FEM isoparametrisches Konzept

Größe: px
Ab Seite anzeigen:

Download "FEM isoparametrisches Konzept"

Transkript

1 FEM isoparametrisches Konzept /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/deckblatt.tex Seite von 25. p./25

2 Inhaltsverzeichnis. Interpolationsfunktion für die finiten Elemente 2. Finite-Element-Typen 3. Geometrie 4. Lagrange sche und Hermite sche Elementfamilie 5. Ansatzfunktion 6. Kartesische-natürliche Koordinaten 7. Isoparametrisches Konzept 8. Beispiel zum isoparametrischen Konzept /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/inhaltsverzeichnis.tex Seite 2 von 25. p.2/25

3 Interpolationsfunktion für FEM Bei der Methode der finiten Elemente gilt folgendes: Die globale Funktion einer gesuchten Funktion besteht aus einer Summe von lokalen Funktionen: E e= G e N e i dg e Standard Galerkin Verfahren: Interpolationsfunktion entspricht der Gewichtsfunktion Ritz Verfahren: globales Variationsprinzip wird aus der Summe der lokalen Variationsprinzipien konstruiert. /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/interpol_funkt.tex Seite 3 von 25. p.3/25

4 Interpolationsfunktion für FEM Kritischer Schritt bei der FEM: Wahl geeigneter Interpolationsfunktionen, die durch die Form der finiten Elemente und die Approximationsordnung gekennzeichnet sind. Die Wahl der finiten Elemente hängt ab von der Geometrie des globalen Gebietes, der gewünschten Genauigkeit des Gebietes, der einfachen Integration über das Gebiet. /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/interpol_funkt2.tex Seite 4 von 25. p.4/25

5 Finite Element Typen Um spezielle physikalische Probleme formulieren zu können, sind oft mehrere Elementtypen erforderlich. Sie werden unterschieden nach der Geometrie (-D, 2-D oder 3-D), Wahl der Interpolationsfunktion (Polynome; Lagrange sche oder Hermite sche Polynome), Wahl der Elementkoordinaten (Kartesische oder natürliche Koordinaten), Wahl der an den Knoten spezifizierten Variablen und Gradienten derselben (Lagrange sche Gruppe mit lediglich Variablen oder Hermite sche Gruppe auch mit deren Ableitungen). /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/fe_typen.tex Seite 5 von 25. p.5/25

6 Beispiele für Geometrien a) Quadratische Elemente mit geraden Seitenkanten b) Quadratische Elemente mit gekrümmten Seitenkanten c) Kubische Elemente /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/geometrie.tex Seite 6 von 25. p.6/25

7 Ansatzfunktion (D Lagrange) Lagrange sche Polynome: u = a 0 + a x + a 2 x 2 + a 3 x oder u = a 0 + a i x i mit i = lineare Veränderliche i = 2 quadratische Veränderliche i = 3 kubische Veränderliche -D-Element mit zwei Knoten: 2 Für jeweils eine Variable an zwei Knoten benötigen wir eine lineare Veränderlichkeit. /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/ansatz_lagrange.tex Seite 7 von 25. p.7/25

8 Lagrange sche Polynome Lagrange sche Interpolationsfunktionen ersparen uns eine Invertierung der Koeffizientenmatrix, die bei der Nutzung von Standard Polynomen notwendig wäre. Sie haben die folgende Form u(x) = L (x)u + L 2 (x) + + L n (x)u n. wobei L N (x) so ausgewählt wird, dass L N (x) hat die folgende Form L N (x m ) = δ NM. L N (x) = c N (x x )(x x 2 )... (x x N )(x x N+ )... (x x n ). /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/lagrangian_poly.tex Seite 8 von 25. p.8/25

9 Lagrange sche Polynome c N wird bestimmt als c N = (x N x )(x N x 2 )... (x N x N )(x N x N+ )... (x N x n ). Das Polynom ergibt sich damit wie folgt L N (x) = (x x )(x x 2 )... (x x N )(x x N+ )... (x x n ) (x N x )(x N x 2 )... (x N x N )(x N x N+ )... (x N x n ). Bei einer quadratischen Näherung ergibt sich L (x) = (x x 2)(x x 3 ) (x x 2 )(x x 3 ) L 3 (x) = (x x )(x x 2 ) (x 3 x )(x 3 x 2 ). L 2 (x) = (x x )(x x 3 ) (x 2 x )(x 2 x 3 ) /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/lagrangian_poly2.tex Seite 9 von 25. p.9/25

10 Lagrangian polynomials Für das folgende Element 0 erhalten wir L = x (x ), 2 L 2 = x 2, L L 3 L 2 L 3 = x (x + ). 2 0 /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/lagrangian_poly3.tex Seite 0 von 25. p.0/25

11 Ansatzfunktion (D Hermite) Hermite sche Polynome: Bei eindimensionalen Elementen mit 2 Knoten kann ein kubischer Ansatz mit Hilfe der Ableitungen der Funktionen realisiert werden. ( ) û ũ(ξ) = Hj 0 (ξ)û j + Hj (ξ) j =, 2 ξ ũ(ξ) = N r w r r =, 2, 3, 4 N = H 0 = 3ξ 2 + 2ξ 3 N 2 = H2 0 = 3ξ 2 2ξ 3 N 3 = H = ξ 2ξ 2 + ξ 3 N 4 = H2 = ξ 3 ξ 2 /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/ansatz_hermite.tex Seite von 25. p./25

12 Ansatzfunktion (D Hermite) Die Funktionen sehen dann wie folgt aus. Jede Funktion bzw. deren Ableitung ist an den beiden Knoten in drei von vier Fällen null und nur in einem Fall eins. 0.8 H 0 H H 0 H /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/ansatz_hermite_2.tex Seite 2 von 25. p.2/25

13 Natürliche Koordinaten Der generelle Ansatz stützt sich auf die Verwendung natürlicher Koordinaten, ξ. Der Ursprung des Koordinatensystems liegt dabei entweder am linken Ende (obere Abbildung) oder im Zentrum des Gebiets (unteres Abbildung). ξ=0 ξ= ξ=0 2 ξ= 2 ξ= /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/natural_coord.tex Seite 3 von 25. p.3/25

14 Natürliche Koordinaten Die Interpolationsfunktionen lauten dann für die obere Abbildung ϕ = ξ ϕ 2 = ξ, für die untere Abbildung ϕ = ( ξ) 2 ϕ 2 = ( + ξ). 2 /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/natural_coord22.tex Seite 4 von 25. p.4/25

15 Kartesische natürliche Koordinaten Isoparametrische Elemente Definition: Es wird die gleiche parametrische Funktion, die die Geometrie beschreibt, für die Interpolation der Variablen (Verschiebung, Wasserstand etc.) innerhalb eines Elementes benutzt. Einführung eines lokalen Koordinatensystems, da dort die Basisfunktionen für jedes Element gleich sind. 2 s r 3 4 N = ( r) ( = 4 N 2 = 4 N 3 = 4 N 4 = s) ( + r)( + s) Analog: ( r)( + s) ( r)( s) ( + r)( s) /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/koordinaten.tex Seite 5 von 25. p.5/25

16 Kartesische natürliche Koordinaten Weitere Beispiele für Interpolationsfunktionen:. Interpolationsfunktion für ein 2-D-Element mit einer von 4 bis 9 variablen Knotenzahl y s s = Knoten s = 0 r 3 r = - 7 r = 0 r = + 4 s = - x /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/koordinaten2.tex Seite 6 von 25. p.6/25

17 Kartesische natürliche Koordinaten i = 5 i = 6 i = 7 i = 8 i = 9 h = ( + r)( + s) 4 h h 2 8 h 4 9 h 2 = ( r)( + s) 4 h 2 5 h 2 6 h 4 9 h 3 = ( r)( s) h 2 6 h 2 7 h 4 9 h 4 = ( + r)( s) h 2 7 h 2 8 h 4 9 h 5 = ( 2 r2 )( + s) h 2 9 h 6 = ( 2 s2 )( r) h 2 9 h 7 = ( 2 r2 )( s) h 2 9 h 8 = ( 2 s2 )( + r) h 2 9 h 9 = ( r 2 )( s 2 ) /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/koordinaten3.tex Seite 7 von 25. p.7/25

18 Isoparametrisches Konzept y 7 s G e 5 T ii + i R e 3 + r x iii iv 25 Man kann sich viel Arbeit ersparen, wenn man seine Ansatzfunktionen nicht für jedes Element neu aufstellt, sondern nur einmal für ein Referenzelement. Diese Ansatzfunktionen kann man dann durch eine geeignete Transformation auf jedes globale Element anwenden. /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/isopara_concept.tex Seite 8 von 25. p.8/25

19 Isoparametrisches Konzept Bei technischen Anwendungen (z.b. Grundwasser W ĥ) sind häufig Ausdrücke in kartesischen Koordinaten zu differenzieren oder zu integrieren. Da die Funktionen durch isoparametrische Koordinaten dargestellt werden, sucht man eine Transformation zwischen den beiden Koordinatensystemen, dem globalen x,y-system und dem lokalen r,s-koordinatensystem. Dies kann mit der Kettenregel erreicht werden. x = r y = r ( r ) x + s ( ) r y + s ( s ) x ( ) s y = r x r y s x s y r s /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/iso_para_.tex Seite 9 von 25. p.9/25

20 Isoparametrisches Konzept Die Berechnung von r etc. ist nicht immer einfach, deshalb wird x der umgekerhte Weg beschritten: r s = x r x s y r y s [ ] x y = J J die Jacobi Matrix, kann leichter bestimmt werden. x y /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/iso_para_b.tex Seite 20 von 25. p.20/25

21 Isoparametrisches Konzept Hierzu verwenden wir die Eigenschaft unserer Ansatzfunktionen. Wie können unsere räumliche Variable x auch durch die Ansatzfunktionen und die x-koordinaten der Stützwerte ausdrücken. x = n e i= N i x i x = [N, N 2, N 3, N 4 ] (lineare Interpolation der Koordinaten zwischen den Knoten, n e = Anzahl der Knoten pro Element) x x 2 x 3 y = [N, N 2, N 3, N 4 ] y y 2 y 3 x 4 y 4 /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/iso_para_2.tex Seite 2 von 25. p.2/25

22 Isoparametrisches Konzept Diese Beschreibung der x- bzw. y-variablen können wir nun einsetzen und die konstanten Stützwerte vor den Differentialoperator ziehen, so dass wir folgenden Ausdruck erhalten. r s = N r N s N 2 r N 2 s N 3 r N 3 s N 4 r N 4 s x y x 2 y 2 x 3 y 3 x 4 y 4 } {{ } J Die Ansatzfunktionen N i sind die Funktionen, die wir auf dem natürlichen Koordinatensystem definiert haben und sind entsprechend leicht differenzierbar. x y /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/iso_para_3.tex Seite 22 von 25. p.22/25

23 Isoparametrisches Konzept Beispiel Für das Element auf der linken Seite soll die Jacobimatrix berechnet werden. Dies kann auf zwei Arten gemacht werden: einmal wie auf der vorigen Seite beschriebenen oder der nun gezeigten Art. cm y cm P = (, 25) cm 2 x 0.75 cm P 2 = ( 0, 25) P 3 = ( 0, 75) P 4 = ( 0, 75) 3 2 cm 4 /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/transf_bsp_.tex Seite 23 von 25. p.23/25

24 Isoparametrisches Konzept Beispiel Die globalen Koordinaten kann man also wie folgt in lokale Koordinaten transformieren. x = n = r y = n n n N i x i = N i y i = 4 {( + r)( + s)() + ( r)( + s)( ) + ( r)( s)( ) + ( + r)( s)()} { ( + r)( + s) ( r)( + s) 4 + ( r)( s) 3 } + ( + r)( s) = 4 r s + 4 rs /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/transr_bsp_2.tex Seite 24 von 25. p.24/25

25 Isoparametrisches Konzept Beispiel Diese Ausdrücke müssen nun nur noch abgeleitet werden J = x r x s y r y s. Eingesetzt ergibt sich (r) ( r + 3s + rs) r r J = = (r) ( r + 3s + rs) s s [ ] ( + s) ( 3 + r) 4 4. /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/transf_bsp_3.tex Seite 25 von 25. p.25/25

Modellieren in der Angewandten Geologie II. Sebastian Bauer

Modellieren in der Angewandten Geologie II. Sebastian Bauer Modellieren in der Angewandten Geologie II Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel CAU 3-1 Die Finite Elemente Method (FEM) ist eine sehr allgemeine

Mehr

FEM Isoparametric Concept

FEM Isoparametric Concept FEM Isoparametric Concept home/lehre/vl-mhs--e/folien/vorlesung/4_fem_isopara/cover_sheet.tex page of 25. p./25 Table of contents. Interpolation Functions for the Finite Elements 2. Finite Element Types

Mehr

FEM Isoparametric Concept

FEM Isoparametric Concept FEM Isoparametric Concept home/lehre/vl-mhs--e/cover_sheet.tex. p./26 Table of contents. Interpolation Functions for the Finite Elements 2. Finite Element Types 3. Geometry 4. Interpolation Approach Function

Mehr

Einführung FEM 1D - Beispiel

Einführung FEM 1D - Beispiel p. 1/28 Einführung FEM 1D - Beispiel /home/lehre/vl-mhs-1/folien/vorlesung/4_fem_intro/deckblatt.tex Seite 1 von 28 p. 2/28 Inhaltsverzeichnis 1D Beispiel - Finite Elemente Methode 1. 1D Aufbau Geometrie

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

FEM - Zusammenfassung

FEM - Zusammenfassung FEM - Zusammenfassung home/lehre/vl-mhs-1-e/deckblatt.tex. p.1/12 Inhaltsverzeichnis 1. Bedingungen an die Ansatzfunktion 2. Randbedingungen (Allgemeines) 3. FEM - Randbedingungen home/lehre/vl-mhs-1-e/deckblatt.tex.

Mehr

Numerische Methoden I FEM/REM

Numerische Methoden I FEM/REM Numerische Methoden I FEM/REM Dr.-Ing. Markus Kästner ZEU 353 Tel.: 035 463 32656 E-Mail: Markus.Kaestner@tu-dresden.de Dresden, 06.0.206 Zusammenfassung 8. Vorlesung. Schiefwinklige Scheibenelemente Numerischer

Mehr

4. Das Verfahren von Galerkin

4. Das Verfahren von Galerkin 4. Das Verfahren von Galerkin 4.1 Grundlagen 4.2 Methode der finiten Elemente 4.3 Beispiel: Stab mit Volumenkraft Prof. Dr. Wandinger 3. Prinzip der virtuellen Arbeit FEM 3.4-1 4.1 Grundlagen Das Verfahren

Mehr

Finite Differenzen Methode (FDM)

Finite Differenzen Methode (FDM) Finite Differenzen Methode (FDM) /home/lehre/vl-mhs-1/folien/vorlesung/2_fdm/deckblatt_fdm.tex Seite 1 von 15. p.1/15 Inhaltsverzeichnis 1. Problemdarstellung 2. Bilanzgleichungen 3. Finite Differenzen-Approximation

Mehr

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel 103 Differenzialrechnung 553 1035 Kettenregeln Die Kettenregel bei Funktionen einer Variablen erlaubt die Berechnung der Ableitung von verketteten Funktionen Je nach Verkettung gibt es bei Funktionen von

Mehr

Einführung FEM, 1D - Beispiel

Einführung FEM, 1D - Beispiel Einführung FEM, D - Beispiel home/eichel/lehre/mhs/fem_intro/deckblatt.tex. p./6 Inhaltsverzeichnis D Beispiel - Finite Elemente Methode. D Aufbau Geometrie 2. Bilanzgleichungen 3. Herleitung der Finiten

Mehr

u v w v = 1 w u w u v schon in der Mathematik gesehen?

u v w v = 1 w u w u v schon in der Mathematik gesehen? Die Kettenregel für die Thermodynamik Ziel ist die in der Thermodynamik benutzten Differentiationsregeln die auf den ersten Blick nicht denen aus der Mathematik ähneln doch als dieselben zu beschreiben

Mehr

Polynominterpolation

Polynominterpolation Polynominterpolation In der numerischen Mathematik versteht man unter Polynominterpolation die Suche nach einem Polynom, welches exakt durch vorgegebene Punkte (z. B. aus einer Messreihe) verläuft. Dieses

Mehr

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem Implizite Funktionen Ist für eine stetig differenzierbare Funktion f : R n R m R n f (x, y ) = (0,..., 0) t, det f x (x, y ) 0, so lässt sich das Gleichungssystem f k (x 1,..., x n, y 1,..., y m ) = 0,

Mehr

Finite Elemente I Konvergenzaussagen

Finite Elemente I Konvergenzaussagen Finite Elemente I 195 5 onvergenzaussagen 5 onvergenzaussagen TU Bergakademie Freiberg, SoS 2006 Finite Elemente I 196 5.1 Interpolation in Sobolev-Räumen Wesentlicher Baustein der FE-onvergenzanalyse

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Sei f : R R gegeben durch f(x 1, x ) = x 3

Mehr

Finite Elemente Modellierung

Finite Elemente Modellierung Finite Elemente Modellierung Modellerstellung Diskretisierung des Kontinuums Methode der Finite Elemente Anwendungsbeispiele der FEM Zugstab: Kraftmethode Zugstab: Energiemethode Zugstab: Ansatzfunktion

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen Mathematik für Physiker III WS 2012/2013 Freitag 211 $Id: implizittexv 18 2012/11/01 20:18:36 hk Exp $ $Id: lagrangetexv 13 2012/11/01 1:24:3 hk Exp hk $ 1 Umkehrfunktionen und implizite Funktionen 13

Mehr

Umkehrfunktion. g (y) = f (x) 1, x = g(y), Umkehrfunktion 1-1

Umkehrfunktion. g (y) = f (x) 1, x = g(y), Umkehrfunktion 1-1 Umkehrfunktion Ist für eine stetig differenzierbare n-variate Funktion f : D R n die Jacobi-Matrix f (x ) für einen Punkt x im Innern des Definitionsbereiches D R n nicht singulär, so ist f lokal invertierbar,

Mehr

6. Polynom-Interpolation

6. Polynom-Interpolation 6. Polynom-Interpolation 1 6.1. Klassische Polynom-Interpolation 2 6.2. Lösung mit Hilfe Lagrange scher Basisfunktionen 3 6.3. Lösung mit Hilfe Newton scher Basisfunktionen 4 6.4. Fehlerabschätzung für

Mehr

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y Approximationen In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y y = f (x) x Um das Arbeiten mit einer komplizierten Funktion zu vermeiden, können wir versuchen, diese Funktion

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

Kapitel 3 Finite Element Methode

Kapitel 3 Finite Element Methode Kapitel 3 Finite Element Methode. Grundlagen der Methode der Finiten Elemente (FEM) Dir erste Methode bei der Grundzüge der FEM zu finden sind, wurde vor mehr als 5 Jahre von Schellbach beschrieben um

Mehr

10. und 11. Vorlesung Sommersemester

10. und 11. Vorlesung Sommersemester 10. und 11. Vorlesung Sommersemester 1 Die Legendre-Transformation 1.1 Noch einmal mit mehr Details Diese Ableitung wirkt einfach, ist aber in dieser Form sicher nicht so leicht verständlich. Deswegen

Mehr

i j m f(y )h i h j h m

i j m f(y )h i h j h m 10 HÖHERE ABLEITUNGEN UND ANWENDUNGEN 56 Speziell für k = 2 ist also f(x 0 + H) = f(x 0 ) + f(x 0 ), H + 1 2 i j f(x 0 )h i h j + R(X 0 ; H) mit R(X 0 ; H) = 1 6 i,j,m=1 i j m f(y )h i h j h m und passendem

Mehr

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte Universität München 22. Juli 29 Topologie und Differentialrechnung mehrerer Veränderlicher, SS 29 Modulprüfung/Abschlussklausur Name: Aufgabe 2 3 4 Punkte Gesamtpunktzahl: Gesamturteil: Schreiben Sie unbedingt

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

Numerische Integration

Numerische Integration Numerische Integration home/lehre/vl-mhs-1/folien/uebung/num_integration/cover_sheet_5a.tex Seite 1 von 12. p.1/12 Inhaltsverzeichnis 1. Einführung 2. Newton-Cotes Formeln Rechteckformel Trapezformel Simpsonsche

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

2 Extrema unter Nebenbedingungen

2 Extrema unter Nebenbedingungen $Id: lagrangetex,v 18 01/11/09 14:07:08 hk Exp $ $Id: untermfgtex,v 14 01/11/1 10:00:34 hk Exp hk $ Extrema unter Nebenbedingungen Lagrange-Multiplikatoren In der letzten Sitzung hatten wir begonnen die

Mehr

gekrümmte Flächen / Freiformflächen (analog zur Kurvendarstellung)

gekrümmte Flächen / Freiformflächen (analog zur Kurvendarstellung) 7. Modelle für Flächen gekrümmte Flächen / Freiformflächen (analog zur Kurvendarstellung) man unterscheidet 2 Typen: finite Interpolationen / Approximationen: endliche Zahl von Stützstellen / Kontrollpunkten

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 5: Differentialrechnung im R n Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juni 2009 1 / 31 5.1 Erinnerung Kapitel

Mehr

16. FUNKTIONEN VON MEHREREN VARIABLEN

16. FUNKTIONEN VON MEHREREN VARIABLEN 16. FUNKTIONEN VON MEHREREN VARIABLEN 1 Reelle Funktionen auf dem R 2 Wir betrachten Funktionen f(x 1, x 2 ) von zwei reellen Variablen x 1, x 2, z.b. f(x 1, x 2 ) = x 2 1 + x2 2, g(x 1, x 2 ) = x 2 1

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

8 Extremwerte reellwertiger Funktionen

8 Extremwerte reellwertiger Funktionen 8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R

Mehr

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h.

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h. Konvexe Menge Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, dh Kapitel Extrema konvex: h x + h y D für alle h [0, ], und x,

Mehr

Totale Ableitung und Jacobi-Matrix

Totale Ableitung und Jacobi-Matrix Totale Ableitung und Jacobi-Matrix Eine reelle Funktion f : R n R m ist in einem Punkt x differenzierbar, wenn f (x + h) = f (x) + f (x)h + o( h ) für h 0. Totale Ableitung 1-1 Totale Ableitung und Jacobi-Matrix

Mehr

Multivariate Kettenregel

Multivariate Kettenregel Multivariate Kettenregel Für die Hintereinanderschaltung h = g f : x y = f (x) z = g(y), stetig differenzierbarer Funktionen f : R m R l und g : R l R n gilt h (x) = g (y)f (x), d.h. die Jacobi-Matrix

Mehr

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth REPETITORIUM DER HÖHEREN MATHEMATIK Gerhard Merziger Thomas Wirth 6 INHALTSVERZEICHNIS Inhaltsverzeichnis Fl Formelsammlung F2 Formelsammlung Alphabete 11 Zeichenindex 12 1 Grundbegriffe 14 1.1 Logische

Mehr

Implizite Funktionen

Implizite Funktionen Implizite Funktionen Durch die Bedingung F (x, y) = C, C R wird eine bestimmte Teilmenge des R 2 festgelegt, zb durch die Bedingung x y = 4 Dabei können wir obda C = 0 annehmen, da wir stets zur Betrachtung

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 214 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1

2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1 Die analytische Integration der Steifigkeitsmatrix für das Rechteckelement ist recht mühsam. Für Polynome gibt es eine einfachere Methode zur Berechnung von Integralen, ohne dass die Stammfunktion benötigt

Mehr

Richtungsableitungen.

Richtungsableitungen. Richtungsableitungen. Definition: Sei f : D R, D R n offen, x 0 D, und v R n \ {0} ein Vektor. Dann heißt D v f(x 0 f(x 0 + tv) f(x 0 ) ) := lim t 0 t die Richtungsableitung (Gateaux-Ableitung) von f(x)

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 11

Technische Universität München Zentrum Mathematik. Übungsblatt 11 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 11 Hausaufgaben Aufgabe 11.1 Berechnen Sie jeweils die Jacobi-Matrix folgender

Mehr

Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen

Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Rekonstruktion kontinuierlicher Daten Interpolation multivariater Daten Ulrich Rüde Lehrstuhl für Systemsimulation Sommersemester

Mehr

= 11 ± 5, also k 1 = 3 und k 2 = 8.

= 11 ± 5, also k 1 = 3 und k 2 = 8. Stroppel Musterlösung.8.5, 8min Aufgabe (6 Punkte) Gegeben sei die Funktion f: R R: x x e x. (a) Zeigen Sie durch vollständige Induktion, dass für alle x R und alle k N gilt: f (k) (x) = ( ) k (x kx+(k

Mehr

40 Lokale Extrema und Taylor-Formel

40 Lokale Extrema und Taylor-Formel 198 VI. Differentialrechnung in mehreren Veränderlichen 40 Lokale Extrema und Taylor-Formel Lernziele: Resultate: Satz von Taylor und Kriterien für lokale Extrema Methoden aus der linearen Algebra Kompetenzen:

Mehr

Differentialgleichungen II für Studierende der Ingenieurwissenschaften

Differentialgleichungen II für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 2006 Prof. Dr. R. Lauterbach Dr. K. Rothe Differentialgleichungen II für Studierende der Ingenieurwissenschaften Lösungen zu Blatt 4 Aufgabe 13: Gegeben

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Fixpunkt-Iterationen

Fixpunkt-Iterationen Fixpunkt-Iterationen 2. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 27. Februar 2014 Gliederung Wiederholung: Gleichungstypen, Lösungsverfahren Grundprinzip

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn Stetige Funktionen Eine zentrale Rolle in der Analysis spielen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume). Dabei sind i.a. nicht beliebige

Mehr

Mikroökonomik Prof. Dr. Stefan Klonner SoSe Übungsblatt 1

Mikroökonomik Prof. Dr. Stefan Klonner SoSe Übungsblatt 1 1 Funktionen Definition 1 (Funktion). Übungsblatt 1 Eine Funktion f(x) einer reellen Variable x mit Definitionsbereich D ist eine Regel, die jeder Zahl x in D eine reelle Zahl f(x) eindeutig zuordnet.

Mehr

Partielle Differenzialgleichungen FE-Methode. Finite Elemente. Fakultät Grundlagen. April 2011

Partielle Differenzialgleichungen FE-Methode. Finite Elemente. Fakultät Grundlagen. April 2011 Finite Elemente Fakultät Grundlagen April 2011 Fakultät Grundlagen Finite Elemente Übersicht 1 Lösungsmethoden Balkenbiegung Wärmeleitung 2 Fakultät Grundlagen Finite Elemente Folie: 2 Lösungsmethoden

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

Inhaltsverzeichnis Einleitung Mathematische Grundlagen

Inhaltsverzeichnis Einleitung Mathematische Grundlagen Inhaltsverzeichnis 1 Einleitung 1.1 Vorgehensweise bei der FEM... 3 1.2 Verschiedene Elementtypen... 5 1.3 Beispiele zur Finite-Elemente-Methode... 10 1.3.1 Beispiel zu nichtlinearen Problemen... 10 1.3.2

Mehr

10.6. Implizite ebene Kurven und Tangenten

10.6. Implizite ebene Kurven und Tangenten 0.6. Implizite ebene Kurven und Tangenten Im Gegensatz zu expliziten Darstellungen sind weder implizite noch Parameterdarstellungen einer Kurve eindeutig. Der Übergang von impliziten zu expliziten Darstellungen

Mehr

1.4 Krummlinige Koordinaten I

1.4 Krummlinige Koordinaten I 15 1.4 Krummlinige Koordinaten I (A) Motivation zur Definition verschiedener Koordinatensysteme Oft ist es sinnvoll und zweckmäßig Koordinatensysteme zu verwenden, die sich an der Geometrie und/oder Symmetrie

Mehr

4 Gewöhnliche Differentialgleichungen

4 Gewöhnliche Differentialgleichungen 4 Gewöhnliche Differentialgleichungen 4.1 Einleitung Definition 4.1 Gewöhnliche Differentialgleichung n-ter Ordnung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten

Mehr

f(x) f(a) f (a) := lim x a Es existiert ein Polynom ersten Grades l(x) = f(a) + c (x a) derart, dass gilt lim x a x a lim

f(x) f(a) f (a) := lim x a Es existiert ein Polynom ersten Grades l(x) = f(a) + c (x a) derart, dass gilt lim x a x a lim A Analysis, Woche 8 Partielle Ableitungen A 8. Partielle Ableitungen Wir haben vorhin Existenzkriterien für Extrema betrachtet, aber wo liegen sie genau? Anders gesagt, wie berechnet man sie? In einer

Mehr

7 Differential- und Integralrechung für Funktionen

7 Differential- und Integralrechung für Funktionen Differential- und Integralrechung für Funktionen mehrer Veränderlicher 7 7 Differential- und Integralrechung für Funktionen mehrer Veränderlicher Die Differential- und Integralrechung für Funktionen mehrer

Mehr

Interpolation Functions for the Finite Elements

Interpolation Functions for the Finite Elements Interpolation Functions for the Finite Elements For the finite elements method, the following is valid: The global function of a sought function consists of a sum of local functions: GALERKIN method: the

Mehr

Lagrange-Multiplikatoren

Lagrange-Multiplikatoren Lagrange-Multiplikatoren Ist x eine lokale Extremstelle der skalaren Funktion f unter den Nebenbedingungen g i (x) = 0, dann existieren Lagrange-Multiplikatoren λ i, so dass grad f (x ) = λ i grad g i

Mehr

1.3.2 Partielle und totale Ableitung

1.3.2 Partielle und totale Ableitung 0 1.3. Partielle und totale Ableitung Ziel: Verallgemeinerung der Differential- und Integralrechnung auf mehrere Dimensionen Eine Verallgemeinerung von einfachen (eindimensionalen, 1D skalaren Funktion

Mehr

Darstellung von Kurven und Flächen

Darstellung von Kurven und Flächen Darstellung von Kurven und Flächen Technische Universität Dresden Fakultät Informatik Institut für Software- und Multimediatechnik Dozent: Dr. Mascolous Referent: Gliederung / Einleitung 1 / 25 1. Kurven

Mehr

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida GMA Grundlagen Mathematik und Analysis Reelle Funktionen 3 Christian Cenker Gabriele Uchida Data Analytics and Computing Nullstellen cos log : 0, 0,? 1 Fixpunkte Beispiel 1 Beispiel 2 1 0 0 und 1 1sin,?

Mehr

Partielle Ableitungen

Partielle Ableitungen Partielle Ableitungen Gymnasium Immensee Vertiefungskurs Mathematik Bettina Bieri 24. Juli 2011 Inhaltsverzeichnis 1 Funktionen von zwei Variablen 1 1.1 Aufbau solcher Funktionen.................... 1

Mehr

Folie 1. Taylor-Reihen

Folie 1. Taylor-Reihen Folie 4 e!!! 4! Taylor-Reihen Im Zusammenhang mit der Berechnung von Tangenten hatten wir den Begriff der Linearisierung eingeführt. Dies bedeutet, dass eine Funktion in einem Teilbereich durch eine Tangente

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Herleitung der schwachen Formulierung:

Herleitung der schwachen Formulierung: Herleitung der schwachen Formulierung Mathematisches Problem: Finde eine Funktion h C 2 () mit den PSfrag Eigenschaften replacements (i) div (k f grad h) + q = 0 auf (ii) h = u 0 = const. auf Γ D (iii)

Mehr

Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema

Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema In diesem Kapitel befassen wir uns mit der Ableitung von Funktionen f : R m R n. Allein die Schreibweise

Mehr

Rand der Fläche = Linie. suggestive Notation. "Zirkulation pro gerichteter Fläche" Vorschau: Eine komplexe Funktion sei nur von der Kombination

Rand der Fläche = Linie. suggestive Notation. Zirkulation pro gerichteter Fläche Vorschau: Eine komplexe Funktion sei nur von der Kombination Zusammenfassung: Satz von Stokes Satz v. Stokes: Flussintegral der Rotation = Linienintegral Fläche Rand der Fläche = Linie Symbolisch: suggestive Notation Geometrische Definition der Rotation: "Zirkulation

Mehr

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich 4. Verzerrungen Wird ein Körper belastet, so ändert sich seine Geometrie. Die Punkte des Körpers ändern ihre Lage. Sie erfahren eine Verschiebung. Ist die Verschiebung für benachbarte Punkte unterschiedlich,

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

7.11. Extrema unter Nebenbedingungen

7.11. Extrema unter Nebenbedingungen 7.11. Extrema unter Nebenbedingungen Randextrema Wir haben schon bemerkt, daß die üblichen Tests mit Hilfe von (eventuell höheren) Ableitungen nur Kriterien für (lokale) Extrema im Inneren des Definitionsgebietes

Mehr

Analysis II. Mehrdimensionale Differenzialund Integralrechnung

Analysis II. Mehrdimensionale Differenzialund Integralrechnung Übungen zur Vorlesung Analysis II Aufgaben Mehrdimensionale Differenzialund Integralrechnung gelesen von Prof. Dr. Heinrich Freistühler Martin Gubisch Konstanz, Sommersemester 28 Übungsaufgaben. Aufgabe

Mehr

Funktionen in der Mathematik

Funktionen in der Mathematik R. Brinkmann http://brinkmann-du.de Seite 05.0.008 Funktionen in der Mathematik Bei der mathematischen Betrachtung natürlicher, technischer oder auch alltäglicher Vorgänge hängt der Wert einer Größe oft

Mehr

Finite-Elemente-Methode (FEM)

Finite-Elemente-Methode (FEM) Finite-Elemente-Methode (FEM) Das einführende Beispiel enthält die zugrunde liegende dee dieser Methode. Die algorithmische Handhabung verwendet einen anspruchsvollen Gedanken: Die Ermittlung der quadratischen

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 23 (5.8.23). Gegeben seien die Matrizen A = 2 3 3 und B = 5 2 5 (a) Bestimmen Sie die Eigenwerte von A und B sowie die

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 18 8. Januar 2010 Kapitel 5. Funktionen mehrerer Veränderlicher, Stetigkeit und partielle Ableitungen 5.2. Partielle Ableitungen von Funktionen

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

ein geeignetes Koordinatensystem zu verwenden.

ein geeignetes Koordinatensystem zu verwenden. 1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.

Mehr

Mathematik für Bauingenieure

Mathematik für Bauingenieure Mathematik für Bauingenieure von Kerstin Rjasanowa 1. Auflage Mathematik für Bauingenieure Rjasanowa schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Hanser München 2006 Verlag C.H.

Mehr

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsaeter Peter Hammond mit Arne Strom Übersetzt und fach lektoriert durch Dr. Fred Böker

Mehr

4.4 Lokale Extrema und die Hessesche Form

4.4 Lokale Extrema und die Hessesche Form 74 Kapitel 4 Differentialrechnung in mehreren Variablen 44 Lokale Extrema und die Hessesche Form Sei jetzt wieder U R n offen und f:u R eine Funktion Unter einem lokalen Extremum der Funktion f verstehen

Mehr

10 Der Satz über implizite Funktionen und Umkehrfunktionen

10 Der Satz über implizite Funktionen und Umkehrfunktionen Vorlesung SS 9 Analsis Prof. Dr. Siegfried Echterhoff SATZ ÜBER IMPLIZITE FKT UND UMKEHRFKT Der Satz über implizite Funktionen und Umkehrfunktionen Motivation: Sei F : U R R eine differenzierbare Funktion

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

Prof. Dr. H. Brenner Osnabrück SS Analysis II. Vorlesung 50. Hinreichende Kriterien für lokale Extrema

Prof. Dr. H. Brenner Osnabrück SS Analysis II. Vorlesung 50. Hinreichende Kriterien für lokale Extrema Prof. Dr. H. Brenner Osnabrück SS 205 Analysis II Vorlesung 50 Hinreichende Kriterien für lokale Extrema Wir kommen jetzt zu hinreichenden Kriterien für die Existenz von lokalen Extrema einer Funktion

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

Mehrgitter-Verfahren für DG Finite-Elemente-Diskretisierungen von turbulenten Strömungen

Mehrgitter-Verfahren für DG Finite-Elemente-Diskretisierungen von turbulenten Strömungen www.dlr.de Folie 1 > STAB Workshop, 12.11.2013 > Marcel Wallraff, Tobias Leicht 12.11.2013 Mehrgitter-Verfahren für DG Finite-Elemente-Diskretisierungen von turbulenten Strömungen Marcel Wallraff, Tobias

Mehr

x 2(t), j 1, 2. x 1(t) + x j x 2 (x 1(t), x 2(t)) und x j(t) = x j x 1

x 2(t), j 1, 2. x 1(t) + x j x 2 (x 1(t), x 2(t)) und x j(t) = x j x 1 Differentialformen für die Thermodynamik Bitte den Text über Kettenregel und Koordinatenfunktionen zuerst lesen. Normaler Weise bevorzugen wir bis einschließlich Dimension 3 die Vektoranalysis vor den

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

1. Das Stabelement. Prof. Dr. Wandinger 1. Fachwerke FEM L x E u 1. u 2

1. Das Stabelement. Prof. Dr. Wandinger 1. Fachwerke FEM L x E u 1. u 2 Ein Fachwerk besteht aus einzelnen Stäben, die in den Knoten gelenkig miteinander verbunden sind. Für jeden Stab besteht eine lineare Beziehung zwischen den Verschiebungen seiner Knoten und den Kräften

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle

Mehr

39 Differenzierbare Funktionen und Kettenregel

39 Differenzierbare Funktionen und Kettenregel 192 VI. Differentialrechnung in mehreren Veränderlichen 39 Differenzierbare Funktionen und Kettenregel Lernziele: Konzepte: totale Ableitungen, Gradienten, Richtungsableitungen, Tangentenvektoren Resultate:

Mehr

Reellwertige Funktionen mehrerer Veränderlicher

Reellwertige Funktionen mehrerer Veränderlicher Reellwertige Funktionen mehrerer Veränderlicher Teilnehmer: Philipp Besel Joschka Braun Robert Courant Florens Greÿner Tim Jaschek Leroy Odunlami Gloria Xiao Heinrich-Hertz-Oberschule, Berlin Ludwigs-Georgs-Gymnasium,

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Nichtlineare Gleichungssysteme Jetzt: Numerische Behandlung nichtlinearer GS f 1 (x 1,..., x n ) =0. f n (x 1,..., x n ) =0 oder kurz f(x) = 0 mit f : R n R n Bemerkung: Neben dem direkten Entstehen bei

Mehr

Die Finite-Elemente-Methode. Anwendungsbereiche Soft- und Hardwarevoraussetzungen Programmierbarkeit

Die Finite-Elemente-Methode. Anwendungsbereiche Soft- und Hardwarevoraussetzungen Programmierbarkeit Die Finite-Elemente-Methode Anwendungsbereiche Soft- und Hardwarevoraussetzungen Programmierbarkeit Inhalt Die Finite-Elemente-Methode Was ist das und wofür? Die Idee mit den Elementen Anwendung der FEM

Mehr