Approximationsverfahren
|
|
|
- Linus Reuter
- vor 8 Jahren
- Abrufe
Transkript
1 Fakultät Informatik, Institut für Angewandte Informatik, Professur für Technische Informationssysteme Approimationsverfahren zur Überführung nichtäquidistanter Messwertfolgen in äquidistante Zeitreihen Dresden,.. Philipp Geißler
2 Gliederung. Nichtäquidistante Messwertfolgen. Überführung in äquidistante Zeitreihen. Approimationsverfahren. Lineare Interpolation. Polynom-Interpolation. Spline-Interpolation 4. Vergleich 4. Zusammenfassung.. Approimationsverfahren Folie Nr. von 4
3 . Nichtäquidistante Messwertfolgen T nicht konstant Problem: Analyse problematisch Äquidistanz oft vorausgesetzt Erstellen von Modellen schwierig ungenaue Modelle nicht für Prognosen geeignet Ziel: Messwerte äquidistant machen [].. Approimationsverfahren Folie Nr. von 4
4 . Nichtäquidistante Messwertfolgen EUR/USD Jahresd durchschnitt EUR/USD Kurs [4],6,5,4,,,,9, Approimationsverfahren Folie Nr. 4 von 4
5 . Überführung in äquidistante Zeitreihen EUR/USD Jahresd durchschnitt EUR/USD Kurs gesucht,6,5,4,,,,9, Approimationsverfahren Folie Nr. 5 von 4
6 . Überführung in äquidistante Zeitreihen Lösung: gesuchte Punkte approimieren Zeitintervalle wählen möglichst viele vorhandene Punkte belassen Anzahl interpolierter Punkte muss geringer sein als Anzahl vorhandener Punkte Vielzahl an Interpolationsverfahren lineare Interpolation Polynom-Interpolation Spline-Interpolation.. Approimationsverfahren Folie Nr. 6 von 4
7 . Approimationsverfahren einfache Berechnung, schnell wird häufig in Prais verwendet Berechnung:. Lineare Interpolation Approimationsverfahren Folie Nr. 7 von 4.. y y y f y P y P + []
8 . Approimationsverfahren. Lineare Interpolation + y y y f 4 P 4, Approimationsverfahren Folie Nr. 8 von f f f 4 P,
9 . Approimationsverfahren. Lineare Interpolation EUR/USD Jahresd durchschnitt EUR/USD Kurs Lineare Int.,6,5,4,,,,9, Approimationsverfahren Folie Nr. 9 von 4
10 . Approimationsverfahren. Lineare Interpolation EUR/USD Kurs Lineare Int. gesucht EUR/USD Jahresd durchschnitt,6,5,4,,,,9, Approimationsverfahren Folie Nr. von 4
11 . Approimationsverfahren. Polynom-Interpolation n+ Datenpunkte gesucht wird Polynom n-ten Grades Berechnung nach Lagrange: p n y n i i k, k i i k k l i [].. Approimationsverfahren Folie Nr. von 4
12 . Approimationsverfahren 4 5 P 4, 4. Polynom-Interpolation , + l l l n i k k k i k i Approimationsverfahren Folie Nr. von P, P, y l p l l i n i i
13 . Approimationsverfahren. Polynom-Interpolation,6 EUR/USD Kurs Poly. EUR/USD Kurs EUR/USDJahresd durchschnitt,4,,8,6, Approimationsverfahren Folie Nr. von 4
14 . Approimationsverfahren. Polynom-Interpolation EUR/USD Kurs Poly. Int. gesucht,6 EUR/USDJahresd durchschnitt,4,,8,6, Approimationsverfahren Folie Nr. 4 von 4
15 . Approimationsverfahren. Spline-Interpolation n+ Datenpunkte Stückweise Interpolation durch n Polynome kein Überschwingen minimale Gesamtkrümmung kubische Splines verbreitet je Stützstelle 4 Polynomkoeffizienten zu bestimmen 4n Gleichungen nötig.. Approimationsverfahren Folie Nr. 5 von 4
16 . Approimationsverfahren. Spline-Interpolation 4 P, P -, P, - - Ziel : s a s e Interpolation : s s s Stetigkeit : s' s' s + b + f + + c + d für [,] + g + h für [,] s s Differenzierbarkeit : l Randbedingungen : s'' s'' Ergebnis : s r l + s'' s'' + für [,] l r + für [,] r [5].. Approimationsverfahren Folie Nr. 6 von 4
17 . Approimationsverfahren. Spline-Interpolation EUR/USDJahresd durchschnitt EUR/USD Kurs Spline Int.,6,5,4,,,,9, Approimationsverfahren Folie Nr. 7 von 4
18 . Approimationsverfahren. Spline-Interpolation EUR/USD Kurs Spline Int. gesucht EUR/USD Jahresd durchschnitt,6,5,4,,,,9, Approimationsverfahren Folie Nr. 8 von 4
19 . Approimationsverfahren.4 Vergleich EUR/USD Kurs Lineare Int. Poly. Int. Spline Int. Pot.spline Pot.poly EUR/USD Jahresdu urchschnitt,5,,,9,7,5 y,9,9 y,97,59 y,99,57 y,9, Approimationsverfahren Folie Nr. 9 von 4
20 . Approimationsverfahren.4 Vergleich Vergleichskriterium: Bestimmtheitsmaß R² beschreibt Güte des Modells Berechnung: [] R Variation der Residuen Variation von Y i n n i Y i Y i Y ˆ ² i Y ² zeigt nur Qualität der Approimation, nicht des Modells [].. Approimationsverfahren Folie Nr. von 4
21 . Approimationsverfahren.4 Vergleich Verfahren R² original:,8 Merkmale Lineare Interpolation,8 Ungenau, schnell, einfach Polynom-Interpolation,79 Fehleranfällig durch Oszillieren, aufwändig Kubische Splines,66 Optimal für glatte Verläufe.. Approimationsverfahren Folie Nr. von 4
22 . Approimationsverfahren.4 Vergleich EUR/USD Kurs Lineare Int. Poly. Int. Spline Int. Pot.spline Pot.poly Pot.linear Pot.EUR/USD Kurs EUR/USD Jahresdurc chschnitt,5,,,9,7,5 R²,66 R²,8 R²,8 R², ,45,4,4,7.. Approimationsverfahren Folie Nr. von 4
23 4. Zusammenfassung Äquidistanz immer möglich viele Approimationsverfahren Wahl eines Verfahrens nach individuellen Gegebenheiten nur Annäherung möglich, Fehler unvermeidbar Approimation nur sinnvoll bei geringer Anzahl fehlender Werte.. Approimationsverfahren Folie Nr. von 4
24 Quellenverzeichnis [] Streitberg, Bernd H. J. / Schlittgen, Rainer: Zeitreihenanalyse. Oldenbourg Wissenschaftsverlag; Auflage: 6. Mai [] Schlittgen, Rainer: Einführung in die Statistik: Analyse und Modellierung von Daten. Oldenbourg Wissenschaftsverlag; Auflage:. Juni [] wikipedia: Bestimmtheitsmaß. URL: Interpolation Mathematik. URL: [4] ARIVA: EUR/USD Kurs. URL: [5] Dr. Lenhardt, Ingrid: Spline-Interpolation. URL: Approimationsverfahren Folie Nr. 4 von 4
Approximationsverfahren zur Überführung nichtäquidistanter Messwertfolgen in äquidistante Zeitreihen.
Fakultät Informatik, Institut für Angewandte Informatik, Professur für Technische Informationssysteme Approximationsverfahren zur Überführung nichtäquidistanter Messwertfolgen in äquidistante Zeitreihen.
Hauptseminar zum Thema:
Fakultät Informatik Institut für angewandte Informatik Professur Technische Informationssysteme Hauptseminar zum Thema: Vergleich ARCH- und GARCH- Modelle bei der Analyse von Zeitreihen mit veränderlichen
Facharbeit. Mathematik
Albert-Schweitzer-Gymnasium Kollegstufenjahrgang 2001/2003 Erlangen Facharbeit aus dem Fach Mathematik Thema: Splinefunktionen und ihre Anwendung Verfasser: Moritz Lenz Leistungskurs: Mathematik 1 Kursleiter:
Übungen zu Splines Lösungen zu Übung 20
Übungen zu Splines Lösungen zu Übung 20 20.1 Gegeben seien in der (x, y)-ebene die 1 Punkte: x i 6 5 4 2 1 0 1 2 4 5 6 y i 1 1 1 1 1 + 5 1 + 8 4 1 + 8 1 + 5 1 1 1 1 (a) Skizzieren Sie diese Punkte. (b)
5 Interpolation und Approximation
5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)
Approximation. E(N) N. Beachte: Der Wert für N = 32 ist vernachlässigt, da er in der Grössenordnung der Rechengenauigkeit liegt.
Approximation Ziel: Approximation der Funktion f(x) = x mit Polynomen (global und stückweise) Experiment: Abhängigkeit des Approximationsfehlers E(N) (in der Maximumnorm) von der Anzahl der Freiheitsgrade
Polynominterpolation
Polynominterpolation In der numerischen Mathematik versteht man unter Polynominterpolation die Suche nach einem Polynom, welches exakt durch vorgegebene Punkte (z. B. aus einer Messreihe) verläuft. Dieses
KAPITEL 8. Interpolation
KAPITEL 8. Interpolation 8.2 Lagrange-Interpolationsaufgabe für Polynome Wir beschränken uns auf die Lagrange-Interpolation mit Polynomen. Der Raum der Polynome vom Grad n: Stützstellen: Π n = { n j=0
Verarbeitung von Messdaten
HTL Steyr Verarbeitung von Messdaten Seite von 8 Bernhard Nietrost, HTL Steyr Verarbeitung von Messdaten Mathematische / Fachliche Inhalte in Stichworten: Regression, Polynominterpolation, Extremwertberechnung,
Die Interpolationsaufgabe besteht darin, eine (einfache) Funktion u n U n zu finden,
Kapitel 3 Interpolation 31 Einführung Bemerkung 31 Motivation, Aufgabenstellung Gegeben seien eine Funktion f C([a,b]) und x i [a,b], i = 0,n, mit a x 0 < x 1 < < x n b (31) Die Interpolationsaufgabe besteht
Übungen mit dem Applet Interpolationspolynome
Interpolationspolynome 1 Übungen mit dem Applet Interpolationspolynome 1 Ziele des Applets... 2 2 Übungen mit dem Applet... 2 2.1 Punkte... 3 2.2 y=sin(x)... 3 2.3 y=exp(x)... 4 2.4 y=x 4 x 3 +2x 2 +x...
Interpolation. Kapitel 3
Kapitel 3 Interpolation Die Interpolation von Funktionen oder Daten ist ein häufig auftretendes Problem sowohl in der Mathematik als auch in vielen Anwendungen Das allgemeine Problem, die sogenannte Dateninterpolation,
Kapitel 4. Interpolation. 4.1 Allgemeines Normen von Funktionen
Kapitel 4 Interpolation 4 Allgemeines Nähere Funktion/Daten durch einfache Funktionen (eg Polynome) an Brauchbar für: - Integration - Differentiation [zb f(x) sei durch Polynom p(x) approximiert, F(x)
Ist MuPAD die neue Art zu rechnen?
Fakultät Informatik Institut für Angewandte Informatik, Professur Technische Informationssysteme Ist MuPAD die neue Art zu rechnen? Dresden, 13.12.2010 Gliederung I. Was ist MuPAD? a) Überblick b) Was
Dynamische Mathematik. mit GeoGebra. Dr. Anita Dorfmayr Universität Wien
Dynamische Mathematik mit GeoGebra Dr. Anita Dorfmayr Universität Wien Tag der Mathematik Passau, 12. Dezember 2008 Gliederung GeoGebra Projekt: Vom Duplikat zum Original Aufgabe: Grundstück Ausblick GeoGebra
1 2 x x x x x x2 + 83
Polynominterpolation Aufgabe 1 Gegeben sei die Wertetabelle i 0 1 2 3 x i 0 1 2 4 f i 3 1 2 7 a) Bestimmen Sie das Interpolationspolynom von Lagrange durch die obigen Wertepaare. b) Interpolieren Sie die
[5], [0] v 4 = + λ 3
Aufgabe 9. Basen von Untervektorräumen. Bestimmen Sie Basen von den folgenden Untervektorräumen U K des K :. K = R und U R = span,,,,,.. K = C und U C = span + i, 6, i. i i + 0. K = Z/7Z und U Z/7Z = span
GRUNDLAGEN MATHEMATIK
Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 4. Differentialrechnung Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies
Approximation flächenhaft harmonischer Funktionen mittels bikubisch finiter Elemente
. Session 6: Theoretische Geodäsie Approximation flächenhaft harmonischer Funktionen mittels bikubisch finiter Elemente 1 Jessica Franken Institut für Geodäsie und Geoinformation Professur für Theoretische
Musterlösung zum Übungsblatt Interpolation nach Newton, Nevill, Lagrange.
Angewandte Mathematik Ing.-Wiss., HTWdS Dipl.-Math. Dm. Ovrutskiy Musterlösung zum Übungsblatt Interpolation nach Newton, Nevill, Lagrange. Aufgabe 1 Approximieren Sie cos(x) auf [ /, /] an drei Stützstellen
Inhalt Kapitel IV: Interpolation
Inhalt Kapitel IV: Interpolation IV Interpolation IV. Polynom-Interpolation IV. Spline-Interpolation Kapitel IV (InhaltIV) Die Interpolationsformel von Lagrange Zentrale Aussage: Zu beliebigen n + Stützpunkten
Practical Numerical Training UKNum
Practical Numerical Training UKNum 2: Interpolation, Extrapolation, Splines Dr. C. Mordasini Max Planck Institute for Astronomy, Heidelberg Program: 1) Einführung 2) Direkte Methode 3) Dividierte Differenzmethode
Zeitreihenanalyse Der einfache gleitende Durchschnitt
Zeitreihenanalyse Der einfache gleitende Durchschnitt Worum geht es in diesem Lernmodul? Einleitung Erläuterung der Methode Berechnung des einfachen gleitenden Durchschnitts Der einfache gleitende Durchschnitt
Polynominterpolation mit Matlab.
Polynominterpolation mit Matlab. Die Matlab-Funktion polyfit a = polyfit(x,f,n-1); berechnet die Koeffizienten a = (a(1),a(2),...,a(n)); des Interpolationspolynoms p(x) = a(1)*x^(n-1) + a(2)*x^(n-2) +...
Interpolation. Nadine Losert. Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung PD Dr.
Interpolation Nadine Losert Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: Nachdem wir in den vorherigen Vorträgen verschiedene
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Stefan Werner (Übungen) sowie viele Tutoren Teilnehmerkreis und Voraussetzungen Studiengänge
8 Polynominterpolation
8 Polynominterpolation Interpolations-Aufgabe: Von einer glatten Kurve seien nur lich viele Punktewerte gegeben. Wähle einen lichdimensionalen Funktionenraum. Konstruiere nun eine Kurve in diesem Funktionenraum
Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016
Übungen zu Einführung in die Numerische Mathematik (VE) Sommersemester 6 Prof. Dr. Martin Rumpf Pascal Huber Sascha Tölkes Übungsblatt 8 Abgabe:.6.6 Aufgabe 5 (Elliptisches Randwertproblem auf einem Ring)
Polynome im Einsatz: Bézier-Kurven im CAD
Polynome im Einsatz: Bézier-Kurven im CAD Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 25 Kurven im Raum Eine Kurve im
Zeitreihenanalyse Das Holt-Winters-Verfahren
Zeitreihenanalyse Das Holt-Winters-Verfahren Worum geht es in diesem Lernmodul? Einleitung Modellannahmen Die Prognoseformel des Holt-Winters-Verfahren Die Glättungskoeffizienten Die Startwerte Weiterführende
GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida
GMA Grundlagen Mathematik und Analysis Reelle Funktionen 3 Christian Cenker Gabriele Uchida Data Analytics and Computing Nullstellen cos log : 0, 0,? 1 Fixpunkte Beispiel 1 Beispiel 2 1 0 0 und 1 1sin,?
6 Polynominterpolation
Vorlesungsskript HM-Numerik (SS 2014): Kapitel 6 Version: 1 Juli 2014 6 Polynominterpolation Gegeben: Wertepaare { (x i,f i ) R 2 i = 0,,n } Gesucht: Einfache Funktion g : R R mit g(x i ) = f i i {0,1,,n}
Kapitel 3. Approximation von Funktionen und Daten. Interpolation Stückweise Interpolation Spline-Funktionen [
Kapitel 3 Approximation von Funktionen und Daten Prof. R. Leithner, E. Zander Einführung in numerische Methoden für Ingenieure 3/2 Approximation Approximation: Suche zu einer gegebenen Funktion f eine
Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management
Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Regression: 4 eindimensionale Beispiele Berühmte
Musterlösungen zu Blatt 15, Analysis I
Musterlösungen zu Blatt 5, Analysis I WS 3/4 Inhaltsverzeichnis Aufgabe 85: Konvergenzradien Aufgabe 86: Approimation von ep() durch Polynome Aufgabe 87: Taylorreihen von cos 3 und sin Aufgabe 88: Differenzenquotienten
5.6 Empirische Wirtschaftsforschung
5.6.0 Vorbemerkungen Literatur Winker, P. (2010): Empirische Wirtschaftsforschung und Ökonometrie. 3. Auflage. Springer. Insbesondere Kapitel 1, 4 und 10. Volltext-Download im Rahmen des LRZ-Netzes. Rinne,
Ansichten über krumme Kurven oder der Einsatz der Spline-Interpolation in einer CNC-Steuerung
CNC Power Engineering - Always on the move Ansichten über krumme Kurven oder der Einsatz der Spline-Interpolation in einer CNC-Steuerung Amazing ideas and freaky challenges in software development Klaus,
Zeitreihenanalyse Exponentielles Glätten
Zeitreihenanalyse Exponentielles Glätten Worum geht es in diesem Lernmodul? Einleitung Prognose mit der Methode des exponentiellen Glättens Die Prognoseformel des exponentiellen Glättens Die Wirkung der
Gleichungen dritten und vierten Grades und Konstruktionen mit mehr als Zirkel und Lineal
1 Gleichungen dritten und vierten Grades und Konstruktionen mit mehr als Zirkel und Lineal Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastic (WIAS) e-mail: [email protected]
Wir konstruieren eine Wasserrutsche!
Wir konstruieren eine Wasserrutsche! Teilnehmer: Leo Graumann Anh Vu Ho Yiyang Huang Felix Jäger Charlotte Kappler Wilhelm Mebus Alice Wamser Gruppenleiter: René Lamour Caren Tischendorf Heinrich-Hertz-Oberschule,
Spline Morphing. Softwarepraktikum im IWR. Carl Friedrich Bolz. Carl Friedrich Bolz
Spline Morphing Softwarepraktikum im IWR Einführung Motivation: Splines sind die Grundlage von jeglicher Vektorgrafik, 3D-Grafik, CAD/CAM,... Splines werden häufig zur Beschreibung von Schrift verwendet,
BERÜCKSICHTIGUNG INTELLIGENTER GEBÄUDEAUTOMATION IM NEUEN GEBÄUDE-ENERGIEAUSWEIS
Fakultät Informatik, Institut für Angewandte Informatik, Professur für Technische Informationssysteme BERÜCKSICHTIGUNG INTELLIGENTER GEBÄUDEAUTOMATION IM NEUEN GEBÄUDE-ENERGIEAUSWEIS Vortragender: Alexander
Interpolationsverfahren
Belegarbeit in der Angewandten Informatik Sommersemester 2012 Mathematik Aufbau Interpolationsverfahren Das kubische Spline-Verfahren Tobias Schwandt 29.07.2012 Dipl.-Math. Anja Haußen Inhaltsverzeichnis
Die Interpolationsformel von Lagrange
Die Interpolationsformel von Lagrange Zentrale Aussage: Zu beliebigen n + Stützpunkten (x i,f i ), i =,...,n mit paarweise verschiedenen Stützstellen x i x j, für i j, gibt es genau ein Polynom π n P n
Grundlagen der Statistik I
NWB-Studienbücher Wirtschaftswissenschaften Grundlagen der Statistik I Beschreibende Verfahren Von Professor Dr. Jochen Schwarze 10. Auflage Verlag Neue Wirtschafts-Briefe Herne/Berlin Inhaltsverzeichnis
Analysis II für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg SoSe 2014 Prof. Dr. Armin Iske Dr. Hanna Peywand Kiani Analysis II für Studierende der Ingenieurwissenschaften Blatt 3, Hausaufgaben Aufgabe 1: a) Es sei
Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen
Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Wintersemester 2012/201 Zwischentest Teil 1: 1. Was bedeuten die Bezeichnungen O(h) und o(h)? (Definition) (siehe Skript!)
Mathematica kompakt. Einführung-Funktionsumfang-Praxisbeispiele von Dipl.-Math.Christian H.Weiß. Oldenbourg Verlag München
Mathematica kompakt Einführung-Funktionsumfang-Praxisbeispiele von Dipl.-Math.Christian H.Weiß Oldenbourg Verlag München Inhaltsverzeichnis Vorwort Tabellenverzeichnis VII XVII 1 Einleitung 1 1 Grundlagen
Geostatistik. Räumliche Variabilität und Interpolationsverfahren
Geostatistik Räumliche Variabilität und Interpolationsverfahren Inhalte Räumliche Variabilität Beispiele Bedeutung Messung Interpolationsverfahren Nicht - stochastische Beispiele Räumliche Variabilität
Themen Lagrange-Interpolation Hermite-Interpolation. Splines. Bézier-Kurven. 5 Interpolation. Interpolation Die Lagrangesche Interpolationsaufgabe
5 Themen Lagrange- Bézier-Kurven saufgabe sformel Der sfehler 5.1 saufgabe È n = Raum der reellen Polynome vom Grad n. saufgabe sformel Der sfehler 5.1 saufgabe È n = Raum der reellen Polynome vom Grad
Elementare Wirtschaftsmathematik
Rainer Göb Elementare Wirtschaftsmathematik Erster Teil: Funktionen von einer und zwei Veränderlichen Mit 87 Abbildungen Methodica-Verlag Veitshöchheim Inhaltsverzeichnis 1 Grundlagen: Mengen, Tupel, Relationen.
Interpolation, lineare Gleichungen (mit und ohne Lösungen) und lineare Regression
Interpolation, lineare Gleichungen (mit und ohne Lösungen) und lineare Regression Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-6020 Innsbruck, Österreich [email protected]
Euler-Verfahren. exakte Lösung. Euler-Streckenzüge. Folie 1
exakte Lösung Euler-Verfahren Folie 1 Euler-Streckenzüge Ein paar grundlegende Anmerkungen zur Numerik Die Begriffe Numerik bzw. Numerische Mathematik bezeichnen ein Teilgebiet der Mathematik, welches
Exakte Differentialgleichungen
Exakte Differentialgleichungen M. Vock Universität Heidelberg Seminar Mathematische Modellierung am 11.11.2008 Gliederung Differentialgleichungen eine erste Begegnung Definition Gewöhnliche DGL Die exakte
Zeitreihenanalyse Das klassische Komponentenmodell
Zeitreihenanalyse Das klassische Komponentenmodell Worum geht es in diesem Lernmodul? Zeitreihen mit unterschiedlichen Charakteristika Zeitreihen mit regelmäßigen Schwankungen Mittel und Niveau einer Zeitreihe
Crashkurs Mathematik für Ökonomen
Crashkurs Mathematik für Ökonomen Thomas Zörner in Kooperation mit dem VW-Zentrum Wien, Oktober 2014 1 / 12 Outline Über diesen Kurs Einführung Lineare Algebra Analysis Optimierungen Statistik Hausübung
Zeit Umsatz. t U=U(t) BS - 13 BS Modul : Analyse zeitabhängiger Daten z.b. Prof. Dr. W. Laufner Beschreibende Statistik
BS - 1 1 Modul 1 : Analyse zeitabhängiger Daten z.b. Zeit Umsatz t UU(t) BS - 1 2 Modul 1: Zeitreihenanalyse 0 70 60 Zeitreihenanalyse Umsatz (Mio ) 0 40 0 0 Q1 Q2 Q Q4 Q1 Q2 Q Q4 Q1 Q2 Q Q4 Q1 Q2 Q Q4
Numerisches Programmieren, Übungen
Technische Universität München SS 2011 Institut für Informatik Prof Dr Thomas Huckle Dipl-Inf Christoph Riesinger Dr Slobodan Ilic Numerisches Programmieren, Übungen 6 Übungsblatt: Stückweise Interpolation
(1 + o(1)) n ln(n) π(n) =
Satz 164. (Euklid): Es gibt unendlich viele Primzahlen Beweis. (Widerspruch:) Angenommen, es gäbe nur k < viele Primzahlen p 1,...,p k. Es ist dann q := (p 1 p 2... p k ) + 1 eine Zahl, die nicht durch
Mathematik Übungsblatt - Lösung. b) x=2
Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Sommersemester 204 Technische Informatik Bachelor IT2 Vorlesung Mathematik 2 Mathematik 2 4. Übungsblatt - Lösung Differentialrechnung
Übungen aus den numerischen Methoden der Astronomie SS 2011
Übungen aus den numerischen Methoden der Astronomie SS 2011 1. Fermat Teil I : Berechnen Sie die Fläche eines rechtwinkeligen Dreiecks mit Hilfe des pythagoräischen Lehrsatzes. Die beiden Katheten sollen
(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0
Taylor-Reihen Einführung Mathematik GLF / 6 Christian Neukirchen Oft können wir bestimmte mathematische Funktionen nicht genau ausrechnen, besonders die trigonometrischen Funktionen wie, cos x, oder die
Mathematische Grundlagen der dynamischen Simulation
Mathematische Grundlagen der dynamischen Simulation Dynamische Systeme sind Systeme, die sich verändern. Es geht dabei um eine zeitliche Entwicklung und wie immer in der Informatik betrachten wir dabei
Quantitative Methoden der Betriebswirtschaftslehre I Überblick
Quantitative Methoden der Betriebswirtschaftslehre I Überblick Prof. Dr. Norbert Trautmann Universität Bern Frühjahrssemester 2016 Gliederung 1 2 3 4 5 Prof. Dr. Norbert Trautmann, Frühjahrssemester 2016
2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p
Wiederholungsaufgaben Algorithmische Mathematik Sommersemester Prof. Dr. Beuchler Markus Burkow Übungsaufgaben Aufgabe. (Jacobi-Verfahren) Gegeben sei das lineare Gleichungssystem Ax b = für A =, b = 3.
Interpolationsproblem. Interpolation. Interpolationsproblem. Interpolationsproblem. Gegeben seien eine Funktion. Φ (x; a 1,...
sproblem Heinrich Voss [email protected] Hamburg University of Technology Institute for Numerical Simulation Gegeben seien eine Funktion Φ (x; a 1,..., a n ) : R I R, die auf einem Intervall I erklärt
FEM isoparametrisches Konzept
FEM isoparametrisches Konzept /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/deckblatt.tex Seite von 25. p./25 Inhaltsverzeichnis. Interpolationsfunktion für die finiten Elemente 2. Finite-Element-Typen
Gleichungen höheren Grades und Konstruktionen mit Zirkel und Lineal als Motivation für komplexe Zahlen
1 Gleichungen höheren Grades und Konstruktionen mit Zirkel und Lineal als Motivation für komplexe Zahlen Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastic (WIAS) e-mail: [email protected]
Vortrag zum Hauptseminar Hardware/Software Co-Design
Fakultät Informatik Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Vortrag zum Hauptseminar Hardware/Software Co-Design Robert Mißbach Dresden, 02.07.2008
Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung.
Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 2 / 9 Inhaltsverzeichnis 1 2 2 / 9 Inhaltsverzeichnis 1 2 3 2 / 9 Inhaltsverzeichnis 1 2
Numerische Integration und Differentiation
Einführung Grundlagen Bemerkung (Numerische Mathematik) a) Im engeren Sinn: zahlenmäßige Auswertung mathematischer Zusammenhänge z B Lösung von linearen und nichtlinearen Gleichungssystemen Numerische
Abbildung 1: Meldepflichtige Arbeitsunfälle
Steigende Ausgaben für Prävention Sinkende Arbeitsunfallzahlen: Eine empirische Studie * Dr. P. Kemény, K. Scherer * In Zusammenarbeit mit der Ludwig-Maximilians-Universität München (Lehrstuhl für Ökonometrie,
Funktionen. D. Horstmann: Oktober
Funktionen D. Horstmann: Oktober 2016 128 Funktionen Definition 9. Eine Funktion f ist eine Rechenvorschrift, die jedem Element einer Menge D genau ein Element einer Zielmenge Z zuweist. Die Menge D heißt
Kurventabellen definieren (CTABDEF, CATBEND)
Funktion Eine Kurventabelle stellt ein Teileprogramm oder einen Teileprogrammabschnitt dar, welcher durch Voranstellen von CTABDEF und den abschließenden Befehl gekennzeichnet ist. Innerhalb dieses Teileprogrammabschnitts
Numerische Integration
Numerische Integration Fakultät Grundlagen Januar 0 Fakultät Grundlagen Numerische Integration Übersicht Grundsätzliches Grundsätzliches Trapezregel Simpsonformel 3 Fakultät Grundlagen Numerische Integration
Mathematik III - Statistik für MT(Master)
3. Regressionsanalyse Fachbereich Grundlagenwissenschaften Prof. Dr. Viola Weiß Wintersemester 0/03 Mathematik III - Statistik für MTMaster 3. Empirische Regressionsgerade Optimalitätskriterium: Die Summe
NUMERISCHE MATHEMATIK II 1. (Studiengang Mathematik) Prof. Dr. Hans Babovsky. Institut für Mathematik. Technische Universität Ilmenau WS 2001/2002
NUMERISCHE MATHEMATIK II 1 (Studiengang Mathematik) Prof Dr Hans Babovsky Institut für Mathematik Technische Universität Ilmenau WS 2001/2002 1 Korrekturen, Kommentare und Verbesserungsvorschläge bitte
3.1.3 Newtonsche Interpolationsformel / Dividierte Differenzen
KAPITEL 3 INTERPOLATION UND APPROXIMATION 4 33 Newtonsche Interpolationsformel / Dividierte Differenzen Das Verfahren von Neville ist unpraktisch, wenn man das Polynom selbst sucht oder das Polynom an
Splines. Bézier-Kurven. Beispiel zur Approximation. Interpolation & Approximation. Schiffbau Automobilbau Architektur. f(x) f(x) =
Institut für Geometrie Abteilung für Geometrie im Bauwesen und im Scientific Computing Prof. Dr. H. Pottmann Interpolation & Approximation Splines Geg: Menge von Punkten Ges: Kurve, welche die Punkte interpoliert
CARL HANSER VERLAG. Wolfgang Eichholz, Eberhard Vilkner. Taschenbuch der Wirtschaftsmathematik
CARL HANSER VERLAG Wolfgang Eichholz, Eberhard Vilkner Taschenbuch der Wirtschaftsmathematik 3-446-22080-1 www.hanser.de Inhaltsverzeichnis 1 Grundlagen... 11 1.1 Mengen... 11 1.2 Aussagenlogik... 13 1.3
Einführung in die Stochastik 6. Übungsblatt
Einführung in die Stochastik 6. Übungsblatt Fachbereich Mathematik SS M. Kohler 3. Mai A. Fromkorth D. Furer Gruppen und Hausübung Aufgabe (a) Die Wahrscheinlichkeit, dass eine S Bahn Verspätung hat, betrage.3.
Modellierung von Temperaturdaten bei Lichtbogenschweißversuchen
Modellierung von Temperaturdaten bei Lichtbogenschweißversuchen Von Robin Cedric Schwenke 1 Einleitung Motivation Um Algorithmen der institutseigenen Schweißsimulationssoftware SimWeld auf deren Realitätsnähe
Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29
Dynamische Systeme und Zeitreihenanalyse Komplexe Zahlen Kapitel 3 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.0/29 Motivation Für die
Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 27.01.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten
Übungen Theoretische Physik I (Mechanik) Blatt 5 ( )
TU München Prof. P. Vogl Beispiel 1: Übungen Theoretische Physik I (Mechanik) Blatt 5 (26.08.11) Nach Gompertz (1825) wird die Ausbreitung von Rostfraß auf einem Werkstück aus Stahl durch eine lineare
Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN
Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN BEDEUTUNG DER GEWICHTSFUNKTION UND
Mathematik für Wirtschaftswissenschaftler I
Mathematik für Wirtschaftswissenschaftler I Prof. Dr. Rainer Göb* und Dipl.-Math. Kristina Lurz** Institut für Mathematik Lehrstuhl für Mathematik VIII, Statistik Universität Würzburg Sanderring 2 97070
Basiswissen Mathematik, Statistik. und Operations Research für. Wirtschaftswissenschaftler. von. Prof. Dr. Gert Heinrich DHBW Villingen-Schwenningen
Basiswissen Mathematik, Statistik und Operations Research für Wirtschaftswissenschaftler von Prof. Dr. Gert Heinrich DHBW Villingen-Schwenningen 5., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis
Mathematik für Informatiker/Informatikerinnen 2
Mathematik für Informatiker/Informatikerinnen 2 Koordinaten: Peter Buchholz Informatik IV Praktische Informatik Modellierung und Simulation Tel: 755 4746 Email: [email protected] OH 16, R 216 Sprechstunde
Eine zweidimensionale Stichprobe
Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,
Numerik in Java. Einige wichtige numerische Methoden in Java. Prof. Dr. Nikolaus Wulff
Numerik in Java Einige wichtige numerische Methoden in Java Prof. Dr. Nikolaus Wulff Angewandte Informatik Computer bieten heute vielfältige Möglichkeiten, um komplizierte Prozesse steuern und regeln zu
Interpolationsverfahren
Kapitel 3 Interpolationsverfahren Peter-Wolfgang Gräber Systemanalyse in der Wasserwirtschaft KAPITEL 3 INTERPOLATIONSVERFAHREN Problem: Durch Messung sind einige Messwerte (abhängige Variable) in Abhängigkeit
Bestimmen von Quantilen
Workshop im Rahmen der VIV-Begabtenförderung Bestimmen von Quantilen Wie Rückwärtsdenken in der Stochastik hilft Leitung: Tobias Wiernicki-Krips Samstag, 10. Januar 2015 1 / 29 Motivation Wie bestimmt
In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y
Approximationen In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y y = f (x) x Um das Arbeiten mit einer komplizierten Funktion zu vermeiden, können wir versuchen, diese Funktion
Prozessidentifikation mit Sprungantworten
Fakultät Informatik, Institut für angewandte Informatik, Professur für technische Informationssysteme Hauptseminar Technische Informationssysteme Dresden, 27. April 2012 Überblick 1. Motivation und Begriffe
