6 Lineare Abbildungen der euklidischen Ebene

Größe: px
Ab Seite anzeigen:

Download "6 Lineare Abbildungen der euklidischen Ebene"

Transkript

1 6 Lineare Aildungen der euklidischen Eene In diesem Kapitel etrachten wir nur noch lineare Aildungen der euklidischen Eene auf sich seler: f : E E oder f : R 2 R 2 Zudem verwenden wir das Skalarprodukt von Vektoren, insesondere die Tatsache, dass zwei Vektoren senkrecht stehen, wenn ihr Skalarprodukt den Wert null hat. Leonhard Euler ( hat gezeigt, dass es ei jeder linearen Aildung f der Eene ein Paar von Vektoren u und v git mit den folgenden Eigenschaften: i u v, also u v 0 ii f ( u f ( v, also f ( u f ( v 0 iii Üer der Basis f ( u, f ( v esitzt f die Darstellungsmatrix λ1 0 cos φ sin φ A 0 λ 2 sin φ cos φ Jede lineare Aildung ist also die Zusammensetzung einer Rotation und einer Euler-Streckung! Zeigen Sie, dass daraus die folgenden Aussagen hervorgehen: i det(f λ 1 λ 2 ii spur(f (λ 1 + λ 2 cos φ iii rang(f Anzahl der λ i, die von null verschieden sind Wir eweisen die Behauptung von Euler in mehren Schritten. Lemma 6.1. Jede Matrix A M 2 2 (R lässt sich als Produkt einer symmetrischen Matrix B und einer Rotation C schreien: f g a d e A h k c e d mit d 2 + e 2 1 und e > 0. Beweis: Der Beweis ist konstruktiv, wir zeigen, wie man a,, c, d und e aus den gegeenen Werten f, g, h und k erechnen kann. Wäre g h, dann wären wir schon fertig! Es sei also im Folgenden g h. Aus den Regeln der Matrix-Multiplikation ergeen sich die folgenden vier Gleichungen: I II III IV a d + e f a ( e + d g d + c e h ( e + c d k 1

2 Zudem verlangen wir noch V d 2 + e 2 1 VI e > 0 Wir erechnen zuerst e und d: I + IV III - II a d + c d f + k, also d (a + c f + k a e + c e h g, also e (a + c h g Wegen g h folgt e 0 und (a + c 0. Wir dürfen also die eiden Gleichungen durcheinander dividieren: quadriert: also Wegen e > 0 folgt d e f + k h g d 2 e 2 e 1 + oder d e f + k h g f + k 2! 1 e 2 wegen V h g 1 e 2 (f + k2 (1 + (h g 2 1 (f + k2 (h g 2 (h g 2 (h g 2 + (f + k 2 Daraus erhalten wir auch den Wert von d e f + k h g. d e Damit ist die Matrix C estimmt mit A B C. e d Nun multiplizieren wir noch von rechts mit C 1, um B zu estimmen! Es ist C 1 d e, somit e d B A C 1 f g d e f d g e f e + g d h k e d h d e k h e + k d Ist diese Matrix B symmetrisch? Gilt h d e k f e + g d? Gilt h d g d f e + e k? Gilt d (h g e (f + k? Ja, denn d e f + k h g! 2

3 Satz 6.2. Jede symmetrische Matrix A M 2 2 (R ist diagonalisierar. Sie esitzt also zwei linear unahängige Eigenvektoren. a Beweis: Sei A. c Ist 0, so sind wir fertig. Sei also 0: Wir zeigen, dass A zwei verschiedene Eigenwerte esitzt. Dann sind wir nach Lemma 5.4 fertig. Das charakteristische Polynom von A ist (a λ (c λ 2 λ 2 (a + c λ + a c 2 Dieser quadratische Term hat genau dann zwei Nullstellen, wenn die Diskriminante D positiv ist: D (a + c 2 4 (a c 2 a a c + c 2 4 a c a 2 2 a c + c (a c Wegen 0 ist dieser Term sicher positiv. Lemma 6.. Die symmetrische Matrix A M 2 2 (R hae die eiden Eigenvektoren λ 1 und λ 2. Dann sind die folgenden Vektoren v 1 und v 2 zugehörige Eigenvektoren: a λ2 a λ1 a v 1 und v 2, wenn A c Beweis: Wir müssen zeigen i a a λ2 a λ2 λ c 1 ii a a λ1 a λ1 λ c 2 Wir zeigen nur die Gültigkeit von i, ii geht genauso. i ist ewiesen, wenn gilt I a 2 a λ a λ 1 λ 1 λ 2 II a λ 2 + c λ 1 Die symmetrische Matrix A ist nach Satz 6.2 diagonalisierar. Daher dürfen wir auch das Korollar 5.11 verwenden: Somit spur(a a + c λ 1 + λ 2 und det(a a c 2 λ 1 λ 2 I a 2 a (a + c λ 1 + 2? a λ 1 (a c 2 a 2 a 2 a c + a λ 1 + 2! a λ a c II a λ 2 + c? (a + c λ 2 (a λ 2 + c! (a + c λ 2

4 Lemma 6.4. Die eiden Eigenvektoren von Lemma 6. stehen senkrecht aufeinander. Beweis: ( a λ1 a λ2 a 2 a λ 1 a λ 2 + λ 1 λ a a (λ 1 + λ 2 + λ 1 λ 2! a a spur(a + det(a a a (a + c + a c 2 a a 2 a c + a c 2 0 Korollar 6.5. (Satz von Euler Jede lineare Aildung f : R 2 R 2 lässt sich zusammensetzen aus einer Drehung d und einer Euler-Streckung euler. Daei git es immer zwei senkrechte Vektoren u und v, die auf zwei senkrechte Bildvektoren f ( u und f ( v ageildet werden. Üer den Basisvektoren d( u und d( v kann f euler d geschrieen werden als λ1 0 cos φ sin φ x f ( x 0 λ 2 sin φ cos φ y Beweis: Lemma 6.1, Satz 6.2, Lemma 6. und Lemma 6.4. Korollar 6.6. Jede lineare Aildung f : R 2 R 2 ildet einen Kreis um (0/0 auf eine Ellipse mit Mittelpunkt (0/0 a. Die Halachsen der Ellipse können auch 0 werden, falls det(f 0. Korollar 6.7. Bei jeder linearen Aildung f : R 2 R 2 git es ein Quadrat, welches auf ein Rechteck ageildet wird. Dieses kann auch zu einer Strecke oder dem Nullpunkt degenerien, falls det(f 0 ist. Korollar 6.8. Jede lineare Aildung f : E E in (0/0 auf Ellipsen mit Mittelpunkt in (0/0 a. mit det(f 0 ildet Ellipsen mit Mittelpunkt Beweis: f (Ellipse f (g (Kreis f g (Kreis Ellipse. Es folgt eine ausgewachsene Beipielaufgae Es sei A ( f g h k. Gesucht sind a B c ( cos φ sin φ d e und C sin φ cos φ e d, sodass gilt A B C. Zudem wollen wir die senkrechten Vektoren kennen, welche von der Rotation C auf die eiden senkrechten Eigenvektoren von B ageildet werden. 4

5 Nach dem Beweis von Lemma 6.1 gilt (h g 2 e (h g 2 + (f + k 2 Somit C d e f + k h g e , φ tan 1 tan also B A C 1 A B C A C 1 B C C 1 B, ( Die Eigenwerte von B sind (a + c ± D, wo D (a c Der TR liefert uns λ 1 67 und λ Dazu erhalten wir die eiden Eigenvektoren a λ v a λ1 v Welche eiden senkrechten Vektoren werden von der Rotation C auf v 1 und v 2 ageildet? C 1 v 1 u C 1 v Jetzt wissen wir alles üer diese lineare Aildung: 4 5 v die Vektoren und werden von der Rotation C auf die eenfalls senkrechten Vektoren und ageildet 4 4 die Euler-Streckung streckt dann mit dem Faktor 67 und mit dem Faktor der Einheitskreis wird auf eine Ellipse mit den Halachsen 67 und 17 ageildet die Fläche nimmt daei um den Faktor zu. Es ist det(a

6 Weiter: das Quadrat mit den Ecken (0/0, (0/ 5, (5/ 5 und (5/0 wird auf das Rechteck mit den Ecken (0/0, (201/ 268, (1/ 19 und ( 68/ 51 ageildet. l , ! Quadrate mit einer Ecke in (0/0, deren Ecken nicht parallel sind zur x- und y-achse werden auf ein schiefes Parallelogramm ageildet. Zum Aschluss wie immer noch ein paar Aufgaen 1. Zeigen Sie: Ist det(a 0, so kann A keinen Eigenwert mit dem Wert 0 haen. 2. Welche symmetrischen Matrizen haen genau einen Eigenwert?. Nach dem Satz 6.2 ist jede symmetrische Matrix ähnlich zu einer Diagonalmatrix. Es git immer eine Rotation B, sodass gilt: B A B 1 ist eine Diagonalmatrix. Bestimmen Sie für die folgenden symmetrischen Matrizen diese Rotation B, den Drehwinkel φ sowie die Diagonalmatrix D B A B 1 : a A c A ( 1 1 ( Zerlegen Sie die Aildung A d A x 4 x + 2 y y x 2 y in eine Rotation und eine Euler-Streckung. Welche eiden rechtwinkligen Vektoren werden daei wieder auf ein Paar rechtwinkliger Vektoren ageildet? 5. Bestimmen Sie die invarianten rechten Winkel ei den folgenden eiden Aildungen: a x x y y y x 2 x + y y x + 4 y 6. Zeigen Sie, dass die eiden Aildungsgleichungen eine Geradenspiegelung eschreien und estimmen Sie die Gleichung der Spiegelachse: x 0.6 x 0.8 y y 0.8 x 0.6 y 7. Stellen Sie allgemein die Gleichungen auf für die Spiegelung an der Geraden y m x. 8. Ist eine lineare Aildung der Eene mit den eiden Eigenwerten 1 und 1 immer eine Geradenspiegelung? 6

7 Dann stellen sich noch die grossen Fragen: 9. Welche Ergenisse dieses Kapitels lassen sich auf Endomorphismen des Raumes (oder von R üertragen? Wie sehen üerhaupt die Rotationen des Raumes aus? Wird jede Kugel mit Mittelpunkt (0/0/0 auf ein Ellipsoid mit Mittelpunkt (0/0/0 ageildet? 10. Welche Ergenisse lassen sich auf Endomorphismen im R n verallgemeinern? Lässt sich jede Matrix A M n n (R als Produkt einer symmetrischen Matrix B und einer antisysmmetrischen Matrix C schreien? Ist jede symmetrische Matrix diagonalisierar? Solche und ähnliche Fragen zu untersuchen edeutet nichts anders als Mathematik zu etreien! Version 1.1, vom März 2015 Ausgeareitet von Martin Guler, Kantonsschule Frauenfeld, im Novemer 2014 Mit L A TEX in eine lesare Form geracht von Alfred Hepp, Bergün im März

1 Vektoren, Vektorräume, Abstände: 2D

1 Vektoren, Vektorräume, Abstände: 2D Vektoren, Vektorräume, Astände: D Definition: Die Menge aller (geordneten Paare reeller Zahlen (oder allgemeiner: Elemente eines elieigen Körpers, als Spalten geschrieen, ezeichnen wir als Vektoren: R

Mehr

Lineare (affine) Abbildung

Lineare (affine) Abbildung Lineare affine Aildung A e 2 a e Wir üerziehen die Eene neen dem vertrauten Quadrat-Gitternetz, das durch die Basisvektoren e und e 2 festgelegt ist, mit einem Parallelogramm-Gitternetz, dessen Maschen

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch Vorkurs Mathematik-Physik, Teil 5 c 206 A. Kersch Vektoren. Vektorrechnung Definition Ein Vektor ist eine gerichtete Größe welche einen Betrag ( Zahl und eine Richtung ( in 2D, 2 in 3D hat. Alternativ

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

Lineare Abbildungen und Darstellungsmatrizen

Lineare Abbildungen und Darstellungsmatrizen KAPITEL 4 Lineare Abbildungen und Darstellungsmatrizen 1. Lineare Abbildungen Definition 4.1 (Lineare Abbildungen). Seien V und W zwei Vektorräume über den selben Körper K. Eine Abbildung f : V W heißt

Mehr

Integralrechnung - Einführung Seite 1 von 6. Vergleicht man die Ergebnisse miteinander, so kann man folgende Entdeckung machen:

Integralrechnung - Einführung Seite 1 von 6. Vergleicht man die Ergebnisse miteinander, so kann man folgende Entdeckung machen: Integralrechnung - Einführung Seite von 6 Berechnung von Flächeninhalten zwischen dem Graphen einer Funktion und der x-achse: Beispiel : f(x)= Fläche zwischen Graph und x-achse üer dem Intervall [;]: Bei

Mehr

Musterlösungen zur Linearen Algebra II Übungsklausur

Musterlösungen zur Linearen Algebra II Übungsklausur Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Kapitel 18. Aufgaben. Verständnisfragen

Kapitel 18. Aufgaben. Verständnisfragen Kapitel 8 Aufgaben Verständnisfragen Aufgabe 8 Gegeben ist ein Eigenvektor v zum Eigenwert λ einer Matrix A (a) Ist v auch Eigenvektor von A? Zu welchem Eigenwert? (b) Wenn A zudem invertierbar ist, ist

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS 1

Inhaltsverzeichnis INHALTSVERZEICHNIS 1 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Ergänzung Eigenwerte und Eigenvektoren Motivation Definitionen Beispiele im IR 2 Beispiele im IR 3 Eigenwerte und Eigenvektoren Motivation Lineare Abbildungen, Ausgangsvektor und Bildvektor Lineare Abbildungen

Mehr

45 Eigenwerte und Eigenvektoren

45 Eigenwerte und Eigenvektoren 45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.

Mehr

Lösungsskizzen zur Klausur

Lösungsskizzen zur Klausur sskizzen zur Klausur Mathematik II Sommersemester 4 Aufgabe Es seien die folgenden Vektoren des R 4 gegeben: b = b = b 3 = b 4 = (a) Prüfen Sie ob die Vektoren b b 4 linear unabhängig sind bestimmen Sie

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

3.3 Klassifikation quadratischer Formen auf R n

3.3 Klassifikation quadratischer Formen auf R n 3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen

Mehr

Von einem Vektor spricht man, wenn mehrere reelle (manchmal auch komplexe) Zahlen in einer bestimmten Reihenfolge zusammengefasst werden.

Von einem Vektor spricht man, wenn mehrere reelle (manchmal auch komplexe) Zahlen in einer bestimmten Reihenfolge zusammengefasst werden. 2. Vektorrechnung 2.1 Begriffe Von einem Vektor spricht man, wenn mehrere reelle (manchmal auch komplexe) Zahlen in einer estimmten Reihenfolge zusammengefasst werden. Schreit man die Zahlen untereinander,

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH ) Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon

Mehr

6 Symmetrische und hermitesche Matrizen

6 Symmetrische und hermitesche Matrizen $Id: quadrat.tex,v.0 0/06/9 :47:4 hk Exp $ $Id: orthogonal.tex,v.4 0/06/9 3:46:46 hk Exp $ 6 Symmetrische und hermitesche Matrizen 6.3 Quadratische Funktionen und die Hauptachsentransformation Wir sind

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Höhere Mathematik II. 7 Lineare Algebra II. für naturwissenschaftliche Studiengänge. 7.1 Wiederholung einiger Begriffe

Höhere Mathematik II. 7 Lineare Algebra II. für naturwissenschaftliche Studiengänge. 7.1 Wiederholung einiger Begriffe Dr. Mario Helm Institut für Numerische Mathematik und Optimierung Fakultät für Mathematik und Informatik Höhere Mathematik II für naturwissenschaftliche Studiengänge Sommersemester 2013 7 Lineare Algebra

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 5 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Skalarprodukt und Orthogonalität.a) Bezüglich des euklidischen

Mehr

6.3 Hauptachsentransformation

6.3 Hauptachsentransformation Im Wintersemester 6/7 wurde in der Vorlesung Höhere Mathematik für Ingenieurstudiengänge der folgende Algorithmus zur Hauptachsentransformation besprochen: 63 Hauptachsentransformation Die Matrizen, die

Mehr

Mat(2 2, R) Wir bestimmen das charakterische Polynom 1 f A (t) = t 2 t 2 = (t 2)(t + ( 1). ) 2 2. Eigenvektor zu EW 2 ist v 2 = 1 1

Mat(2 2, R) Wir bestimmen das charakterische Polynom 1 f A (t) = t 2 t 2 = (t 2)(t + ( 1). ) 2 2. Eigenvektor zu EW 2 ist v 2 = 1 1 Aufgabe. Bestimmen Sie das Exponential expa) der Matrix ) 5 6 A = Mat, R). 4. Wir bestimmen das charakterische Polynom f A t) = t t = t )t + ). ). Eigenvektor zu EW ist v = ). Eigenvektor zu EW ist v =

Mehr

Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014

Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014 Skript zur Vorlesung Prof. Dr.-Ing. Katina Warendorf 2. Oktober 2014 erstellt von Sindy Engel erweitert von Prof. Dr.-Ing. Katina Warendorf Inhaltsverzeichnis 1 Vektoren 4 1.1 Grundbegriffe.................................

Mehr

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch WS 2010/2011 14. Januar 2011 Geometrie mit Übungen Übungsblatt 9, Musterlösungen Aufgabe 33. Es werden Kreise in der Euklidischen

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse

Mehr

1 GN GRUNDWISSEN MATHEMATIK. für die Jahrgangsstufe Reelle Zahlen ℝ :

1 GN GRUNDWISSEN MATHEMATIK. für die Jahrgangsstufe Reelle Zahlen ℝ : Zahlmengen. Reelle Zahlen ℝ : natürliche Zahlen ℕ 0 ganze Zahlen ℤ negative ganze Zahlen Arechende und nichtarechende periodische Dezimalzahlen (Bruchzahlen) rationale Zahlen ℚ reelle Zahlen ℝ nichtarechende

Mehr

8 Tangenten an Quadriken

8 Tangenten an Quadriken 8 Tangenten an Quadriken A Geraden auf Quadriken: Sei A 0 eine symmetrische n n Matri und Q : t A + b t + c = 0 eine nicht leere Quadrik im R n, b R n, c R. g = p + R v R n ist die Gerade durch p mit Richtung

Mehr

Quadratische Funktion und Parabel: Darstellungsformen

Quadratische Funktion und Parabel: Darstellungsformen Zurück Quadratische Funktion und Parael: Darstellungsformen Kleine Vorüungen, die Sie zum Einstieg durchführen sollten: Erste Üung: Zeichnen Sie die Normalparael y = x in ein Koordinatensystem ein. Verschieen

Mehr

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012 Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.0 Aufgabe : Entscheiden Sie in dieser Aufgabe, ob die Aussagen wahr oder falsch sind. Begründungen sind nicht erforderlich. Ein korrekt gesetztes

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

y x x y ( 2x 3y + z x + z

y x x y ( 2x 3y + z x + z Matrizen Aufgabe Sei f R R 3 definiert durch ( ) x 3y x f = x + y y x Berechnen Sie die Matrix Darstellung von f Aufgabe Eine lineare Funktion f hat die Matrix Darstellung A = 0 4 0 0 0 0 0 Berechnen Sie

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015 Matrizenrechnung Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Matrizenrechnung Übersicht Grundsätzliches 1 Grundsätzliches Matrixbegriff Rechenregeln Spezielle Matrizen 2 Matrizenrechnung Determinanten

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

Winkel Wi Schätzaufgabe: Nummeriere die Winkel der Grösse nach! Der kleinste Winkel trägt die Nummer 1, der grösste die Nummer 8!

Winkel Wi Schätzaufgabe: Nummeriere die Winkel der Grösse nach! Der kleinste Winkel trägt die Nummer 1, der grösste die Nummer 8! Winkel Wi 1 1. Schätzaufgae: Nummeriere die Winkel der Grösse nach! Der kleinste Winkel trägt die Nummer 1, der grösste die Nummer 8! a c d e f g h 2. Nummeriere auch diese Winkel, nach Augenmass, der

Mehr

Einführung in die Mathematik für Informatiker

Einführung in die Mathematik für Informatiker Einführung in die Mathematik für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 12.12.2016 9. Vorlesung Eigenschaften linearer Abbildungen Beschreibung linearer Abbildungen durch Matrizen... Eigenschaften

Mehr

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Übungsaufgaben zur Linearen Algebra II. 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel.

Übungsaufgaben zur Linearen Algebra II. 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel. Blatt 1 21.4.97 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel. 3x 1 x 2 + 5x 3 = 1 x 1 + 2x 2 + x 3 = 1 2x 1 + 4x 2 + 3x 3 = 1 2.) Zeigen Sie: det 1 1 0 0.......... 0 1

Mehr

2.2C. Das allgemeine Dreieck

2.2C. Das allgemeine Dreieck .C. Das allgemeine Dreieck Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = ( 0, z ) (x, y, z > 0) transformieren. Die

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

Drehung um einen Punkt um Winkel α.

Drehung um einen Punkt um Winkel α. Drehung um einen Punkt um Winkel α. Sei A R 2 und α R. Drehung um A um Winkel α ist eine Abbildung D A (α) : R 2 R 2 welche wie folgt definiert ist: D A (α) = T A D 0 (α) T ( A), wobei die Abbildung D

Mehr

4.4. Rang und Inversion einer Matrix

4.4. Rang und Inversion einer Matrix 44 Rang und Inversion einer Matrix Der Rang einer Matrix ist die Dimension ihres Zeilenraumes also die Maximalzahl linear unabhängiger Zeilen Daß der Rang sich bei elementaren Zeilenumformungen nicht ändert

Mehr

Grundwissen. 5. Jahrgangsstufe. Mathematik

Grundwissen. 5. Jahrgangsstufe. Mathematik Grundwissen 5. Jahrgangsstufe Mathematik Grundwissen Mathematik 5. Jahrgangsstufe Seite 1 1 Natürliche Zahlen 1.1 Große Zahlen und Zehnerpotenzen eine Million = 1 000 000 = 10 6 eine Milliarde = 1 000

Mehr

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Stefan Lell 2. Juli 2 Aufgabe. Sei t Q und A t = t 4t + 2 2t + 2 t t 2t 2t Mat 3Q a Bestimmen Sie die Eigenwerte von A t in Abhängigkeit

Mehr

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr?

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? 1. Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? A. Wenn n = 3 ist, sind mindestens zwei der drei Euler-Winkel einer Drehung kleiner oder gleich π. B. Wenn n = 2

Mehr

Hans Walser, [20090509a] Wurzeln aus Matrizen

Hans Walser, [20090509a] Wurzeln aus Matrizen Hans Walser, [0090509a] Wurzeln aus Matrizen 1 Worum es geht Zu einer gegebenen,-matri A suchen wir,-matrizen B mit der Eigenschaft: BB = B = A. Wir suchen also Quadratwurzeln der Matri A. Quadrieren Wenn

Mehr

Elementargeometrie. Kapitel 2: Ähnlichkeitsabbildungen, Vorlesung 2: Die Strahlensätze. Skript zur gleichnamigen Vorlesung im WS 2009/20010

Elementargeometrie. Kapitel 2: Ähnlichkeitsabbildungen, Vorlesung 2: Die Strahlensätze. Skript zur gleichnamigen Vorlesung im WS 2009/20010 Kaitel 2: Ähnlichkeitsaildungen, Vorlesung 2: Die Strahlensätze Elementargeometrie Skrit zur gleichnamigen Vorlesung im WS 2009/20010 Vorlesung 2: Die Strahlensätze www.h-heidelerg.de/w/gieding Kaitel

Mehr

1 Fraktale Eigenschaften der Koch-Kurve

1 Fraktale Eigenschaften der Koch-Kurve Anhang Inhaltsverzeichnis Fraktale Eigenschaften der Koch-Kurve iii. Einführung.................................. iii.2 Defintion.................................... iii.3 Gesamtlänge der Koch-Kurve........................

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar. http://www.math.uni-bielefeld.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar. http://www.math.uni-bielefeld. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 11 (WS 2010/2011) Abgabetermin: Donnerstag, 20. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung:

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

4 Ähnlichkeitsabbildungen

4 Ähnlichkeitsabbildungen EINFÜHRUNG IN DIE GEOMETRIE SS 05 41 DEISSLER 4 Ähnlichkeitsaildungen eispiele Verkleinerungen, Vergrößerungen ijektive, geradentreue ildungen, ei denen die Winkel erhalten werden, aer nicht notwendig

Mehr

Arbeitsblatt Mathematik 2 (Vektoren)

Arbeitsblatt Mathematik 2 (Vektoren) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Mathematik (Vektoren Dozent: - Brückenkurs Mathematik / Physik 6. Aufgabe Gegeben

Mehr

Teil 2 LINEARE ALGEBRA II

Teil 2 LINEARE ALGEBRA II Teil 2 LINEARE ALGEBRA II 27 Kapitel VII Euklidische und unitäre Vektorräume Wir beschäftigen uns jetzt mit Vektorräumen, die noch eine zusätzliche Struktur tragen Der Winkel zwischen Vektoren im IR 2

Mehr

46 Eigenwerte und Eigenvektoren symmetrischer Matrizen

46 Eigenwerte und Eigenvektoren symmetrischer Matrizen 46 Eigenwerte und Eigenvektoren symmetrischer Matrizen 46.1 Motivation Symmetrische Matrizen (a ij = a ji für alle i, j) kommen in der Praxis besonders häufig vor. Gibt es für sie spezielle Aussagen über

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Erweiterte Koordinaten

Erweiterte Koordinaten Erweiterte Koordinaten Sei K n ein n dimensionaler affiner Raum Die erweiterten Koordinaten des Punktes x x n K n sind x x n Kn+ (Das ist für alle K sinnvoll, weil in jedem Körper K wohldefiniert ist In

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Vektoren und Matrizen Einführung: Wie wir gesehen haben, trägt der R 2, also die Menge aller Zahlenpaare, eine Körperstruktur mit der Multiplikation (a + bi(c + di ac bd + (ad + bci Man kann jedoch zeigen,

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung Analytische Geometrie http://www.fersch.de Klemens Fersch 6. August 6 Inhaltsverzeichnis 6 Analytische Geometrie 6. Vektorrechung in der Ebene......................................... 6..

Mehr

10. Grassmannsche Vektoren und die Drehungen im Raum.

10. Grassmannsche Vektoren und die Drehungen im Raum. 10. Grassmannshe Vektoren und die Drehungen im Raum. Wir haen in der vorigen Vorlesung gesehen wie man Gegenstände im Raum vermöge der Zentralprojektion als Figuren in der Eene perspektivish genau darstellen

Mehr

Die quadratische Gleichung und die quadratische Funktion

Die quadratische Gleichung und die quadratische Funktion Die quadratische Gleichung und die quadratische Funktion 1. Lösen einer quadratischen Gleichung Quadratische Gleichungen heißen alle Gleichungen der Form a x x c = 0, woei a,, c als Parameter elieige reelle

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss.

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss. 1. Konvexität in der absoluten Ebene In einem Dreieck in der Euklidischen Ebene hat die Strecke zwischen zwei Seitenmittelpunkten die halbe Länge der dritten Seite. In der absoluten Ebene hat man eine

Mehr

Selbsttest in Schulwissen Mathematik

Selbsttest in Schulwissen Mathematik Selsttest in Schulwissen Mathematik Falls Sie den Test von uns korrigieren und ewerten lassen wollen, machen Sie itte folgende Angaen: Name: Schulaschluss im Jahre: Vorname: im Bundesland oder Staat: Schulische

Mehr

Ergänzung zu komplexe Zahlen

Ergänzung zu komplexe Zahlen Juli 2015 Übersicht 1 Ortskurven 2 Wechselstromkreis mit ohmschem und kapazitivem Widerstand (Parallelschaltung) i(t) u(t) R C Bei festen Werten für den ohmschen Widerstand R und die Kapazität C ergibt

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

8 Lineare Abbildungen

8 Lineare Abbildungen 80 8 Lineare Abbildungen In diesem Kapitel untersuchen wir lineare Abbildungen von R n nach R m wie zum Beispiel Spiegelungen, Drehungen, Streckungen und Orthogonalprojektionen in R 2 und R 3 Man nennt

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008 KLAUSUR ZUR LINEAREN ALGEBRA I. Februar 008 MUSTERLÖSUNG Diese Klausur wurde je nach Sitzreihe in zwei verschiedenen Versionen geschrieben. Die andere Version unterscheidet sich von der vorliegenden jedoch

Mehr

Känguru der Mathematik 2003 Gruppe Benjamin (5. und 6. Schulstufe)

Känguru der Mathematik 2003 Gruppe Benjamin (5. und 6. Schulstufe) Känguru der Mathematik 2003 Gruppe Benjamin (5. und 6. Schulstufe) 20.3.2003 3 Punkte Beispiele 1) Welche der folgenden Zahlen ist am größten? A) 2 + 0 + 0 + 3 B) 2 0 0 3 C) (2 + 0) (3 + 0) D) 20 0 3 E)

Mehr

Komplexe Zahlen. Rainer Hauser. Januar 2015

Komplexe Zahlen. Rainer Hauser. Januar 2015 Komplexe Zahlen Rainer Hauser Januar 015 1 Einleitung 1.1 Zahlen und Operationen auf Zahlen Addiert man mit Eins als erster gegebener Zahl beginnend sukzessive Eins zu einer bereits gefundenen Zahl, so

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

2. Aufgabe Vereinfachen Sie die folgenden Ausdrücke so, dass möglichst wenige Multiplikationen ausgeführt werden müssen!

2. Aufgabe Vereinfachen Sie die folgenden Ausdrücke so, dass möglichst wenige Multiplikationen ausgeführt werden müssen! Studiengang: PT/LOT/PVHT Semester: WS 9/ lgebra Serie: 2 Thema: Matrizen, Determinanten. ufgabe Gegeben sind die Matrizen = µ 2 3 2 µ 3 2 4, B = 2 Berechnen Sie: a) 2 + 3B b) B 2 c) B T d) B T e) T B f)

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

Skalarprodukte (Teschl/Teschl Kap. 13)

Skalarprodukte (Teschl/Teschl Kap. 13) Skalarprodukte (Teschl/Teschl Kap. ) Sei V Vektorraum über R. Ein Skalarprodukt auf V ist eine Abbildung V V R, (x, y) x, y mit den Eigenschaften () x, y = y, x (symmetrisch), () ax, y = a x, y und x +

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Noch einmal zu den Grundlagen: Algebra und Geometrie

Noch einmal zu den Grundlagen: Algebra und Geometrie Noch einmal zu den Grundlagen: Algera und Geometrie In diesem Kapitel... Operationen an Brüchen Die elementare Algera aufpolieren Die Geometrie ins Lot ringen I ch weiß, ich weiß. Dies ist ein Areitsuch

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 :

Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 : Herbst 24 1. Gegeben ist eine Funktion f : mit den Parametern a und b. a) Bestimmen Sie a und b so, dass der Graph von f durch den Punkt B(1/2) verläuft und die Tangente t in B parallel ist zur Geraden

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 2014/2015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 10 Abgabetermin: Freitag, 16.01.2015, 11 Uhr Auf diesem

Mehr

40 Lokale Extrema und Taylor-Formel

40 Lokale Extrema und Taylor-Formel 198 VI. Differentialrechnung in mehreren Veränderlichen 40 Lokale Extrema und Taylor-Formel Lernziele: Resultate: Satz von Taylor und Kriterien für lokale Extrema Methoden aus der linearen Algebra Kompetenzen:

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $ $Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Inhalt:. Brüche und Bruchteile........................................... Erweitern und Kürzen von Brüchen................................... Größenvergleich von Brüchen der Hauptnenner..........................

Mehr