2 Freie Schwingungen. 2.1 Ungedämpfte Schwingungen. Beziehungen. [rad/s]: Drehwinkelgeschwindigkeit (2.7)

Größe: px
Ab Seite anzeigen:

Download "2 Freie Schwingungen. 2.1 Ungedämpfte Schwingungen. Beziehungen. [rad/s]: Drehwinkelgeschwindigkeit (2.7)"

Transkript

1 2 Freie Shwingungen Eine Struktur führt eine freie Shwingung durh, wenn sie aus ihre statishen Gleihgewiht gebraht wird, und anshliessend ohne jeglihe externe dynaishe Anregung shwingen kann 2. Ungedäpfte Shwingungen Beziehungen f n T n ω n 2π π k [rad/s]: Drehwinkelgeshwindigkeit (2.7) [/s], [Hz]: Anzahl Udrehungen pro Zeit (2.8) [s]: Benötigte Zeit pro Udrehung (2.9) t (2.) Uforung der Bewegungsgleihung 2.. Forulierung : Aplitude und Phasenwinkel u 2 () t + ut () (2.) Ansatz: ut () Aos( t φ) u 2 () t A os( t φ) Durh einsetzen von (2.2) und (2.3) in (2.): 2 A ( + k) os( ωn t φ) 2 + k (2.2) (2.3) (2.4) (2.5) Bestiungen der Unbekannten A und φ: Statishes Gleihgewiht durh Anfangsauslenkung u ( ) und Anfangsgeshwindigkeit u ( ) v gestört: 2 2 v A , tanφ (2.) Visualisierung der Lösung anhand der Exel Datei auf v k Eigenkreisfrequenz (2.6) Alessandro Dazio 23 Alessandro Dazio 24

2 2..2 Forulierung 2: Trigonoetrishe Funktionen 2..3 Forulierung 3: Exponentialfunktionen t (2.2) t (2.9) Ansatz: Ansatz: ut () A os( + A 2 sin( (2.3) ut () e λt (2.2) u 2 2 () t A os( A 2 sin( (2.4) u () t λ 2 e λt (2.2) Durh einsetzen von (2.3) und (2.4) in (2.2): Durh einsetzen von (2.2) und (2.2) in (2.9): A 2 2 ( + k) os( ωn + A 2( + k) sin( ωn (2.5) λ 2 + k (2.22) 2 + k (2.6) λ 2 k --- (2.23) k Eigenkreisfrequenz (2.7) Bestiungen der Unbekannten A und A 2 : Statishes Gleihgewiht durh Anfangsauslenkung u ( ) und Anfangsgeshwindigkeit u ( ) v gestört v A, A (2.8) λ ± i --- k ± iω n Die vollständige Lösung der DGL ist: ut () C e i t + C 2 e i t und it den Eulershen Foreln (2.24) (2.25) + osα , sinα (2.26) 2 2i e iα e iα e iα e iα e iα os( α) + isin( α), e iα os( α) isin( α) (2.27) Alessandro Dazio 25 Alessandro Dazio 26

3 Kann Gleihung (2.25) wie folgt ugefort werden: 2.2 Gedäpfte Shwingungen ut () ( C + C 2 ) os( + i( C C 2 ) sin( ut () A os( + A 2 sin( Gleihung (2.29) entspriht Gleihung (2.3)! (2.28) (2.29) u () t + u () t + ku() t (2.3) - Shwingungen klingen in Wirklihkeit ab - Däpfung existiert - Es ist praktish unöglih die Däpfung exakt zu shätzen - Viskose Däpfung ist atheatish einfah zu behandeln Däpfungskonstante: N s (2.3) Forulierung 3: Exponentialfunktionen u () t + u () t + ku() t Ansatz: (2.32) ut () e λt, u () t λe λt, u () t λ 2 e λt (2.33) Durh einsetzen von (2.33) in (2.32): ( λ 2 + λ + k)e λt λ 2 + λ+ k (2.34) (2.35) λ ± k 2 2 (2.36) Alessandro Dazio 27 Alessandro Dazio 28

4 Kritishe Däpfung: wenn 2 4k Arten von Bewegungen r 2 k 2 Däpfungsrate (Däpfung) r 2 k 2 Uforung der Bewegungsgleihung u () t + u () t + ku() t (2.37) (2.38) (2.39) u(/ [-].5 Unterkritishe Däpfung Kritishe Däpfung Überkritishe Däpfung u () t k u () t ut () (2.4) -.5 u 2 () t + 2 u () t + ut () Arten von Bewegungen: (2.4) t/t n [-] < : Unterkritish gedäpfte Bewegung r : Kritish gedäpfte Bewegung r > r : Überkritish gedäpfte Bewegung Alessandro Dazio 29 Alessandro Dazio 3

5 Unterkritishe Däpfung Durh einsetzen von: In: < 2 k und ω (2.42) 2 k 2 n --- r Die Bestiungen der Unbekannten A und A 2 erfolgt wie gewohnt anhand der Bedingungen für Anfangsauslenkung u ( ) und Anfangsgeshwindigkeit u ( ) v und es ergibt sih: v A, A (2.5) λ ± k 2 2 Es ergibt sih: ± k (2.43) Forulierung : Aplitude und Phasenwinkel Gleihung (2.5) kann als Aplitude und Phasenwinkel uforuliert werden: λ ± ± 2 (2.44) ut () Ae t os( t φ) (2.52) λ ± i 2 2 (2.45) gedäpfte Eigenkreisfrequenz (2.46) it 2 v + A + v , tanφ (2.53) λ ± i Die vollständige Lösung der DGL ist: ut () C e ( + i )t + C 2 e ut () e t C e iωdt C e iω d ( + t ) 2 ( i )t ut () e t ( A os( + A 2 sin( ) (2.47) (2.48) (2.49) (2.5) Die Bewegung ist eine sinusförige Shwingung der Eigenkreisfrequenz it abnehender Aplitude Ae t Alessandro Dazio 3 Alessandro Dazio 32

6 Beerkungen: - Die Periode der gedäpften Shwingung ist länger, d.h. die Shwingung ist langsaer Das logarithishe Dekreent 2 5 u Gesatantwort T n / Däpfungsrate 2 T n Vershiebung Zeit (s) Aplitude zweier aufeinaderfolgender Zyklen - Die Uhüllende der Bewegung hat die Gleihung: ut () Ae t 2 v it A u (2.54) - Visualisierung der Lösung anhand der Exel Datei auf u ---- u it Ae t ( + ) os( t φ) Ae t os( ( t+ ) φ) e ( t + ) e t e os( ( t+ ) φ) os( t + φ) os( t φ) (2.55) (2.56) (2.57) Alessandro Dazio 33 Alessandro Dazio 34

7 gilt: Auswertung über ehrere Zyklen ---- u e e (2.58) u u N un e ( ) N e N u u u 2 u N (2.6) Logarithishes Dekreent δ δ π ln ω u n π (wenn klein) 2 (2.59) δ --- ln N u N Halbierung der Aplitude (2.62) Logarithishes Dekreent δ Die Däpfungsrate (Däpfung) wird: δ δ (wenn klein) 4π 2 + δ 2 2π Exakte Gleihung Näherung (2.6) --- ln N u N --- ln( 2) N π 2π N N Nützlihe Forel für Shnellauswertung Aufpassen: Däpfungsrate vs. Däpfungskonstante Leer Voll, k, 2 >, k, (2.63) Däpfungsrate < 2 k 2 k 2 Alessandro Dazio 35 Alessandro Dazio 36

8 2.4 Reibungsdäpfung Freie Shwingung Es handelt sih u ein nihtlineares Proble! 2 5 Gesatantwort Reibungskraft a) b) f k () t f u μ () t f k () t + f u μ () t Vershiebung 5-5 t f μ t f μ - Lösung von b) ut () A os( + A 2 sin( + it u f ---- μ μ (2.64) k (2.65) Mit den Anfangsbedingungen u ( ), u ( ) v bekot an die Konstanten: A u μ, A 2 v Lösung von a): Analog, it u μ anstatt +u μ u μ u () t A sin( + A 2 os( Zeit (s) Berehnungsbeispiel: - Shritt : Bild: f.5 Hz,, v 5, u f Anfangsbedingungen u ( ), u ( ) A u μ, A 2 (2.66) π ut () [ u μ ] os( + u μ t < (2.67) Vershiebung a Ende: u π [ u u μ ]( ) + u μ + 2u μ Alessandro Dazio 37 Alessandro Dazio 38

9 - Shritt 2: Anfangsbedingungen u ( ) + 2u μ, u ( ) A u ( ) + u μ + 2u μ + u μ + 3u μ, A 2 (2.68) π ut () [ + 3u μ ] os( u μ t < (2.69) Vershiebung a Ende: u π [ u + 3u μ ]( ) u μ 4u μ - Shritt 3: Anfangsbedingungen... Vergleih Viskose Däpfung - Reibungsdäpfung Freie Shwingung: f.5 Hz,, v 5, u f Logarithishes Dekreent: U U N N δ [%] Mittel 5.57 Zu Beerken: Iterieren bei der Geshwindigkeitsukehr! Visualisierung der Lösung anhand der Exel Datei auf Vergleih: Reibungsdäpfung Viskose Däpfung Eigenshaften der Reibungsdäpfung - Lineare Abnahe der Aplitude u 4u μ pro Zyklus - Die Periode des gedäpften Shwingers und des ungedäpften Shwingers ist die gleihe T n 2π Vershiebung Zeit (s) Alessandro Dazio 39 Alessandro Dazio 4

Resultat: g. d) ω 0 = a) ml 2 ϕ + mglϕ = 0, 4 l2 c + mgl ϕ = 0, c) ml 2 ϕ + c ers l 2 + mgl ϕ = 0, mit c ers = c + c = 2c, 4 d) ml 2 ϕ + 9 c ersl 2 1

Resultat: g. d) ω 0 = a) ml 2 ϕ + mglϕ = 0, 4 l2 c + mgl ϕ = 0, c) ml 2 ϕ + c ers l 2 + mgl ϕ = 0, mit c ers = c + c = 2c, 4 d) ml 2 ϕ + 9 c ersl 2 1 Aufgaben Kap. 85 Aus Kapitel Aufgaben. An einer a oberen Ende fest eingespannten Feder it der Federkonstanten hängt eine Masse i Shwerefeld it der Gravitationskonstanten g = 98 /s. Die statishe Verlängerung

Mehr

6 Elektromagnetische Schwingungen und Wellen

6 Elektromagnetische Schwingungen und Wellen 6 Elektroagnetische Schwingungen und Wellen Elektroagnetischer Schwingkreis Schaltung it Kondensator C und Induktivität L. Kondensator wird periodisch aufgeladen und entladen. Tabelle 6.1: Vergleich elektroagnetischer

Mehr

Kinematik der einachsigen/räumlichen Bewegung

Kinematik der einachsigen/räumlichen Bewegung 13. Juni 2013 Seite 1 Kineatik und Dynaik (Mehanik II) - Prof. Popov SoSe 2013 Kineatik der einahsigen/räulihen Bewegung 1. Kineatik des Massenpunktes Unter Kineatik versteht an rein atheatishe und geoetrishe

Mehr

Differentialgleichung.

Differentialgleichung. Kapitel 9 Differentialgleichungen 9. Einteilung der Differentialgleichungen In einer Differentialgleichung (DGl) treten Differentialquotienten von einer oder ehreren Funtionen von einer oder ehreren Veränderlichen

Mehr

Versuch 1 Bestimmung der Dichte einer Flüssigkeit

Versuch 1 Bestimmung der Dichte einer Flüssigkeit Versuh 1 Bestiung der Dihte einer Flüssigkeit Versuh 1 Bestiung der Dihte einer Flüssigkeit Dihteessung it de digitalen Dihteeßgerät nah DIN 51757 ( Verfahren D ) Die Dihte ρ ist eine wihtige und vielfah

Mehr

MR Mechanische Resonanz

MR Mechanische Resonanz MR Mechanische Resonanz Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis Grundlagen 2. Freie, ungedämpfte Schwingung....................... 2.2 Freie, gedämpfte Schwingung........................

Mehr

\ / \ / " \ / / \., . \ .! 1 ~2. 2 ( )

\ / \ /  \ / / \., . \ .! 1 ~2. 2 ( ) 5.1. Shwingungen 355 Für die kinetishe Energie gilt =t Ekio(/) v(t)2 it V(l) = YW o sin (wo l+ ((Jo), dann ist zu jede Zeitpunkt t gleih de Wert der gesaten Energie E ges (l) ist. Außerde erkennt an, daß

Mehr

Blatt 6. Schwingungen- Lösungsvorschlag

Blatt 6. Schwingungen- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T1) i SoSe 011 Blatt 6. Schwingungen- Lösungsvorschlag Aufgabe 6.1. Räulicher Oszillator

Mehr

Schwingungen und Wellen Teil II

Schwingungen und Wellen Teil II Shwingungen und Wellen Teil II 1.. 3. as freie, gedäpfe Feder-Masse-Syse Erzwungene Shwingungen Beispiele Prof. r.-ing. Barbara Hippauf Hohshule für Tehnik und Wirshaf des Saarlandes; Physik, SS 16 Shwingungslehre,

Mehr

Ferienkurs Experimentalphysik Probeklausur - Lösungsvorschlag

Ferienkurs Experimentalphysik Probeklausur - Lösungsvorschlag Ferienkurs Experimentalphysik 20 Probeklausur - Lösungsvorshlag Sonde auf Mond shießen Bestimmen Sie die notwendige Abshussgeshwindigkeit v a einer Sonde, die den Punkt auf der direkten Verbindungslinie

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

Ferienkurs Experimentalphysik Musterlösung Probeklausur

Ferienkurs Experimentalphysik Musterlösung Probeklausur Ferienkurs Experimentalphysik 1 2012 Musterlösung Probeklausur 1. Atwoodshe Fallmashine Betrahten Sie die abgebildete Atwoodshe Fallmashine. Der die Massen m 1 und m 2 Abbildung 1: Atwoodshe Fallmashine

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

1. Übungsblatt Aufgaben mit Lösungen

1. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Sei I R ein Intervall. Geben Sie Beispiele für Differentialgleichungen für Funktionen y = y in I mit den folgenden Eigenschaften an: Beispiel separabel, nicht

Mehr

Gekoppelte Schwinger & Normalschwingungsanalyse Eine Einführung

Gekoppelte Schwinger & Normalschwingungsanalyse Eine Einführung Gekoppelte Schwinger & Noralschwingungsanalyse Eine Einführung Stilianos Louca. Juli 007 Inhaltsverzeichnis Vorwort. Kurze Beschreibung des Probles........................................... Fehler gefunden.....................................................

Mehr

im Fall einer Longitudinalwelle angeregt wird und die sich in die positive x-richtung eines Koordinatensystems ausbreitet.

im Fall einer Longitudinalwelle angeregt wird und die sich in die positive x-richtung eines Koordinatensystems ausbreitet. Name: Datum: Harmonishe Wellen - Mathematishe eshreibung Da eine Welle sowohl eine räumlihe als auh eine zeitlihe Änderung eines physikalishen Systems darstellt, ist sowohl ihre graphishe Darstellung als

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

2. Wellenausbreitung

2. Wellenausbreitung 2. Wellenausbreitung Die Wellengleihung beshreibt die Bewegung des Stabes: 2 u t 2 =2 2 u x 2 Für die eindeutige Festlegung der Lösung müssen zusätzlih Anfangsbedingungen und Randbedingungen angegeben

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analsis Dr. I. Anapolitanos Dipl.-Math. Sebastian Schwarz SS 07.05.07 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

Physik 2 (GPh2) am

Physik 2 (GPh2) am Name, Matrikelnummer: Physik 2 (GPh2) am 18.3.11 Fahbereih Elektrotehnik und Informatik, Fahbereih Mehatronik und Mashinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 2 ab WS 10/11 (Prof.

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

Schnecke auf expandierendem Ballon

Schnecke auf expandierendem Ballon Schnecke auf expandierendem Ballon Kann in einem sich expandierenden Uniersum das Licht einer Galaxie auch die Punkte erreichen, die sich on ihr mit mehr als Lichtgeschwindigkeit entfernen? 1 Als einfaches

Mehr

6 Rotation und der Satz von Stokes

6 Rotation und der Satz von Stokes $Id: rotation.tex,v 1.8 216/1/11 13:46:38 hk Exp $ 6 Rotation und der Satz von Stokes 6.3 Vektorpotentiale und harmonishe Funktionen In 4.Satz 2 hatten wir gesehen das ein auf einem einfah zusammenhängenden

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

Lineare Systeme mit einem Freiheitsgrad

Lineare Systeme mit einem Freiheitsgrad Höhere Technische Mechanik Lineare Systeme mit einem Freiheitsgrad Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/200 Übersicht. Grundlagen der Analytischen

Mehr

10.1 Ungedämpfte harmonische Schwingungen

10.1 Ungedämpfte harmonische Schwingungen Inhalt 1 1 Schwingungen 1.1 Ungedäpfte haronische Schwingungen 1. Gedäpfte Schwingungen 1.3 Erzwungene Schwingungen 1.4 Resonanz bei erzwungenen Schwingungen 1.5 Überlagerte Schwingungen 1.6 Fourieranalyse

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

Klasse ST13a FrSe 14 ungr. Serie 16 (Potenz und Taylorreihen) a) Bestimmen Sie die Grenzen des Konvergenzbereichs der Potenzreihe: 3 k (x 4) k (3k 2)2

Klasse ST13a FrSe 14 ungr. Serie 16 (Potenz und Taylorreihen) a) Bestimmen Sie die Grenzen des Konvergenzbereichs der Potenzreihe: 3 k (x 4) k (3k 2)2 Klasse STa FrSe 4 ungr MAE Serie 6 Potenz und Taylorreihen Aufgabe a Bestimmen Sie die Grenzen des Konvergenzbereihs der Potenzreihe: p b Entwikeln Sie die Funktion f vier Summanden. k k 4 k k k in eine

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

Formelzusammenstellung

Formelzusammenstellung Übung zu Mechanik 4 - ormelsammlung Seite 4 ormelzusammenstellung. Grundbegriffe Harmonische Schwingung Sinusschwingung: (t) sin ( t + ϕ) Schwingungsamplitude: Kreisfrequenz: Phasenwinkel: requenz: f Schwingungsdauer,

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen. 7. Vorlesung Nadja Regner, Thomas Schmierer, Gunnar Spieß, Peter Gilch

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen. 7. Vorlesung Nadja Regner, Thomas Schmierer, Gunnar Spieß, Peter Gilch PN Einführung in die Eperimentalphsik für Chemiker und Biologen 7. Vorlesung.6.7 Nadja Regner, Thomas Shmierer, Gunnar Spieß, Peter Gilh Lehrstuhl für BioMolekulare Optik Department für Phsik Ludwig-Maimilians-Universität

Mehr

Formelsammlung Maschinendynamik

Formelsammlung Maschinendynamik Foelslung Msinendnik Vesion:. ttp://www.goei.og Roet Göi.. Inltsveeinis Inltsveeinis Kinetik. Lufgd............................................... Gundlgen de wingungstenik. Ewungene wingung ei onise Anegung........................

Mehr

Inhalt Kapitel I: Nichtlineare Gleichungssysteme

Inhalt Kapitel I: Nichtlineare Gleichungssysteme Inhalt Kapitel I: Nichtlineare Gleichungssysteme I Nichtlineare Gleichungssysteme I. Nullstellenbestimmung von Funktionen einer Veränderlichen I.2 I.3 Newton-Verfahren Kapitel I (UebersichtKapI) 3 Bisektionsverfahren

Mehr

Prof. Dr.-Ing. A. Schmitt. Ermittlung der Eigenkreisfrequenzen und Eigenschwingungsformen eines Torsionsschwingungssystems *)

Prof. Dr.-Ing. A. Schmitt. Ermittlung der Eigenkreisfrequenzen und Eigenschwingungsformen eines Torsionsschwingungssystems *) Fahbereih Mashinenbau Prof. Dr.-Ing. A. Shmitt Ermittlung der Eigenkreisfrequenzen und Eigenshwingungsformen eines Torsionsshwingungssystems * * Auszug aus einer Laborarbeit im Labor Antriebstehnik der

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE

ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE Kapitel 9: Relativistishe Elektrodynamik Vorlesung für Studenten der Tehnishen Physik Helmut Nowotny Tehnishe Universität Wien Institut für Theoretishe Physik 7.,

Mehr

Klassische Theoretische Physik III (Elektrodynamik)

Klassische Theoretische Physik III (Elektrodynamik) WiSe 017/18 Klassische Theoretische Physik III (Elektrodynamik Vorlesung: Prof. Dr. D. Zeppenfeld Übung: Dr. M. Sekulla Übungsblatt 10 Ausgabe: Fr, 1.01.18 Abgabe: Fr, 19.01.17 Besprechung: Mi, 4.01.18

Mehr

Wellen und Dipolstrahlung

Wellen und Dipolstrahlung Wellen und Dipolstrahlung Florian Hrubesh 7. März 200 Inhaltsverzeihnis Wellen. Wellen im Vakuum........................... 2.. Lösung der Wellengleihung................. 2..2 Energietransport / Impuls

Mehr

Musterlösung Nachholsemestrale Ex

Musterlösung Nachholsemestrale Ex Musterlösung Nahholsemestrale Ex 2.4.2008 Musterlösung Nahholsemestrale Ex 2.4.2008 2 Aufgabe Wir berehnen zuerst den Ort des abarishen Punktes, d.h. seinen Abstand r a vom Erdmittelpunkt. Das von Erde

Mehr

Musterlösung Serie 2

Musterlösung Serie 2 D-ITET Analysis III WS 13 Prof. Dr. H. Knörrer Musterlösung Serie 1. Wir wenden die Methode der Separation der Variablen an. Wir schreiben u(x, t = X(xT (t und erhalten Daraus ergeben sich die Gleichungen

Mehr

Technische Mechanik III (Dynamik)

Technische Mechanik III (Dynamik) Insiu für Mehanishe Verfahrensehnik und Mehanik Bereih Angewande Mehanik Tehnishe Mehanik III (Dnaik) 31.8.1 Bearbeiungszei: 1 h 3 in Aufgabe 1 (7 Punke) g v Ein Raushiff der Masse söß zu Zeipunk = einen

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Tehnologie Institut für Theorie der Kondensierten Materie Übungen zur Klassishen Theoretishen Physik III (Theorie C Elektrodynamik) WS 12-13 Prof. Dr. Alexander Mirlin Musterlösung:

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Gewöhnliche Differentialgleichungen Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Gew. DGl 1-1 Zusammenfassung y (x) = F (x, y) Allgemeine

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

4. Wellenausbreitung

4. Wellenausbreitung Motivation: Beim Stab konnten Lösungen der Form gefunden werden. u x,t = f 1 x ct f 2 x ct Diese Lösungen beschreiben die Ausbreitung von Wellen im Stab. Die Funktionen f 1 x und f 2 x werden durch die

Mehr

IX.3 Potentiale und Felder einer bewegten Punktladung

IX.3 Potentiale und Felder einer bewegten Punktladung N.BORGHINI Elektrodynamik einer Punktladung Theoretishe Physik IV IX.3 Potentiale und Felder einer bewegten Punktladung Dieser Abshnitt beginnt mit der Berehnung der Potentiale und Felder, die durh eine

Mehr

Lichtgeschwindigkeit

Lichtgeschwindigkeit Vorbereitung Lihtgeshwindigkeit Stefan Shierle Versuhsdatum: 13. 12. 2011 Inhaltsverzeihnis 1 Drehspiegelmethode 2 1.1 Vorbereitung auf den Versuh......................... 2 1.2 Justierung der Apparatur

Mehr

Kapitel 12: Modulation

Kapitel 12: Modulation 12: Modulation 12.1 Grundlegende Begriffe 12.2 Aplitudenodulation eines Sinusträgers 12.3 Winkelodulation 12.4 Digitale Modulationsverfahren 12.1 Grundlegende Begriffe Kapitel 12: Modulation Motivation

Mehr

6 Gewöhnliche Differentialgleichungen

6 Gewöhnliche Differentialgleichungen 6 Gewöhnliche Differentialgleichungen Differentialgleichungen sind Gleichungen in denen nicht nur eine Funktion selbst sondern auch ihre Ableitungen vorkommen. Im einfachsten Fall gibt es eine unabhängige

Mehr

Kapitel 5. Schwingungen

Kapitel 5. Schwingungen Kapitel 5 Shwingungen 5 5 Shwingungen 5.1 Grundbegriffe... 221 5.2 Freie Shwingungen... 224 5.2.1 Ungedämpfte freie Shwingungen... 224 5.2.2 Federzahlen elastisher Systeme... 230 5.2.3 Gedämpfte freie

Mehr

Grundlagen der Physik 2 Lösung zu Übungsblatt 6

Grundlagen der Physik 2 Lösung zu Übungsblatt 6 Grundlagen der Physik Lösung zu Übungsblatt 6 Daniel Weiss 17. Mai 1 Inhaltsverzeichnis Aufgabe 1 - Helholtz-Spulen 1 a) agnetische Feldstärke.............................. 1 b) hoogenes Feld..................................

Mehr

14 Lineare Differenzengleichungen

14 Lineare Differenzengleichungen 308 14 Lineare Differenzengleichungen 14.1 Definitionen In Abschnitt 6.3 haben wir bereits eine Differenzengleichung kennengelernt, nämlich die Gleichung K n+1 = K n q m + R, die die Kapitalveränderung

Mehr

3. Seilhaftung und Seilreibung

3. Seilhaftung und Seilreibung 3. Seilhaftung und Seilreibung Prof. Dr. Wandinger 5. Haftung und Reibung TM 1 5.3-1 3. Seilhaftung und Seilreibung 3.1 Haften 3.2 Gleiten Prof. Dr. Wandinger 5. Haftung und Reibung TM 1 5.3-2 Bei einer

Mehr

Übungsaufgaben zu Mathematik III (ohne Lösungen)

Übungsaufgaben zu Mathematik III (ohne Lösungen) Übungsaufgaben zu Mathematik III (ohne Lösungen) 1. Lösen Sie intuitiv (d.h. ohne spezielle Verfahren) die folgenden DGLn (allgemeine Lösung): = b) =! c) = d)!! = e at. Prüfen Sie, ob die gegebenen Funktionen

Mehr

x 3x 2x 0 2x x x 3 e 4 t t dt 12

x 3x 2x 0 2x x x 3 e 4 t t dt 12 5 Gewöhnlihe Differentialgleihungen 5. Einführung und Definition einer Differentialgleihung, Beispiele Die Shulmathematik hat sih bisher sehr ausgiebig mit dem Lösen von Gleihungen beshäftigt. In diesen

Mehr

Definition 3.33 (Oberintegral und Unterintegral). Es sei f : [a,b] R eine beschränkte Funktion. Weiter sei

Definition 3.33 (Oberintegral und Unterintegral). Es sei f : [a,b] R eine beschränkte Funktion. Weiter sei 8. Integrierbre Funktionen Definition 3.3 (Treppenfunktionen). Eine Funktion t : [,b] R heißt Treppenfunktion, flls es endlih viele Punkte x < x 1 < < x n mit x = und x n = b gibt, so dss f uf jedem der

Mehr

7. Übungsblatt Aufgaben mit Lösungen

7. Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sei die Differentialgleichung 7. Übungsblatt Aufgaben mit Lösungen y x) 2 x y x) + 5 x 2 y x) 5 x yx) = 0 für x > 0. Prüfen Sie, ob die folgenden Funktionen Lösungen dieser Differentialgleichung

Mehr

Formelsammlung Bauphysik

Formelsammlung Bauphysik Forelsalung Bauphysik. Wäreschutz Physikalische Größen Wäre Q c ( Θ Θ ) Wärestro Wärestrodichte Wäreleitungsgleichung ransissionsgrad Absorptionsgrad Reflexionsgrad Stefan-Boltzann-Gesetz schwarzer Strahler

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

Der harmonische Oszillator anhand eines Potentials

Der harmonische Oszillator anhand eines Potentials Quantenmechanikvorlesung, Prof. Lang, SS04 Der harmonische Oszillator anhand eines Potentials Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler Einleitung In der

Mehr

Harmonische Schwingung die einfachste Schwingung ist die harmonische Schwingung

Harmonische Schwingung die einfachste Schwingung ist die harmonische Schwingung 1. Schwingungen Fast alles schwingt, d.h. der Zustand ändert sich periodisch it der Zeit wie in Kreisbewegung. Bsp. Uhr, Kolben i Autootor, wippende Boote auf de Wasser. Haronische Schwingung die einfachste

Mehr

Friedrich U. Mathiak. Baudynamik. Einführung und Grundlagen

Friedrich U. Mathiak. Baudynamik. Einführung und Grundlagen rierih U. Mathiak Bauynaik Einführung un Grunlagen Bauynaik Einführung un Grunlagen rierih U. Mathiak Das Werk, einshließlih aller seiner Teile, ist urheberrehtlih geshützt. Jee Verwertung außerhalb er

Mehr

Technische Mechanik III Aufgabensammlung 2. Aufgabensammlung 2

Technische Mechanik III Aufgabensammlung 2. Aufgabensammlung 2 Tehnishe Mehnik III Augbenslung Augbenslung Augbe : Kinetik Zwei Hltestellen sind 5 oneinnder enternt. Eine Strßenbhn ährt gerdlinig it einer konstnten Beshleunigung A on der einen Hltestelle n und erreiht

Mehr

7.5 Relativistische Bewegungsgleichung

7.5 Relativistische Bewegungsgleichung 7.5. RELATIVISTISCHE BEWEGUNGSGLEICHUNG 7 7.5 Relativistishe Bewegungsgleihung Das Ziel ieses Abshnittes ist es, ie Bewegungsgleihung er Klassishen Mehanik an ie relativistishe Kinematik anzupassen. Ausgangspunkt

Mehr

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3.

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3. 4. Dämpfungsmodelle 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Dabei

Mehr

Labor Messtechnik Versuch 3 Wärmetauscher

Labor Messtechnik Versuch 3 Wärmetauscher FR Mashinenbau Labor Messtehni Versuh 3 Wäretausher Seite von 8 Versuh 3: Wäreaustausher. Versuhsaufbau.. fang es Versuhes I Versuh weren folgene Theenreise behanelt: - Gleihstro - Gegenstro - Wäreurhgangszahl..

Mehr

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung 28. September 2016 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung Aufgabe 1. Die nachfolgende Grafik stellt das Oszillogramm zweier sinusförmiger Spannungen

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Wiederholung. H. Hennig; Humboldt-Universität Vorlesungen Chemische Kinetik Komplexe Chemische Reaktionen 8. Mai 2006

Wiederholung. H. Hennig; Humboldt-Universität Vorlesungen Chemische Kinetik Komplexe Chemische Reaktionen 8. Mai 2006 Wiederholung us der marosopishen Bruttoreationsgleihung ann niht auf den onzentrationsabhängigen Teil im Geshwindigeitsgesetz, d.h. auf die inetishe Reationsordnung geshlossen werden! Vorlesungen hemishe

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommersemester 25 Gabriele Semino, Alexander Wolf, Thomas Maier sblatt 4 Elektromagnetishe Wellen und spezielle Relativitätstheorie Aufgabe : Leistung eines Herzshen Dipols

Mehr

Zusammenfassung: Lineare mechanische Wellen

Zusammenfassung: Lineare mechanische Wellen LGÖ Ks Ph -stündig 0.09.0 Zusammenfassung: Lineare mehanishe Wellen Alle Shwingungen und Wellen werden als ungedämpft angesehen. Mehanishe Wellen benötigen zu ihrer Ausbreitung einen Wellenträger, d. h.

Mehr

13 Differentialgleichungen

13 Differentialgleichungen 3 Differentialgleichungen 282 3. Einführung Unter einer Differentialgleichung (=: DGL) versteht man eine Bestimmungsgleichung für eine unbekannte Funktion, in der die Funktion selbst und ihre Ableitungen

Mehr

1) Brillouin-Streuung zur Ermittlung der Schallgeschwindigkeit

1) Brillouin-Streuung zur Ermittlung der Schallgeschwindigkeit Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Eric Parzinger / Jens Repp Kontakt: eric.parzinger@wsi.tum.de / jens.repp@wsi.tum.de Blatt 3, Besprechung: 7. und 14.5.214

Mehr

Versuch LF: Leitfähigkeit

Versuch LF: Leitfähigkeit Versuhsdatum: 8.9.9 Versuh LF: Versuhsdatum: 8.9.9 Seite -- Versuhsdatum: 8.9.9 Einleitung bedeutet, dass ein hemisher Stoff oder ein Stoffgemish in der Lage ist, Energie oder Ionen zu transportieren und

Mehr

Aufgabe 1: Elektro-mechanischer Oszillator

Aufgabe 1: Elektro-mechanischer Oszillator 37. Internationale Physik-Olympiade Singapur 6 Lösungen zur zweiten Runde R. Reindl Aufgabe : Elektro-mechanischer Oszillator Formeln zum Plattenkondensator mit der Plattenfläche S, dem Plattenabstand

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Mathematik - Oberstufe

Mathematik - Oberstufe Mathematik - Oberstufe Aufgaben und Musterlösungen zu linearen Funktionen Zielgruppe: Oberstufe Gmnasium Shwerpunkt: Geraden, Streken und Dreieke im Koordinatensstem Aleander Shwarz www.mathe-aufgaben.om

Mehr

Musterlösungen Online Zwischentest - Serie 10

Musterlösungen Online Zwischentest - Serie 10 D-MAVT, D-MATL Analysis II FS 2013 Prof. Dr. P. Biran Musterlösungen Online Zwischentest - Serie 10 Frage 1 [Prüfungsaufgabe Frühling 2011)] Sei das Vektorfeld in R 3, ( x v(x,y,z) = 2, x+y ),0 2 und der

Mehr

Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik

Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt, WS 202/203 Höhere Mathematik III für die Fachrichtung Physik Aufgabe 6 Bei allen Aufgabenteilen handelt es sich um (homogene bzw. inhomogene) lineare Differentialgleichungen

Mehr

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion Aufgabe EStrich ist Lennard Jones Potential mit Exponentialfunktion Ansatz: Exponentialfunktion mit 3 Variablen einführen: a: Amplitude b:stauchung c:verschiebung_entlang_x_achse EStrich r_, ro_, _ : a

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Aufgabenkomplex 4: Vektorfunktionen, Differenzialgleichungen, Eigenwertprobleme

Aufgabenkomplex 4: Vektorfunktionen, Differenzialgleichungen, Eigenwertprobleme Technische Universität Chemnitz 3. Mai Fakultät für Mathematik Höhere Mathematik I. Aufgabenkomple 4: Vektorfunktionen, Differenzialgleichungen, Eigenwertprobleme Letzter Abgabetermin:. Juni (in Übung

Mehr

10. Grassmannsche Vektoren und die Drehungen im Raum.

10. Grassmannsche Vektoren und die Drehungen im Raum. 10. Grassmannshe Vektoren und die Drehungen im Raum. Wir haen in der vorigen Vorlesung gesehen wie man Gegenstände im Raum vermöge der Zentralprojektion als Figuren in der Eene perspektivish genau darstellen

Mehr

Theoretische Physik II Quantenmechanik

Theoretische Physik II Quantenmechanik Michael Czopnik Bielefeld, 11. Juli 014 Fakultät für Physik, Universität Bielefeld Theoretische Physik II Quantenmechanik Sommersemester 014 Lösung zur Probeklausur Aufgabe 1: (a Geben Sie die zeitabhängige

Mehr

Lichtgeschwindigkeit

Lichtgeschwindigkeit Vorbereitung Lihtgeshwindigkeit Carsten Röttele 2. Dezember 20 Inhaltsverzeihnis Drehspiegelmethode 2. Vorbereitung auf den Versuh......................... 2.2 Justierung der Apparatur und Messung...................

Mehr

15. Vorlesung Sommersemester

15. Vorlesung Sommersemester 15. Vorlesung Soerseester 1 Kontinuusgrenzfall der Bewegungsgleichungen Was wird aus den Bewegungsgleichungen i Kontinuusgrenzwert? I diskreten Fall sind diese η j = kη j+1 η j + η j 1 1 und an führt wieder

Mehr

Aus diesem Ausdruck erhalten wir zwei unabhängige gewöhnliche lineare Differentialgleichungen für T und X:

Aus diesem Ausdruck erhalten wir zwei unabhängige gewöhnliche lineare Differentialgleichungen für T und X: Eindimensionale Kontinuumsschwingungen II Kontinuumsmechanik 05. Übungsblatt, WS 2012/13, S. 1 1 Balkenschwingung Wir beginnen mit der Herleitung der Bewegungsdifferentialgleichung / Feldgleichung für

Mehr

Maximalität und Globalität von Lösungen

Maximalität und Globalität von Lösungen Gewöhnliche Differentialgleichungen Florian Wörz SoSe 205 Maximalität und Globalität von Lösungen Maximale Lösungen Sei Ω : T U R R n ein Gebiet, f : Ω R n stetig und (t 0, u 0 ) Ω. Im Folgenden betrachten

Mehr

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2 fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt Aufgabe Induktion). a) Beweisen Sie, dass + 3 + 5 +... + n )) ein perfektes Quadrat genauer n ) ist. b) Zeigen Sie: + + +...

Mehr

Das gefaltete Quadrat

Das gefaltete Quadrat =.? @ / - + Das gefaltete Quadrat Eine Aufgabe aus der Japanishen Tempelgeometrie 21. September 2004 Gegeben sei das Quadrat ABCD mit der Seitenlänge a. Entlang der Linie EF wird das Quadrat gefaltet,

Mehr