz, Beugung, Doppler-Eekt (Selbststudium) Lernziele - das Phänomen Polarisation kennen und verstehen. - wissen und verstehen, dass nur

Mehr

32. Lebensdauer von Myonen 5+5 = 10 Punkte

32. Lebensdauer von Myonen 5+5 = 10 Punkte PD. Dr. R. Klesse, Prof. Dr. A. Shadshneider S. Bittihn, C. von Krühten Wintersemester 2016/2017 Theoretishe Physik in 2 Semestern I Musterlösung zu den Übungen 9 und 10 www.thp.uni-koeln.de/ rk/tpi 16.html

Mehr

Darstellung von Wellen

Darstellung von Wellen Darstellung von Wellen Um vershiedene Wellenphänomene anshaulih verstehen zu können, sind grafishe Darstellungsformen von Wellen hilfreih. Nahe an der Mathematik ist die Darstellung von Wellen im kartesishen

Mehr

Physik 2 (GPh2) am

Physik 2 (GPh2) am Name, Matrikelnummer: Physik 2 (GPh2) am 18.3.11 Fahbereih Elektrotehnik und Informatik, Fahbereih Mehatronik und Mashinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 2 ab WS 10/11 (Prof.

Mehr

Lichtgeschwindigkeit

Lichtgeschwindigkeit Vorbereitung Lihtgeshwindigkeit Carsten Röttele 2. Dezember 20 Inhaltsverzeihnis Drehspiegelmethode 2. Vorbereitung auf den Versuh......................... 2.2 Justierung der Apparatur und Messung...................

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommersemester 25 Gabriele Semino, Alexander Wolf, Thomas Maier sblatt 4 Elektromagnetishe Wellen und spezielle Relativitätstheorie Aufgabe : Leistung eines Herzshen Dipols

Mehr

M 8 Schallgeschwindigkeit von Gasen

M 8 Schallgeschwindigkeit von Gasen M 8 Shallgeshwindigkeit von Gasen 1. Aufgabenstellung 1.1 Bestimmen Sie die Shallgeshwindigkeit in Luft und vorgegebener Gase. 1. Berehnen Sie die zugehörigen Adiabatenexponenten. 1.3 Überprüfen Sie den

Mehr

Physik I Übung 2 - Lösungshinweise

Physik I Übung 2 - Lösungshinweise Physik I Übung - Lösungshinweise Stefan Reutter SoSe 01 Moritz Kütt Stand: 6.04.01 Franz Fujara Aufgabe 1 Dopplergabel Ein neugieriger Physikstudent lässt eine angeshlagene Stimmgabel, die den Kammerton

Mehr

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 5. Laborprotokoll SSY. Reglerentwurf nach dem Frequenz- Kennlinien-Verfahren

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 5. Laborprotokoll SSY. Reglerentwurf nach dem Frequenz- Kennlinien-Verfahren Laborprotokoll SSY Reglerentwurf nah dem Frequenz- Kennlinien-Verfahren Daniel Shrenk, Andreas Unterweger, ITS 24 SSYLB2 SS6 Daniel Shrenk, Andreas Unterweger Seite 1 von 13 1. Einleitung Ziel der Übung

Mehr

8. Periodische Bewegungen

8. Periodische Bewegungen 8. Periodische Bewegungen 8.1 Schwingungen 8.1.1 Harmonische Schwingung 8.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 8.1.4 Erzwungene Schwingung 8. Periodische Bewegungen Schwingung Zustand y wiederholt

Mehr

Grundbegriffe: Wellen, Phasen- und Gruppengeschwindigkeit, Doppler-Effekt, Piezoelektrischer

Grundbegriffe: Wellen, Phasen- und Gruppengeschwindigkeit, Doppler-Effekt, Piezoelektrischer M13 ULTRASCHALL PHYSIKALISCHE GRUNDLAGEN Grundbegriffe: Wellen, Phasen- und Gruppengeshwindigkeit, Doppler-Effekt, Piezoelektrisher Effekt. o Shallwellen sind mehanishe Wellen, welhe sih in Körpern aufgrund

Mehr

Planungsblatt Physik für die 8B

Planungsblatt Physik für die 8B Planungsblatt Physik für die 8B Wohe 5 (von 03.10 bis 07.10) Hausaufgaben 1 Bis Freitag 07.10: Lerne die Notizen von Dienstag! Aufgabe zum Nahdenken: Ein Raumshiff fliegt an der Erde vorbei; sein Geshwindigkeit

Mehr

Zum Zwillingsparadoxon in der Speziellen Relativitätstheorie

Zum Zwillingsparadoxon in der Speziellen Relativitätstheorie Materialien für Unterriht und Studium Zum Zwillingsparadoxon in der Speziellen Relativitätstheorie von Georg Bernhardt 5. Oktober 017 Beshreibt das Zwillingsparadoxon tatsählih eine logishe Inkonsistenz

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommersemester 2015 Gabriele Semino, Alexander Wolf, Thomas Maier Probeklausur Aufgabe 1: Kupfermünze 4 Punkte) Die alte, von 1793 bis 1837 geprägte Pennymünze in den USA

Mehr

Senkrechter freier Fall

Senkrechter freier Fall Senkrehter freier Fall Die Raumzeitkrümmung in der Shwarzshildmetrik [] zeigt sih unter anderem darin, dass die Zeit in der Nähe des Zentralkörpers langsamer läuft Um diesen Effekt zu veranshaulihen, soll

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen. 7. Vorlesung Nadja Regner, Thomas Schmierer, Gunnar Spieß, Peter Gilch

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen. 7. Vorlesung Nadja Regner, Thomas Schmierer, Gunnar Spieß, Peter Gilch PN Einführung in die Eperimentalphsik für Chemiker und Biologen 7. Vorlesung.6.7 Nadja Regner, Thomas Shmierer, Gunnar Spieß, Peter Gilh Lehrstuhl für BioMolekulare Optik Department für Phsik Ludwig-Maimilians-Universität

Mehr

Theoretische Physik III (Elektrodynamik)

Theoretische Physik III (Elektrodynamik) Theoretishe Physik III (Elektrodynamik) Prof. Dr. Th. Feldmann 8. Juni 03 Kurzzusammenfassung Vorlesung 6 vom.6.03 Impulserhaltung Analog zur Energieerhaltung leiten wir nun Kontinuitätsgleihung für Impulsdihte

Mehr

6 Rotation und der Satz von Stokes

6 Rotation und der Satz von Stokes $Id: rotation.tex,v 1.8 216/1/11 13:46:38 hk Exp $ 6 Rotation und der Satz von Stokes 6.3 Vektorpotentiale und harmonishe Funktionen In 4.Satz 2 hatten wir gesehen das ein auf einem einfah zusammenhängenden

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen

Mehr

19.2 Kurvenintegrale. c a. wobei die euklidische Norm bezeichnet. Weiterhin heißt

19.2 Kurvenintegrale. c a. wobei die euklidische Norm bezeichnet. Weiterhin heißt Kapitel 19: Integralrehnung mehrerer Variabler 19.2 Kurvenintegrale Für eine stükweise C 1 -Kurve : [a, b] D, D R n, und eine stetige skalare Funktion f : D R hatten wir das Kurvenintegral 1. Art definiert

Mehr

Reflexion von Querwellen

Reflexion von Querwellen Mehanishe Wellen Refleion von Querwellen Dein Lernverzeihnis Refleion von Querwellen Übersiht Einführung 2 Refleion von Querwellen an einem Ende 2. Refleion am festen Ende.....................................

Mehr

Physik. Lichtgeschwindigkeit

Physik. Lichtgeschwindigkeit hysik Lihtgeshwindigkeit Messung der Lihtgeshwindigkeit in Versuhsaufbau Empfänger s Spiegel Sender l osition 0 d Abb. Versuhsdurhführung Die Spiegel werden auf die osition 0 m geshoben und die hase mit

Mehr

Quantenmechanikvorlesung, Prof. Lang, SS04. Comptoneffekt. Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler

Quantenmechanikvorlesung, Prof. Lang, SS04. Comptoneffekt. Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler Quantenmehanikvorlesung, Prof. Lang, SS04 Comptoneffekt Christine Krasser - Tanja Sinkovi - Sibylle Gratt - Stefan Shausberger - Klaus Passler Einleitung Unter dem Comptoneffekt versteht man die Streuung

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Lichtgeschwindigkeit

Lichtgeschwindigkeit Vorbereitung Lihtgeshwindigkeit Stefan Shierle Versuhsdatum: 13. 12. 2011 Inhaltsverzeihnis 1 Drehspiegelmethode 2 1.1 Vorbereitung auf den Versuh......................... 2 1.2 Justierung der Apparatur

Mehr

2 Sehnen, Sekanten und Chordalen

2 Sehnen, Sekanten und Chordalen Sehnen, Seanten und Chordalen Übersiht.1 Sehnen- und Seantensatz................................................... 7. Chordalen.................................................................. 3 Weitere

Mehr

4.1. Prüfungsaufgaben zu Wellen

4.1. Prüfungsaufgaben zu Wellen 4.. Prüfungsaufgaben zu Wellen Aufgabe : Wellengleihung (5) Im Ursprung des Koordinatensstems shwingt ein Erreger mit (0;t) = 4 m sin t mit t in Sekunden. Er erzeugt eine Transersalwelle, die sih mit =

Mehr

5 Relativistische Mechanik

5 Relativistische Mechanik 5 Relativistishe ehanik Nah dem Relativitätsprinzip müssen die Naturgesetze, also insbesondere die Gesetze der ehanik, in jedem IS die gleihe Form annehmen. Zur Formulierung der Impulserhaltung etwa benötigt

Mehr

Physik B2.

Physik B2. Physik B2 https://e3.physik.tudortmund.de/~suter/vorlesung/physik_a2_ws17/physik_a2_ws17.html 1 Wellen Welle = Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 2. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 2. Übungsblatt Prof. Dr. T. Apel J. Mihael Mathematishe Methoden in den Ingenieurwissenshaften. Übungsblatt Wintertrimester 5 Aufgabe 4 : (Variationsrehnung Extremalen Bestimmen Sie die Extremalen der folgenden Variationsprobleme

Mehr

1. Klausur in K2 am

1. Klausur in K2 am Name: Punkte: Note: Ø: Kernfach Phsik Abzüge für Darstellung: Rundung:. Klausur in K am.0. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit

Mehr

Kapitel 5. Schwingungen

Kapitel 5. Schwingungen Kapitel 5 Shwingungen 5 5 Shwingungen 5.1 Grundbegriffe... 221 5.2 Freie Shwingungen... 224 5.2.1 Ungedämpfte freie Shwingungen... 224 5.2.2 Federzahlen elastisher Systeme... 230 5.2.3 Gedämpfte freie

Mehr

Exkurs: Koordinatensysteme

Exkurs: Koordinatensysteme Exkurs: Koordinatensysteme Herleitung der Raum-Zeit-Diagramme Das ist unsere Raumzeit. So mögen wir sie: Ordentlih, gerade und aufgeräumt. Der vertikale Pfeil bildet unsere Zeitlinie t. Der horizontale

Mehr

Kinematik der einachsigen/räumlichen Bewegung

Kinematik der einachsigen/räumlichen Bewegung 13. Juni 2013 Seite 1 Kineatik und Dynaik (Mehanik II) - Prof. Popov SoSe 2013 Kineatik der einahsigen/räulihen Bewegung 1. Kineatik des Massenpunktes Unter Kineatik versteht an rein atheatishe und geoetrishe

Mehr

Musterlösung Nachholsemestrale Ex

Musterlösung Nachholsemestrale Ex Musterlösung Nahholsemestrale Ex 2.4.2008 Musterlösung Nahholsemestrale Ex 2.4.2008 2 Aufgabe Wir berehnen zuerst den Ort des abarishen Punktes, d.h. seinen Abstand r a vom Erdmittelpunkt. Das von Erde

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

Wellen und Dipolstrahlung

Wellen und Dipolstrahlung Wellen und Dipolstrahlung Florian Hrubesh 7. März 200 Inhaltsverzeihnis Wellen. Wellen im Vakuum........................... 2.. Lösung der Wellengleihung................. 2..2 Energietransport / Impuls

Mehr

Pool für das Jahr 2017

Pool für das Jahr 2017 Gemeinsame Abituraufgabenpools der Länder Pool für das Jahr 17 Aufgabe für das Fah Mathematik Kurzbeshreibung Anforderungsniveau Prüfungsteil Sahgebiet digitales Hilfsmittel erhöht B Analysis WTR 1 Aufgabe

Mehr

Verkürzungsfaktor bei Antennen und Koax-Leitungen

Verkürzungsfaktor bei Antennen und Koax-Leitungen 071111 hb9tyx@lusterte.om Verkürzungsaktor bei Antennen und Koax-Leitungen Vielleiht haben Sie sih beim Bau von Antennen oder Umwegleitungen auh shon geragt, woher eigentlih der Verkürzungsaktor stammt.

Mehr

Betrachtet wird ein endlicher Abschnitt des Stabes, der sich mit dem Stab mitbewegt: t = X 2. u X 2,

Betrachtet wird ein endlicher Abschnitt des Stabes, der sich mit dem Stab mitbewegt: t = X 2. u X 2, .1 Bewegungsgleihung Homogener Stab: Dihte ρ, Quershnittsflähe A, Elastizitätsmodul E ρ, E, A, u Betrahtet wird ein endliher Abshnitt des Stabes, der sih mit dem Stab mitbewegt: Unverformt: Verformt: N(

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Aufgaben 1 Schwingungen und Wellen Lernziel - Problemstellungen zu Schwingungen und Wellen analysieren und lösen können. Aufgaben 1.1 a) Erdbeben können sich in der Erdkruste sowohl durch Longitudinalwellen

Mehr

Prüfungsvorbereitung Physik: Optik, Schwingungen, Wellen

Prüfungsvorbereitung Physik: Optik, Schwingungen, Wellen Prüfungsvorbereitung Physik: Optik, Schwingungen, Wellen Theoriefragen: Diese Begriffe müssen Sie auswendig in ein bis zwei Sätzen erklären können. ) Wie sehen wir Dinge? 2) Streuung 3) Brechung 4) Totalreflexion

Mehr

Ferienkurs Experimentalphysik Musterlösung Probeklausur

Ferienkurs Experimentalphysik Musterlösung Probeklausur Ferienkurs Experimentalphysik 1 2012 Musterlösung Probeklausur 1. Atwoodshe Fallmashine Betrahten Sie die abgebildete Atwoodshe Fallmashine. Der die Massen m 1 und m 2 Abbildung 1: Atwoodshe Fallmashine

Mehr

Wir gehen jetzt zu reversiblen Reaktionen über und betrachten eine reversible Reaktion einfacher Art in der allgemeinen Form (s. Gl.(A.

Wir gehen jetzt zu reversiblen Reaktionen über und betrachten eine reversible Reaktion einfacher Art in der allgemeinen Form (s. Gl.(A. Prof. Dr. H.-H. ohler, W 004/05 PC1 apitel.4 - Reversible Reation.4-1.4 Reversible Reationen.4.1 Diretionale und Netto-Reationsgeshwindigeit Wir gehen jetzt zu reversiblen Reationen über und betrahten

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Parameter- und Kurvenintegrale

Parameter- und Kurvenintegrale KAPITEL 6 Parameter- und Kurvenintegrale 1. Parameterintegrale Typishe Beispiele fur Parameterintegrale sind sogenannte spezielle Funktionen wie die Gamma-Funktion Γx : oder auh die Besselfunktionen J

Mehr

ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE

ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE Kapitel 9: Relativistishe Elektrodynamik Vorlesung für Studenten der Tehnishen Physik Helmut Nowotny Tehnishe Universität Wien Institut für Theoretishe Physik 7.,

Mehr

HARMONISCHE SCHWINGUNGEN

HARMONISCHE SCHWINGUNGEN HARMONISCHE SCHWINGUNGEN Begriffe für Schwingungen: Die Elongation γ ist die momentane Auslenkung. Die Amplitude r ist die maximale Auslenkung aus der Gleichgewichtslage (r >0). Die Schwingungsdauer T

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

IX.3 Potentiale und Felder einer bewegten Punktladung

IX.3 Potentiale und Felder einer bewegten Punktladung N.BORGHINI Elektrodynamik einer Punktladung Theoretishe Physik IV IX.3 Potentiale und Felder einer bewegten Punktladung Dieser Abshnitt beginnt mit der Berehnung der Potentiale und Felder, die durh eine

Mehr

10. Grassmannsche Vektoren und die Drehungen im Raum.

10. Grassmannsche Vektoren und die Drehungen im Raum. 10. Grassmannshe Vektoren und die Drehungen im Raum. Wir haen in der vorigen Vorlesung gesehen wie man Gegenstände im Raum vermöge der Zentralprojektion als Figuren in der Eene perspektivish genau darstellen

Mehr

Spezielle Relativitätstheorie * Projekttage im Juli 2016 am EMG

Spezielle Relativitätstheorie * Projekttage im Juli 2016 am EMG Spezielle Relatiitätstheorie * Projekttage im Juli 06 am EMG. Konstanz der Lihtgeshwindigkeit a) Shallwellen Shallwellen breiten sih in der Luft aus. Die Höhe eines Tons hängt on der Wellenlänge λ bzw.

Mehr

2. Schätzen Sie das Auflösungsvermögen durch Messung zweier nah beieinanderliegender Störstellen ab.

2. Schätzen Sie das Auflösungsvermögen durch Messung zweier nah beieinanderliegender Störstellen ab. Fakultät für Physik und Geowissenshaften Physikalishes Grundpraktikum M3a Ultrashall Aufgaben 1. Messen Sie die Shallgeshwindigkeit von Ultrashallwellen a. in Arylglas in Reflexion bei 1, 2 und 4 MHz und

Mehr

gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her)

gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Mechanik Wellen 16. Wellen 16.1. Einleitung Beispiele: gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Was passiert? Das schwingende Medium/Teilchen bewegt sich nicht fort, sondern schwingt

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Übung 1 Schwingungen und Wellen Lernziel - Problemstellungen zu Schwingungen und Wellen analysieren und lösen können. Aufgaben 1. Ein U-förmiger Schlauch ist etwa zur Hälfte mit Wasser gefüllt. Wenn man

Mehr

6 Rotation und der Satz von Stokes

6 Rotation und der Satz von Stokes $Id: rotation.tex,v 1.5 2010/01/26 09:31:31 hk Exp $ $Id: diffgl.tex,v 1.4 2010/01/25 15:48:10 hk Exp hk $ 6 Rotation und der Satz von Stokes 6.2 Der -alkül Wir hatten begonnen Formeln für Gradient, Divergenz

Mehr

x 3x 2x 0 2x x x 3 e 4 t t dt 12

x 3x 2x 0 2x x x 3 e 4 t t dt 12 5 Gewöhnlihe Differentialgleihungen 5. Einführung und Definition einer Differentialgleihung, Beispiele Die Shulmathematik hat sih bisher sehr ausgiebig mit dem Lösen von Gleihungen beshäftigt. In diesen

Mehr

H. Bortis Wirtschaftstheorie

H. Bortis Wirtschaftstheorie H. Bortis Wirtshaftstheorie Die neo-riardianishe riti an der neolassishen Theorie (apitaltheoretishe ontroverse zwishen ambridge (England) und ambridge (Massahussetts)) y = Q N = Output pro Arbeiter und

Mehr

Prof. Dr. H.-H. Kohler, WS 2004/05 PC1 Kapitel A.8 - Enzymkinetik A.8-1

Prof. Dr. H.-H. Kohler, WS 2004/05 PC1 Kapitel A.8 - Enzymkinetik A.8-1 rof. Dr. H.-H. Kohler, W 2004/05 C Kapitel A.8 - nzymineti A.8- A.8 nzymineti A.8. Katalysatoren und nzyme Katalysatoren sind oleüle, die die Geshwindigeit einer Reation erhöhen, aus der Reation aber unerändert

Mehr

2 Freie Schwingungen. 2.1 Ungedämpfte Schwingungen. Beziehungen. [rad/s]: Drehwinkelgeschwindigkeit (2.7)

2 Freie Schwingungen. 2.1 Ungedämpfte Schwingungen. Beziehungen. [rad/s]: Drehwinkelgeschwindigkeit (2.7) 2 Freie Shwingungen Eine Struktur führt eine freie Shwingung durh, wenn sie aus ihre statishen Gleihgewiht gebraht wird, und anshliessend ohne jeglihe externe dynaishe Anregung shwingen kann 2. Ungedäpfte

Mehr

Fit in Mathe. Musterlösungen. Dezember Klassenstufe 10 Trigonometrie (Taschenrechner erlaubt)

Fit in Mathe. Musterlösungen. Dezember Klassenstufe 10 Trigonometrie (Taschenrechner erlaubt) Thema Trigonometrie (Tashenrehner erlaubt) Drei Bestimmungsstüke sind gegeben. Bestimme die fehlenden Seiten. a) γ = 60, b = 10, = 10 b) γ = 90, b = 3, = 5 ) γ = 10, a, b d) γ = 30 β = 60, = 5 Zu a) Aus

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E3 WS 0/ Übunen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzi, Dr. Volker Körstens, David Maerl, Markus Schindler, Moritz v. Sivers Vorlesun 0..0, Übunswoche

Mehr

KOMPETENZHEFT ZUR TRIGONOMETRIE, II

KOMPETENZHEFT ZUR TRIGONOMETRIE, II KOMPETENZHEFT ZUR TRIGONOMETRIE, II 1. Aufgabenstellungen Aufgabe 1.1. Bestimme alle Winkel in [0 ; 360 ], die Lösungen der gegebenen Gleichung sind, und zeichne sie am Einheitskreis ein. 1) sin(α) = 0,4

Mehr

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0.

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0. Wellen ================================================================== 1. Transversal- und Longitudinalwellen ------------------------------------------------------------------------------------------------------------------

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 45: Gesucht ist die Schnittmenge der beiden Zylinder

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 45: Gesucht ist die Schnittmenge der beiden Zylinder Übungen ur Ingenieur-Mathematik III WS 2/2 Blatt..22 Aufgabe 45: Gesuht ist die Shnittmenge der beiden Zlinder 2 + 2 =, 2 + 2 =. (i Zeigen Sie, dass die Shnittmenge aus wei geshlossenen Kurven besteht

Mehr

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung Aufgabe 1: Kreisbewegung Einige Spielplätze haben sogenannte Drehscheiben: Kreisförmige Plattformen, die in Rotation versetzt werden können. Wir betrachten eine Drehplattform mit einem Radius von r 0 =m,

Mehr

Resultat: g. d) ω 0 = a) ml 2 ϕ + mglϕ = 0, 4 l2 c + mgl ϕ = 0, c) ml 2 ϕ + c ers l 2 + mgl ϕ = 0, mit c ers = c + c = 2c, 4 d) ml 2 ϕ + 9 c ersl 2 1

Resultat: g. d) ω 0 = a) ml 2 ϕ + mglϕ = 0, 4 l2 c + mgl ϕ = 0, c) ml 2 ϕ + c ers l 2 + mgl ϕ = 0, mit c ers = c + c = 2c, 4 d) ml 2 ϕ + 9 c ersl 2 1 Aufgaben Kap. 85 Aus Kapitel Aufgaben. An einer a oberen Ende fest eingespannten Feder it der Federkonstanten hängt eine Masse i Shwerefeld it der Gravitationskonstanten g = 98 /s. Die statishe Verlängerung

Mehr

X.5.4 Potentiale und Felder einer bewegten Punktladung

X.5.4 Potentiale und Felder einer bewegten Punktladung X.5 Klassishe Theorie der Strahlung 85 X.5.4 Potentiale und Felder einer bewegten Punktladung Dieser Paragraph beginnt mit der Berehnung der Potentiale und Felder, die durh eine bewegte Punktladung mit

Mehr

Übungen zur Ingenieur-Mathematik III WS 2015/2016 Blatt h(x, y, z) := (x 2) 2 + y 2 + z 2 4 = 0,

Übungen zur Ingenieur-Mathematik III WS 2015/2016 Blatt h(x, y, z) := (x 2) 2 + y 2 + z 2 4 = 0, Übungen ur Ingenieur-Mathematik III WS 5/6 Blatt..6 Aufgabe 4: Betrahten Sie die Gleihungen: Lösung: h(,, := ( + + 4 =, g(,, := =, ( h(,, f(,, := = g(,, (. a Geben Sie eine geometrishe Interpretation der

Mehr

Eigenschwingungen einer Pfeife

Eigenschwingungen einer Pfeife Eigenshwingungen einer Pfeife Die Pfeife einer Orgel bringt einen Ton hervor, weil die Luftmoleküle sih in ihrem Innern hin- und herbewegen und dabei örtlih Verdihtungen und Verdünnungen der Luft erzeugen

Mehr

Städtisches Gymnasium Wermelskirchen, Fachkonferenz Physik Leistungsbewertung

Städtisches Gymnasium Wermelskirchen, Fachkonferenz Physik Leistungsbewertung Städtishes Gymnasium Wermelskirhen, Fahkonferenz Physik C Beispiel einer Klausur SEK II inl. Erwartungshorizont Q Physik Grundkurs. Klausur 0.0.04 Thema: Dopplereffekt, Shwingkreis Name: Aufgabe : Doppler-Effekt

Mehr

Spezielle Relativitätstheorie und Elektrodynamik

Spezielle Relativitätstheorie und Elektrodynamik Spezielle Relativitätstheorie und Elektrodynamik Aufgabe Im Bezugsystem K treten zwei nahezu gleih gute Läufer im Abstand d voneinander an die auf der x-ahse liegende Startlinie und warten auf das Signal

Mehr

Ungestörte Überlagerung, Interferenz, Stehende Wellen

Ungestörte Überlagerung, Interferenz, Stehende Wellen Aufgaben 6 Interferenz Ungestörte Überlagerung, Interferenz, Stehende Wellen Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen 9.2 Wellen Inhalt 9.2 Wellen 9.2.1 Harmonische Welle 9.2.2 Interferenz von Wellen 9.2.3 Wellenpakete 9.2.3 Stehende Wellen 9.2 Wellen 9.2 Wellen 9.2 Wellen Störung y breitet sich in Raum x und Zeit t aus.

Mehr

Physik II im Studiengang Elektrotechnik

Physik II im Studiengang Elektrotechnik Physik II im Studiengang Elektotehnik - Wellen - Pof. D. Ulih Hahn SS 008 Eigenshaften von Wellen Kette gekoppelte Oszillatoen: Auslenkung eines Oszillatos Nahban folgen mit zeitlihe Vezögeung Anegungszentum

Mehr

Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 2010/2011. Mathematik A. 24. Mai :00 Uhr

Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 2010/2011. Mathematik A. 24. Mai :00 Uhr Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fahhohshulreife im Shuljahr / Mathematik 4. Mai 9: Uhr Mathematik - Lösungsexemplar. ufgabe Differential- und Integralrehnung Gegeben

Mehr

Ultraschall (Sonographie)

Ultraschall (Sonographie) 1 Ultrashall (Sonographie) Versuhsziele: Verständnis der Erzeugung und Detektion von Ultrashallwellen; Ausbreitung, Absorption, Reflexion von Ultrashallwellen; Kenntnis des Dopplereffekts; medizinish relevante

Mehr

Relativitätstheorie und philosophische Gegenargumente II

Relativitätstheorie und philosophische Gegenargumente II Didaktik der hysik Frühjahrstagung Hannoer 00 Relatiitätstheorie und philosophishe Gegenargumente II J. Brandes* *Danziger Str. 65, D 76307 Karlsbad, e-mail: jg-brandes@t-online.de Kurzfassung.) Es werden

Mehr

2. Stragegische Asymmetrien - Stackelberg-Modelle und Markteintritt. Vorlesung 8. Stackelberg-Modell = Sequentielles Duopol

2. Stragegische Asymmetrien - Stackelberg-Modelle und Markteintritt. Vorlesung 8. Stackelberg-Modell = Sequentielles Duopol Vorlesung 8. Stragegishe Asymmetrien - Stakelberg-Modelle und Markteintritt Stakelberg-Modell = Sequentielles Duopol Übungsaufgabe aus Vorlesung 7: Räumliher und politisher Wettbewerb Angenommen jeder

Mehr

Spezielle Relativitätstheorie

Spezielle Relativitätstheorie Spezielle Relativitätstheorie Fabian Gundlah 13. Oktober 2010 Die spezielle Relativitätstheorie untersuht die vershiedenen Sihtweisen von Beobahtern in Inertialsystemen. Ein Inertialsystem ist dabei ein

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Seite /9 Frage ( Punkte) Bei einer Messung ist ein harmonishes Geshwindigkeitssignal v(t) = ˆv os(ωt + ϕ ) aufgezeihnet worden. a) Wie groß ist die komplexe Amplitude ˆv der Geshwindigkeit bei Verwendung

Mehr

wir-sind-klasse.jimdo.com

wir-sind-klasse.jimdo.com 1. Einführung und Begriffe Eine vom Erreger (periodische Anregung) wegwandernde Störung heißt fortschreitende Welle. Die Ausbreitung mechanischer Wellen erfordert einen Träger, in dem sich schwingungsfähige

Mehr

Übungsaufgaben zur Klausurvorbereitung

Übungsaufgaben zur Klausurvorbereitung Üungsaufgaen zur Klausurvorereitung Üungsaufgaen zur Klausurvorereitung. Ein Plattenkondensator esteht aus zwei quadratishen Metallplatten der Seitenlänge m. Der Plattenastand eträgt 8, 0 mm. Die Anordnung

Mehr

Aufgaben zu Teil F, Kapitel 2

Aufgaben zu Teil F, Kapitel 2 Aufgaben zu Teil F, Kapitel 2 1. Fragen und Verständnisaufgaben a) Was verstehen Sie unter einem harmonischen Oszillator? b) Was ist Resonanz? Was ist ein Resonator (Gummiseil, Schall, Licht)? c) Studieren

Mehr

Übungen zu Physik I für Physiker Serie 12 Musterlösungen

Übungen zu Physik I für Physiker Serie 12 Musterlösungen Übungen zu Physik I für Physiker Serie 1 Musterlösungen Allgemeine Fragen 1. Warum hängt der Klang einer Saite davon ab, in welcher Entfernung von der Mitte man sie anspielt? Welche Oberschwingungen fehlen

Mehr

Schwingungen und Wellen Teil I

Schwingungen und Wellen Teil I Schwingungen und Wellen Teil I 1.. 3. 4. 5. 6. 7. 8. 9. 10. Einleitung Arten von Schwingungen Lösung der Differentialgleichung Wichtige Größen Das freie ungedämpfte und gedämpfte Feder-Masse-System Ausbreitung

Mehr

Kosmologie Blatt 2. 2 = tan ϑ

Kosmologie Blatt 2. 2 = tan ϑ Prof. Dr. K. Kassner Dipl. Phys. A. Shulz Kosmologie Blatt SS 019 10.04.19 4. Stellare Aberration und absolute Geshwindigkeit 1 Pkt. Beobahtet man einen Stern von der Erde aus, so ersheint er gegenüber

Mehr

Zusatzkapitel zur Vorlesung Mathematische Modellierung WS 2011/12

Zusatzkapitel zur Vorlesung Mathematische Modellierung WS 2011/12 Zusatzkapitel zur Vorlesung Mathematishe Modellierung WS 20/2 Vorlesung vom 8..20 A A. Das Hindernisproblem Motivation und Modellierung Anwendungsbeispiel: Filtration Ein Gemish, das getrennt werden soll,

Mehr

D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. Lösung - Serie 14

D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. Lösung - Serie 14 D-MAVT/D-MATL Analsis II FS 2018 Dr. Andreas Steiger Lösung - Serie 14 1. Für welhe der folgenden Funktionen f ist f x (x, = e 4x 2x 2, f (x, = os 2x 2? (a (x, 1 4 e4x x 2 2 sin π. (b (x, 1 4 e4x x 2 2

Mehr

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011 Aufgabe 1) Ein Wellenträger wird mit f = 2,0 Hz harmonisch angeregt, wobei sich Wellen der Länge 30 cm und der Amplitude 3,0 cm bilden. Zur Zeit t o = 0,0 s durchläuft der Anfang des Wellenträgers gerade

Mehr

Kreiselphysik. dl dt. Kreisel nach Magnus (mit kardanischer Aufhängung): freie Bewegung in 3D und drehmomentfrei!

Kreiselphysik. dl dt. Kreisel nach Magnus (mit kardanischer Aufhängung): freie Bewegung in 3D und drehmomentfrei! Kreiselphysik Kreisel sind starre Körper mit hoher Symmetrie, die bei Rotation um diese Symmetrieahsen sehr stabil laufen können. Lagert man den Kreisel so, dass keine Drehmomente M auf ihn wirken, so

Mehr

9 Strahlungsgleichungen

9 Strahlungsgleichungen 9-9 Strahlungsgleihungen Ein spontanes Ereignis bedarf keines nstoßes von außen, um ausgelöst zu werden. Das Liht thermisher Strahler, das wir visuell wahrnehmen, entsteht dadurh, dass eine Substanz bei

Mehr

Wellenoptik. Licht als Welle. Experimente (z. B. Brechung) Licht verhält sich wie eine Welle

Wellenoptik. Licht als Welle. Experimente (z. B. Brechung) Licht verhält sich wie eine Welle Experimente (z. B. Brechung) Licht verhält sich wie eine Welle Experimente (z. B. Photoeffekt) Licht besteht aus Teilchen (Quanten) Exakt: Quantenfeldtheorie Wellenoptik Annäherungsmöglichkeiten (Modelle):

Mehr