Logik für Informatiker

Größe: px
Ab Seite anzeigen:

Download "Logik für Informatiker"

Transkript

1 Logik für Informatiker 3. Prädikatenlogik Teil Viorica Sofronie-Stokkermans Universität Koblenz-Landau sofronie@uni-koblenz.de 1

2 Unser Ziel Kalküle zur systematischen Überprüfung von Erfüllbarkeit (für Formeln und/oder Formelmengen) 2

3 Unser Ziel Kalküle zur systematischen Überprüfung von Erfüllbarkeit (für Formeln und/oder Formelmengen) Bis jetzt Normalformen, Skolemisierung Klauselnormalform Heute Herbrand-Interpretationen Resolution 3

4 Herbrand-Interpretationen Ab jetzt betrachten wir, falls nichts Anderes angegeben, immer nur PL ohne Gleichheit. Ω enthalte immer mindestens ein Konstantensymbol. Definition. Herbrand-Interpretationen (über Σ) sind Σ-Strukturen A mit: 1. U A = T Σ Menge der Grundterme, d.h. variablenfreien Terme über Σ 2. f A : (s 1,..., s n ) f (s 1,..., s n ), f /n Ω f A (,..., ) = f... d.h. vorgegeben sind Terme als Daten und Funktionen als Termkonstruktoren. Variabel sind nur die Interpretationen der Prädikatensymbole p A T m Σ, p m Π 4

5 Herbrand-Interpretationen als Mengen von Grundatomen Satz. Jede Menge von Grundatomen I identifiziert genau eine Herbrand- Interpretation A durch (s 1,...,s n ) p A genau dann, wenn p(s 1,...,s n ) I Im folgenden werden wir daher nicht zwischen Herbrand-Interpretationen (über Σ) und Mengen von Σ-Grundatomen unterscheiden. 5

6 Herbrand-Interpretationen als Mengen von Grundatomen Beispiel: Σ Pres = ({0/0,s/1,+/2}, {< /2, /2}) N als Herbrand-Interpretation über Σ Pres I = { 0 0, 0 s(0), 0 s(s(0)),..., , s(0),...,..., (s(0) + 0) + s(0) s(0) + (s(0) + s(0))... s(0) + 0 < s(0) s(0)...} 6

7 Existenz von Herbrand-Modellen Definition. Eine Herbrand-Interpretation I heißt Herbrand-Modell von F, falls I = F. Theorem [Herbrand] Sei N eine Menge von Σ-Klauseln. N erfüllbar g.d.w. N hat Herbrand-Modell (über Σ) wobei g.d.w. G Σ (N) hat Herbrand-Modell (über Σ) G Σ (N) = {Cσ Grundklausel C N, σ : X T Σ } die Menge der Grundinstanzen von N ist. [Beweis später im Zusammenhang mit dem Vollständigkeitsbeweis für Resolution.] 7

8 Beispiel für G Σ Bzgl. Σ Pres erhält man für folgende Grundinstanzen: C = (x < y) (y s(x)) (0 < 0) (0 s(0)) (s(0) < 0) (0 s(s(0)))... (s(0) + s(0) < s(0) + 0) (s(0) + 0 s(s(0) + s(0)))... 8

9 Aussagenlogische Resolution Aussagenlogische Klauseln entsprechen Grundklauseln und umgekehrt. 9

10 Resolutionskalkül (Mengennotation) Resolutionsregel: C {A} C D { A} D C D: Resolvente A: resolviertes Atom 10

11 Beispielrefutation (Mengennotation) 1. { P(f (a)), P(f (a)), Q(b)} (gegeben) 2. {P(f (a)), Q(b)} (gegeben) 3. { P(g(b, a)), Q(b)} (gegeben) 4. {P(g(b, a))} (gegeben) 5. { P(f (a)), Q(b)} (Res. 2. in 1.) 6. {Q(b)} (Res. 2. in 5.) 7. { P(g(b, a))} (Res. 6. in 3.) 8. (Res. 4. in 9.) 11

12 Resolutionskalkül (Klauselnotation) Resolutionsregel: C A C D A D C D: Resolvente A: resolviertes Atom Faktorisieren: C L L C L wird in Klauseln als assoziativ und kommutativ aufgefaßt. 12

13 Beispielrefutation (Klauselnotation) 1. P(f (a)) P(f (a)) Q(b) (gegeben) 2. P(f (a)) Q(b) (gegeben) 3. P(g(b, a)) Q(b) (gegeben) 4. P(g(b, a)) (gegeben) 5. P(f (a)) Q(b) Q(b) (Res. 2. in 1.) 6. P(f (a)) Q(b) (Fakt. 5.) 7. Q(b) Q(b) (Res. 2. in 6.) 8. Q(b) (Fakt. 7.) 9. P(g(b, a)) (Res. 8. in 3.) 10. (Res. 4. in 9.) 13

14 Korrektheit und Vollständigkeit Aussagenlogische Resolution ist korrekt und vollständig. Mengennotation: Resolutionsregel Klauselnotation: Resolutionsregel + Faktorisieren 14

15 Prädikatenlogische Resolution Grundidee Vor Resolutionsschritt durch geeignete Substitution komplementäres Paar von Literalen erzeugen 15

16 Prädikatenlogische Resolution Grundidee Vor Resolutionsschritt durch geeignete Substitution komplementäres Paar von Literalen erzeugen Möglichkeit für Resolutionsregel wobei C 1 {L} C 2 { L } C 1 σ C 2 σ die Elternklauseln keine Variablen gemeinsam haben (bereinigt) ggf. umbenennen σ(l) = σ(l ) 16

17 Prädikatenlogische Resolution Grundidee Vor Resolutionsschritt durch geeignete Substitution komplementäres Paar von Literalen erzeugen Möglichkeit für Resolutionsregel wobei C 1 {L} C 2 { L } C 1 σ C 2 σ die Elternklauseln keine Variablen gemeinsam haben (bereinigt) ggf. umbenennen σ(l) = σ(l ) Nachteil: Viel zu viele Substitutionen σ mit σ(l) = σ(l ) Idee: Wähle die allgemeinste Substitution, mit σ(l) = σ(l ) 17

18 Unifikation.. Sei E = {s 1 = t 1,...,s n = t n } (s i,t i Terme oder Atome) eine Menge von Gleichheitsproblemen. Definition: Eine Substitution σ heißt ein Unifikator von E g.d.w. A 1 i n : s i σ = t i σ. Existiert ein Unifikator, so heißt E unifizierbar. Definition: σ heißt allgemeiner als τ σ τ : es gibt Subst. : σ = τ wobei (σ )(x) := (xσ) die Komposition von σ und als Abbildungen. a a Ist wohldefiniert, weil σ einen endlichen Bereich hat. 18

19 Ein paar simple Fakten Jeder Term ist mit sich selbst unifizierbar (mittels id) Terme der Gestalt f (s 1,...,s n ), f (t 1,...,t n ) sind unifizierbar g.d.w. si und t i unifizierbar für 1 i n Atome der Gestalt p(s 1,...,s n ), p(t 1,...,t n ) sind unifizierbar g.d.w. si und t i unifizierbar für 1 i n Terme der Gestalt f (s 1,...,s n ), g(t 1,...,t m ) sind niemals unifb. Atome der Gestalt p(s 1,...,s n ), q(t 1,...,t n ) sind niemals unifb. Eine Variable x und ein Term t, der x nicht enthält, sind immer unifb. (mittels [t/x]) Eine Variable x und ein Term t x, der x enthält, sind niemals unifizierbar 19

20 Unifikation nach Martelli/Montanari (1) t. = t,e MM E (2) f (s 1,...,s n ). = f (t 1,...,t n ), E MM s 1. = t 1,...,s n. = t n,e (3) f (...). = g(...), E MM (4) x. = t,e MM x. = t,e[t/x] (5) x. = t,e MM falls x var(e), x var(t) falls x t,x var(t) (6) t. = x,e MM x. = t,e falls t X 20

21 Beispiel 1 {f (g(a, x), g(y,b)). = f (x,g(v,w)), f (x,g(v,w)). = f (g(x, a), g(v,b)} (2) MM (5) MM {g(a, x). = x,g(y,b). = g(v,w), x. = g(x,a), g(v, w). = g(v,b)} 21

22 Beispiel 2 {f (g(a, x), g(y,b)). = g(x,g(v, w)), f (x, g(v,w)). = f (g(x,a), g(v,b)} (3) MM 22

23 Beispiel 3 {f (g(a, x), g(y,b)). = f (z, g(v,w)), f (z, g(v,w)). = f (g(x, a), g(v,b)} (2) MM (4) MM {g(a, x). = z,g(y,b). = g(v, w), z. = g(x,a), g(v,w). = g(v,b)} {z. = g(a, x),g(y,b). = g(v, w), g(a, x). = g(x,a), g(v, w). = g(v,b)} 23

24 Beispiel 3 {f (g(a, x), g(y,b)). = f (z, g(v,w)), f (z, g(v,w)). = f (g(x, a), g(v,b)} (2) MM (4) MM {g(a, x). = z,g(y,b). = g(v, w), z. = g(x,a), g(v,w). = g(v,b)} {z. = g(a, x),g(y,b). = g(v, w), g(a, x). = g(x,a), g(v, w). = g(v,b)} MM {z. = g(a, x), y. = v,b. = w,a. = x,x. = a, v. = v,w. = b} 24

25 Beispiel 3 {f (g(a, x), g(y,b)). = f (z, g(v,w)), f (z, g(v,w)). = f (g(x, a), g(v,b)} (2) MM (4) MM {g(a, x). = z,g(y,b). = g(v, w), z. = g(x,a), g(v,w). = g(v,b)} {z. = g(a, x), g(y,b). = g(v, w), g(a, x). = g(x,a), g(v, w). = g(v,b)} MM {z. = g(a, x), y. = v,b. = w,a. = x,x. = a, v. = v,w. = b} MM {z. = g(a, x), y. = v,b. = w,a. = x,x. = a, w. = b} 25

26 Beispiel 3 {f (g(a, x), g(y,b)). = f (z, g(v,w)), f (z, g(v,w)). = f (g(x, a), g(v,b)} (2) MM (4) MM {g(a, x). = z,g(y,b). = g(v, w), z. = g(x,a), g(v,w). = g(v,b)} {z. = g(a, x), g(y,b). = g(v, w), g(a, x). = g(x,a), g(v, w). = g(v,b)} MM {z. = g(a, x), y. = v,b. = w,a. = x,x. = a, v. = v,w. = b} MM {z. = g(a, x), y. = v,b. = w,a. = x, x. = a,w. = b} MM {z. = g(a, a), y. = v,b. = b,a. = a,x. = a,w. = b} MM {z. = g(a, a), y. = v,x. = a,w. = b} 26

27 Beispiel 3 {f (g(a, x), g(y,b)). = f (z, g(v,w)), f (z, g(v,w)). = f (g(x, a), g(v,b)} (2) MM (4) MM {g(a, x). = z,g(y,b). = g(v, w), z. = g(x,a), g(v,w). = g(v,b)} {z. = g(a, x), g(y,b). = g(v, w), g(a, x). = g(x,a), g(v, w). = g(v,b)} MM {z. = g(a, x), y. = v,b. = w,a. = x,x. = a, v. = v,w. = b} MM {z. = g(a, x), y. = v,b. = w,a. = x, x. = a,w. = b} MM {z. = g(a, a), y. = v,b. = b,a. = a,x. = a,w. = b} MM {z. = g(a, a), y. = v,x. = a, w. = b} Allgemeinster Unifikator: [g(a, a)/z, v/y,a/x, w/b] 27

28 Unifikation: Haupteigenschaften Definition. Eine Substitition σ heißt idempotent, wenn σ σ = σ. Lemma. σ ist idempotent gdw. dom(σ) codom(σ) =. Theorem. 1. E MM gdw. E nicht unfizierbar E unifizierbar gdw. E MM x 1 = u 1,...,x k = u k, mit x i pw. verschieden, x i var(u j ),1 i,j k Falls E MM x 1 = u 1,...,x k = u k, mit x i pw. verschieden, x i var(u j ) so σ = [u 1 /x 1,...,u k /x k ] ist allgemeinster Unifikator von E. 28

29 Unifikation: Haupteigenschaften Theorem. E unifizierbar g.d.w. es gibt allgemeinsten Unifikator σ von E, so dass: (1) σ idempotent und (2) dom(σ) codom(σ) var(e). Notation: σ = mgu(e) ( most general unifier ) Problem: exponentielles Anwachsen der Terme möglich. 29

30 Unifikation: Haupteigenschaften Theorem. E unifizierbar g.d.w. es gibt allgemeinsten Unifikator σ von E, so dass: (1) σ idempotent und (2) dom(σ) codom(σ) var(e). Notation: σ = mgu(e) ( most general unifier ) Problem: exponentielles Anwachsen der Terme möglich. Beispiel: E = {x 1 f (x 0,x 0 ), x 2 f (x 1,x 1 ),...,x n f (x n 1,x n 1 )} m.g.u. [x 1 f (x 0,x 0 ), x 2 f (f (x 0,x 0 ), f (x 0,x 0 )),...] x i kompletter binärer Baum der Höhe i Zeit/Raum: exponentiell Idee: Terme: azyklische Termgraphen 30

31 Beweisideen Falls E MM E, dann σ Unifikator von E gdw. σ Unifikator von E. ( habe keinen Unifikator.) Bzgl. MM irreduzible E sind trivialerweise nicht unifizierbar (E = ) oder haben die Form einer idempotenten Substitution. In diesem Fall ist die Substitution der allgemeinste Unifikator. MM ist Noethersch. Eine geeignete lexikographische Ordnung auf Gleichungsmengen E (mit minimal und kleiner als alle Gleichungsmengen) zeigt dieses. Man vergleiche in dieser Reihenfolge: 1. Anzahl der definierten Variablen (d.h. Variablen x in Gleichung x. = t mit x var(t)), die auch außerhalb ihrer Definition in E vorkommen 2. Mengenordnung induziert von (i) der Größe (Anzahl der Symbole) einer Gleichung; (ii) bei gleicher Größe betrachten wir x. = t kleiner als t. = x, falls t X. σ ist idempotent wegen der Substitution in Regel 4. dom(σ) var(e), weil keine neuen Variablen eingeführt werden. 31

32 Prädikatenlogische Resolution Prädikatenlogische Resolutionsregel wobei C 1 {L} C 2 { L } C 1 σ C 2 σ die Elternklauseln keine Variablen gemeinsam haben (bereinigt) ggf. umbenennen σ ein allgemeinster Unifikator (MGU) von L,L ist. 32

33 Beispiel {L} C 1 = {p(a,x),p(x,x)} {z } L {L } C 2 = { p(y,y)} {z } L 33

34 Beispiel {L} C 1 = {p(a,x),p(x,x)} {z } L {L } C 2 = { p(y,y)} {z } L 34

35 Beispiel {L} C 1 = {p(a,x),p(x,x)} {z } L {L } C 2 = { p(y,y)} {z } L Allgemeinster Unifikator von L,L : {p(a, x). = p(y,y)} MM {a. = y,x. = y} σ = [a/y, a/x] MM {y. = a, x. = a} 35

36 Beispiel {L} C 1 = {p(a,x),p(x,x)} {z } L {L } C 2 = { p(y,y)} {z } L Allgemeinster Unifikator von L,L : {p(a, x). = p(y,y)} MM {a. = y,x. = y} MM {y. = a, x. = a} σ = [a/y, a/x] C 1 {L} C 2 { L } C 1 σ C 2 σ R := {p(x,x)}σ {}σ = {p(a,a)} 36

37 Prädikatenlogische Resolution Resolutionsregel in dieser Form alleine unvollständig für Prädikatenlogik 37

38 Prädikatenlogische Resolution Resolutionsregel in dieser Form alleine unvollständig für Prädikatenlogik Beispiel: {{p(x), p(y)}, { p(u), p(v)}} unerfüllbar aber nur Resolventen der Länge 2 38

39 Prädikatenlogische Resolution Faktorisierung {L 1,...,L n } C ({L 1,...,L n } C)σ wobei σ allgemeinster Unifikatior (MGU) von {L 1,...,L n } ist ({L 1,...,L n } C)σ heißt Faktor von {L 1,...,L n } C 39

40 Beispiel für Faktorisierung {p(x), p(y), r(y,z)} {p(x), r(x,z)} 40

41 Beispiel für Faktorisierung {p(x), p(y), r(y,z)} {p(x), r(x,z)} {p(x),p(y), p(a), r(y,z)} {p(a), r(a, z)} 41

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 12. Prädikatenlogik Resolution Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Zur Erinnerung Definition: Aussagenlogische

Mehr

Unifikation. T eine Menge von Termen. σ(t) einelementig ist. Definition: Unifikator. Eine Substitution σ ist Unifikator von T, falls

Unifikation. T eine Menge von Termen. σ(t) einelementig ist. Definition: Unifikator. Eine Substitution σ ist Unifikator von T, falls Unifikation Definition: Unifikator T eine Menge von Termen Eine Substitution σ ist Unifikator von T, falls σ(t) einelementig ist Logik für Informatiker, SS 06 p.12 Unifikation Definition: Unifikator T

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 13. Prädikatenlogik Der Satz von Herbrand Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Semantische Bäume Eine klassische

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Ralf Möller, TUHH. Beim vorigen Mal: Heute: Prädikatenlogik: Algorithmus für Erfüllbarkeitsproblem. Lernziele: Beweisverfahren für Prädikatenlogik

Ralf Möller, TUHH. Beim vorigen Mal: Heute: Prädikatenlogik: Algorithmus für Erfüllbarkeitsproblem. Lernziele: Beweisverfahren für Prädikatenlogik Ralf Möller, TUHH Beim vorigen Mal: Heute: Prädikatenlogik: Algorithmus für Erfüllbarkeitsproblem Lernziele: Beweisverfahren für Prädikatenlogik Danksagung Bildmaterial: S. Russell, P. Norvig, Artificial

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 06.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax (Formeln) Semantik Wertebelegungen/Valuationen/Modelle

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 6. Aussagenlogik Resolution Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Resolutionkalkül Wesentliche

Mehr

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle smethoden der Informatik Kapitel 2: Logikkalküle Prädikatenlogik 1. Stufe Norbert Fuhr Gudrun Fischer 29.11.2005 Organisatorisches Organisatorisches Klausur Termin: 20.2.2006, 13-15 Uhr, Audimax Anmeldung

Mehr

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise:

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise: Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 192 Beispiel Bsp.: Betrachte Schlussweise in: 1 Wenn es regnet, dann wird die Straße nass. R N

Mehr

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle smethoden der Informatik Kapitel 2: Logikkalküle Prädikatenlogik 1. Stufe Norbert Fuhr Gudrun Fischer 29.11.2005 Organisatorisches Organisatorisches Klausur Termin: 20.2.2006, 13-15 Uhr, Audimax Anmeldung

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 10 4.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Hauptklausur: Montag, 23.07.2012, 16:00-18:00,

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 8.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Prädikatenlogische Entscheidbarkeitsprobleme

Prädikatenlogische Entscheidbarkeitsprobleme Prädikatenlogische Entscheidbarkeitsprobleme Erfüllbarkeitsproblem: Gegeben: prädikatenlogischer Ausdruck A über einer Signatur S Frage: Ist A erfüllbar? Gültigkeitsproblem: Gegeben: prädikatenlogischer

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 6 25.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letzte Vorlesungen Prädikatenlogik: Syntax Semantik

Mehr

Prädikatenlogik: Syntax

Prädikatenlogik: Syntax Prädikatenlogik: Syntax Signatur : Welche Zeichen gibt es? Funktionssymbole Prädikatensymbol (Eigenschaften) Terme: Variablen f(t 1,... t n ) wenn t i Terme und f Funktionssymbol Formeln: P (t 1,... t

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 4 07.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Gestern Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2017/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2017/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Pra dikatenlogik: Tableaukalku l (ohne Gleichheit) KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der

Mehr

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2016/2017 Pra dikatenlogik: Tableaukalku l (ohne Gleichheit) KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der

Mehr

Formale Grundlagen der Informatik 3 Kapitel 4 Prädikatenlogik Resolution

Formale Grundlagen der Informatik 3 Kapitel 4 Prädikatenlogik Resolution Formale Grundlagen der Informatik 3 Kapitel 4 Prädikatenlogik Frank Heitmann heitmann@informatik.uni-hamburg.de 30. November 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/43 Eine besondere Formel

Mehr

Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Resolution

Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Resolution Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Frank Heitmann heitmann@informatik.uni-hamburg.de 30. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/41 Ablauf Unendliche

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 2 1.06.2017 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Syntax der Prädikatenlogik Idee (P Q) (P Q) 2 Syntax

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 11. Prädikatenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Negationsnormalform Definition: Negationsnormalform

Mehr

Formale Systeme, WS 2012/2013. Lösungen zu Übungsblatt 7

Formale Systeme, WS 2012/2013. Lösungen zu Übungsblatt 7 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt David Faragó, Christoph Scheben, Mattias Ulbrich Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt

Mehr

Ablauf. Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Resolution. Eine besondere Formel. Eine besondere Formel

Ablauf. Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Resolution. Eine besondere Formel. Eine besondere Formel Ablauf Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Frank Heitmann heitmann@informatik.uni-hamburg.de 30. Juni 2015 Wir werden heute die Themen aus den Kapitel 2.3, 2.4 und 2.5 aus

Mehr

Resolution für die Aussagenlogik

Resolution für die Aussagenlogik Resolution für die Aussagenlogik Der Resolutionskakül ist ein Beweiskalkül, der auf Klauselmengen, d.h. Formeln in KNF arbeitet und nur eine Schlußregel besitzt. Der Resolution liegt die folgende Vorstellung

Mehr

Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung

Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung Universität Koblenz-Landau FB 4 Informatik Prof. Dr. Viorica Sofronie-Stokkermans 23.07.2012 Dipl.-Inform. Markus Bender Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung

Mehr

SLD-Ableitungsbäume. G = B 1... B m. G die Menge aller SLD-Resolventen von G und definiten. G einen Nachfolger, der mit G markiert ist.

SLD-Ableitungsbäume. G = B 1... B m. G die Menge aller SLD-Resolventen von G und definiten. G einen Nachfolger, der mit G markiert ist. SLD-Ableitungsbäume Definition 5.48 Sei P ein definites Programm und G ein definites Ziel. Ein SLD-Ableitungsbaum ist ein Baum, der die folgenden Bedingungen erfüllt: 1. Jeder Knoten des Baums ist mit

Mehr

Formale Systeme. Tableaukalku l (ohne Gleichheit) Prof. Dr. Bernhard Beckert, WS 2015/ KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK

Formale Systeme. Tableaukalku l (ohne Gleichheit) Prof. Dr. Bernhard Beckert, WS 2015/ KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert, WS 2015/2016 Tableaukalku l (ohne Gleichheit) KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum

Mehr

Sogar Strukturen mit unendlichem Universum müssen betrachtet werden:

Sogar Strukturen mit unendlichem Universum müssen betrachtet werden: 3.4 Unentscheidbarkeit In der Aussagenlogik gibt es für jede Formel eine endliche Menge von Belegungen. In Prädikatenlogik Beschränkung auf endliche Menge von Strukturen nicht möglich. Sogar Strukturen

Mehr

Substitution. Unifikation. Komposition der Substitution. Ausführung der Substitution

Substitution. Unifikation. Komposition der Substitution. Ausführung der Substitution Substitution Unifikation Ziel eines Widerspruchsbeweis: Widerspruch ja/nein Variablenbindung im Falle eines Widerspruchs Eine Substitution θ ist eine endliche Menge der Form {v 1 /t 1 v n /t n }, wobei

Mehr

Schritt 1 Richtung Resolution: Substituieren

Schritt 1 Richtung Resolution: Substituieren 4. Resolution in der Prädikatenlogik Schritt 1 Richtung Resolution: Substituieren Wegen impliziter Allquantifizierung der Variablen gilt: P(x), P(y) widersprüchlich; P(x) P(f(a)) widersprüchlich; aber

Mehr

Logik für Informatiker Musterlösung Aufgabenblatt 11

Logik für Informatiker Musterlösung Aufgabenblatt 11 Universität Koblenz-Landau SS 06 Institut für Informatik Bernhard Beckert www.uni-koblenz.de/~beckert Christoph Gladisch www.uni-koblenz.de/~gladisch Claudia Obermaier www.uni-koblenz.de/~obermaie Übung

Mehr

Musterlösung der Klausur zur Vorlesung Logik für Informatiker

Musterlösung der Klausur zur Vorlesung Logik für Informatiker Musterlösung der Klausur zur Vorlesung Logik für Informatiker Bernhard Beckert Christoph Gladisch Claudia Obermaier Arbeitsgruppe Künstliche Intelligenz Fachbereich Informatik, Universität Koblenz-Landau

Mehr

Wiederholung: Resolution in der Aussagenlo. Resolution in der Prädikatenlogik. Definition von Res(F) (Wiederholung)

Wiederholung: Resolution in der Aussagenlo. Resolution in der Prädikatenlogik. Definition von Res(F) (Wiederholung) Resolution in der Prädikatenlogik Wiederholung: Resolution in der Aussagenlo Der Algorithmus von Gilmore funktioniert zwar, ist in der Praxis aber unbrauchbar. Daher ist unser Programm der nächsten Stunden:

Mehr

Herbrand-Universum. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Herbrand-Universum. Herbrand-Universum

Herbrand-Universum. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Herbrand-Universum. Herbrand-Universum Herbrand-Universum Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Motivation: Um die Erfüllbarkeit/Unerfüllbarkeit einer prädikatenlogischen

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/37 Modellierungsaufgabe Es gibt drei Tauben und zwei Löcher. Jede Taube soll in

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 4 18.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letzte Vorlesung Sematik: Σ-Strukturen = (U, (f : U

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 1 5.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Rückblick: Vor- und Nachteile von Aussagenlogik + Aussagenlogik

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 10. Prädikatenlogik Substitutionen und Unifikation Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Substitutionen Definition:

Mehr

Kurseinheit 1 Einführung und mathematische Grundlagen Aussagenlogik

Kurseinheit 1 Einführung und mathematische Grundlagen Aussagenlogik Kurseinheit 1 Einführung und mathematische Grundlagen Aussagenlogik Fragen Seite Punkte 1. Was ist die Mathematische Logik? 3 2 2. Was sind die Aussagenlogik und die Prädikatenlogik? 5 4 3. Was sind Formeln,

Mehr

Logik-Grundlagen. Syntax der Prädikatenlogik

Logik-Grundlagen. Syntax der Prädikatenlogik Logik-Grundlagen X 1 :...: X k : ( A 1 A 2... A m B 1 B 2... B n ) Logische und funktionale Programmierung - Universität Potsdam - M. Thomas - Prädikatenlogik III.1 Syntax der Prädikatenlogik Prädikat:

Mehr

Entscheidungsverfahren für Bernays/Schönfinkelbzw. Datenlogik-Formeln

Entscheidungsverfahren für Bernays/Schönfinkelbzw. Datenlogik-Formeln Vorlesung Letz WS 2002/2003 TU München: Logikbasierte Entscheidungsverfahren Entscheidungsverfahren für Bernays/Schönfinkelbzw. Datenlogik-Formeln INHALTE Die Bernays-Schönfinkel-Klasse bzw. Datenlogik-Formeln

Mehr

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen Prädikatenlogik 1. Stufe (kurz: PL1) Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen notwendig: Existenz- und Allaussagen Beispiel: 54 Syntax der Prädikatenlogik erster Stufe (in der

Mehr

Resolution und Regeln

Resolution und Regeln Resolution und Regeln Hans Kleine Büning University of Paderborn Institute for Computer Science Group Paderborn, 18. Juli 2013 Resolution und Regeln Hans Kleine Büning 1/9 Resolution Theorem Resolution:

Mehr

Logik Vorlesung 10: Herbrand-Theorie

Logik Vorlesung 10: Herbrand-Theorie Logik Vorlesung 10: Herbrand-Theorie Andreas Maletti 9. Januar 2015 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere Eigenschaften

Mehr

Kapitel L:III. III. Prädikatenlogik

Kapitel L:III. III. Prädikatenlogik Kapitel L:III III. Prädikatenlogik Syntax der Prädikatenlogik Semantik der Prädikatenlogik Wichtige Äquivalenzen Einfache Normalformen Substitution Skolem-Normalformen Standard-Erfüllbarkeit Prädikatenlogische

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 2 28.04.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Termine Donnerstags: 30.04.2015 nicht

Mehr

Formale Systeme, WS 2013/2014. Lösungen zu Übungsblatt 5

Formale Systeme, WS 2013/2014. Lösungen zu Übungsblatt 5 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt Dr. V. Klebanov, Dr. M. Ulbrich, C. Scheben Formale Systeme, WS 2013/2014 Lösungen zu Übungsblatt 5 Dieses

Mehr

Prädikatenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe

Prädikatenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe Prädikatenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe 3 Teil 3: Modellierung und Beweise 4 Teil 4: Substitution, Unifikation und Resolution

Mehr

Logik Vorlesung 10: Herbrand-Theorie

Logik Vorlesung 10: Herbrand-Theorie Logik Vorlesung 10: Herbrand-Theorie Andreas Maletti 9. Januar 2015 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere Eigenschaften

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2016/2017 Aussagenlogik: Tableaukalku l KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Wissensbasierte Systeme 7. Prädikatenlogik

Wissensbasierte Systeme 7. Prädikatenlogik Wissensbasierte Systeme 7. Prädikatenlogik Syntax und Semantik, Normalformen, Herbrandexpansion Michael Beetz Plan-based Robot Control 1 Inhalt 7.1 Motivation 7.2 Syntax und Semantik 7.3 Normalformen 7.4

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 3 12.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Semantik Semantik geben bedeutet für logische Systeme,

Mehr

Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik

Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik Formale Grundlagen der Informatik 1 Kapitel 19 & Frank Heitmann heitmann@informatik.uni-hamburg.de 23. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/25 Motivation Die ist eine Erweiterung

Mehr

Logik Vorlesung 12: Unifikation und Resolution

Logik Vorlesung 12: Unifikation und Resolution Logik Vorlesung 12: Unifikation und Resolution Andreas Maletti 23. Januar 2015 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

7. Prädikatenlogik. Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit.

7. Prädikatenlogik. Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit. 7. Prädikatenlogik Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit. Aber: Aussagenlogik ist sehr beschränkt in der Ausdrucksmächtigkeit. Wissen kann nur

Mehr

Prüfungsprotokoll Kurs 1695 Deduktions- und Inferenzsysteme. Datum Beisitzer Steven Kutsch

Prüfungsprotokoll Kurs 1695 Deduktions- und Inferenzsysteme. Datum Beisitzer Steven Kutsch Prüfungsprotokoll Kurs 1695 Deduktions- und Inferenzsysteme Datum 04.05.2016 Prüfer C. Beierle Beisitzer Steven Kutsch Prof. Beierle geht an Hand eines Prüfungsplans die einzelnen Themen durch. Offenbar

Mehr

Tableaukalkül für Aussagenlogik

Tableaukalkül für Aussagenlogik Tableaukalkül für Aussagenlogik Tableau: Test einer Formel auf Widersprüchlichkeit Fallunterscheidung baumförmig organisiert Keine Normalisierung, d.h. alle Formeln sind erlaubt Struktur der Formel wird

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 7. Aussagenlogik Analytische Tableaus Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Tableaukalkül

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 4. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der Aussagenlogik:

Mehr

Beachte: Mit n = 0 sind auch Konstanten Terme.

Beachte: Mit n = 0 sind auch Konstanten Terme. Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 4.2 Prädikatenlogik ohne Gleichheit Syntax und Semantik 107 Terme Ab sofort wird Signatur τ als festgelegt angenommen. Sei V = {x, y,...} Vorrat

Mehr

Grundlagen der Logik

Grundlagen der Logik Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl

Mehr

Widerspruchsbasiertes Kalkül. Präinterpretation. Variablenzuweisung. Interpretation

Widerspruchsbasiertes Kalkül. Präinterpretation. Variablenzuweisung. Interpretation Widerspruchsbasiertes Kalkül Ziel: Zeige dass gilt: x 1 x s (B 1 B n ) Mittel: Negiere so dass: B 1 B n Resultate: Widerspruch Variablenbindungen [y/5.6.17.22.nil] für sort(17.22.6.5.nil,y) Präinterpretation

Mehr

Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Winter-Semester 2003/04. Wissensrepräsentation: Resolution (im PK1)

Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Winter-Semester 2003/04. Wissensrepräsentation: Resolution (im PK1) Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Wissensrepräsentation: Resolution (im PK1) 2. Resolution Vorbild für Formalismus : exakt, präzise, (theoretisch) beherrscht Aufbau: Zeichen

Mehr

Logik-Programme. Eine Tatsachenklausel ist eine einelementige positive Klausel, d.h. sie hat

Logik-Programme. Eine Tatsachenklausel ist eine einelementige positive Klausel, d.h. sie hat Logik-Programme Definition: Eine Tatsachenklausel ist eine einelementige positive Klausel, d.h. sie hat die Form {P }. Eine Prozedurklausel ist eine Klausel der Form {P, Q 1, Q 2,..., Q k } mit k 1. P

Mehr

Beweisen mit Semantischen Tableaux

Beweisen mit Semantischen Tableaux Beweisen mit Semantischen Tableaux Semantische Tableaux geben ein Beweisverfahren, mit dem ähnlich wie mit Resolution eine Formel dadurch bewiesen wird, dass ihre Negation als widersprüchlich abgeleitet

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 1 9.06.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Rückblick: Vor- und Nachteile von Aussagenlogik + Aussagenlogik

Mehr

Zusammenfassung des Bisherigen

Zusammenfassung des Bisherigen Zusammenfassung des Bisherigen Ziel ist die Ableitung von Gleichungen aus gegebenen Gleichungen Gilt eine Gleichung in der von den gegebenen Gleichungen definierten Theory? Beispiel: Ist eine bestimmte

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 1. Grundlegende Beweisstrategien: Noethersche Induktion 23.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letzte Vorlesung 1. Grundlegende

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 9. Prädikatenlogik Syntax und Semantik der Prädikatenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der

Mehr

Logik Grundvorlesung WS 17/18 Folien Teil 2: Prädikatenlogik

Logik Grundvorlesung WS 17/18 Folien Teil 2: Prädikatenlogik Logik Grundvorlesung WS 17/18 Folien Teil 2: Prädikatenlogik Gerhard Brewka Institut für Informatik Universität Leipzig brewka@informatik.uni-leipzig.de G. Brewka (Leipzig) WS 17/18 1 / 43 Motivation Aussagenlogik:

Mehr

Labor Compilerbau. Jan Hladik. Sommersemester DHBW Stuttgart. Jan Hladik (DHBW Stuttgart) Labor Compilerbau Sommersemester / 20

Labor Compilerbau. Jan Hladik. Sommersemester DHBW Stuttgart. Jan Hladik (DHBW Stuttgart) Labor Compilerbau Sommersemester / 20 Labor Compilerbau Jan Hladik DHBW Stuttgart Sommersemester 2017 Jan Hladik (DHBW Stuttgart) Labor Compilerbau Sommersemester 2017 1 / 20 Resolution in der Prädikatenlogik testet Erfüllbarkeit (indirekt

Mehr

Klausur Formale Systeme Fakultät für Informatik 2. Klausur zum WS 2010/2011

Klausur Formale Systeme Fakultät für Informatik 2. Klausur zum WS 2010/2011 Fakultät für Informatik 2. Klausur zum WS 2010/2011 Prof. Dr. Bernhard Beckert 08. April 2011 Vorname: Matrikel-Nr.: Platz: Klausur-ID: **Platz** **Id** Die Bearbeitungszeit beträgt 60 Minuten. A1 (17)

Mehr

Übersicht. 9. Schließen in der Prädikatenlogik 1. Stufe

Übersicht. 9. Schließen in der Prädikatenlogik 1. Stufe Übersicht I Künstliche Intelligenz II Problemlösen III Wissen und Schlußfolgern 6. Logisch schließende Agenten 7. Prädikatenlogik 1. Stufe 8. Entwicklung einer Wissensbasis 9. Schließen in der Prädikatenlogik

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 3. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.16 Syntax der Aussagenlogik:

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 1 25.04.2017 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Grundlegende Beweisstrategien Induktion über

Mehr

Formale Grundlagen der Informatik 1 Kapitel 17. Syntax & Semantik

Formale Grundlagen der Informatik 1 Kapitel 17. Syntax & Semantik Formale Grundlagen der Informatik 1 Kapitel 17 & Frank Heitmann heitmann@informatik.uni-hamburg.de 6. & 7. Juni 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/43 Motivation Die ist eine Erweiterung

Mehr

Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren:

Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren: Resolutionskalkül Ein Kalkül ist eine Kollektion von syntaktischen Umformungsregeln, die unter gegebenen Voraussetzungen aus bereits vorhandenen Formeln neue Formeln erzeugen. Der Resolutionskalkül besteht

Mehr

Die Prädikatenlogik erster Stufe: Syntax und Semantik

Die Prädikatenlogik erster Stufe: Syntax und Semantik Die Prädikatenlogik erster Stufe: Syntax und Semantik 1 Mathematische Strukturen und deren Typen Definition 1.1 Eine Struktur A ist ein 4-Tupel A = (A; (R A i i I); (f A j j J); (c A k k K)) wobei I, J,

Mehr

f(1, 1) = 1, f(x, y) = 0 sonst üblicherweise Konjunktion, manchmal auch

f(1, 1) = 1, f(x, y) = 0 sonst üblicherweise Konjunktion, manchmal auch Belegungen, Wahrheitsfunktionen 1. Wie viele binäre Funktionen gibt es auf der Menge {0, 1} (d.h., Funktionen von {0, 1} 2 nach {0, 1})? Geben Sie alle diese Funktionen an, und finden Sie sinnvolle Namen

Mehr

Prädikatenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe

Prädikatenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe Prädikatenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe 3 Teil 3: Modellierung und Beweise 4 Teil 4: Substitution, Unifikation und Resolution

Mehr

Problem der Resolution: Kombinatorische Explosion Ziel: Einschränkung der Möglichkeiten

Problem der Resolution: Kombinatorische Explosion Ziel: Einschränkung der Möglichkeiten 2.6 Verfeinerung der Resolution Problem der Resolution: Kombinatorische Explosion Ziel: Einschränkung der Möglichkeiten Resolutions-Strategien: heuristische Regeln für die Auswahl der Resolventen Resolutions-Restriktionen:

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 9. Prädikatenlogik Syntax und Semantik der Prädikatenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der

Mehr

Aussagenlogische Kalküle

Aussagenlogische Kalküle Aussagenlogische Kalküle Ziel: mit Hilfe von schematischen Regeln sollen alle aus einer Formel logisch folgerbaren Formeln durch (prinzipiell syntaktische) Umformungen abgeleitet werden können. Derartige

Mehr

Semantik und Korrektheit von Prolog-Programmen im Naproche-Projekt

Semantik und Korrektheit von Prolog-Programmen im Naproche-Projekt Diplomarbeit Semantik und Korrektheit von Prolog-Programmen im Naproche-Projekt Angefertigt am Mathematischen Institut Vorgelegt der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität

Mehr

Logik Vorlesung 8: Modelle und Äquivalenz

Logik Vorlesung 8: Modelle und Äquivalenz Logik Vorlesung 8: Modelle und Äquivalenz Andreas Maletti 12. Dezember 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere

Mehr

5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation

5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation Theorie der Informatik 9. März 2015 5. Aussagenlogik III Theorie der Informatik 5. Aussagenlogik III 5.1 Inferenz Malte Helmert Gabriele Röger 5.2 Resolutionskalkül Universität Basel 9. März 2015 5.3 Zusammenfassung

Mehr

Fundamentale Sätze. versuche folgendes: gib eine Formelmenge Φ an, so dass Mod(Φ) = {(N, +, )}

Fundamentale Sätze. versuche folgendes: gib eine Formelmenge Φ an, so dass Mod(Φ) = {(N, +, )} Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 4.7 Prädikatenlogik Fundamentale Sätze 171 Fundamentale Sätze versuche folgendes: gib eine Formelmenge Φ an, so dass Mod(Φ) = {(R, +, )} gib

Mehr

Terme. Dann ist auch f(t 1. Terme. Dann ist P (t 1

Terme. Dann ist auch f(t 1. Terme. Dann ist P (t 1 Prädikatenlogik 1. Syntax und Semantik Man kann die Prädikatenlogik unter einem syntaktischen und einem semantischen Gesichtspunkt sehen. Bei der Behandlung syntaktischer Aspekte macht man sich Gedanken

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 17. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel

Motivation. Formale Grundlagen der Informatik 1 Kapitel 17. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel Motivation Formale Grundlagen der Informatik 1 Kapitel 17 & Frank Heitmann heitmann@informatik.uni-hamburg.de 6. & 7. Juni 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/43 Die ist eine Erweiterung

Mehr

SWP Logische Programme Teil 2

SWP Logische Programme Teil 2 SWP Logische Programme Teil 2 Bernhard Aichernig Institut für Softwaretechnologie aichernig@ist.tugraz.at Institute for Software Technology Inhalt! Motivation! Logische Programme (LP)! Resolution! Unifikation!

Mehr

Formale Systeme. Prädikatenlogik 2. Stufe. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Prädikatenlogik 2. Stufe. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Logik für Informatiker

Logik für Informatiker Martin Kreuzer Stefan Kühling Logik für Informatiker Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Mexico City Sydney a part of Pearson plc worldwide 4 PRÄDIKATENLOGIK

Mehr

Deklarative Semantik

Deklarative Semantik 7. Deklarative Semantik 7-1 Deklarative Semantik Bisher: Prolog als Programmiersprache. Operationale Semantik : Wie wird ein Programm ausgeführt? Welche Antworten werden berechnet? Jetzt: Prolog als logischer

Mehr

Grundlagen der Logischen Programmierung

Grundlagen der Logischen Programmierung Grundlagen der Logischen Programmierung Udo Hebisch WS 2017/18 Dieses Skript enthält nur den roten Faden der Vorlesung. Wesentliche Inhalte werden ausschließlich in der Vorlesung vermittelt. Daher ist

Mehr

Resolution (Motivation) Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Resolution (Idee) Resolution (Idee)

Resolution (Motivation) Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Resolution (Idee) Resolution (Idee) (Motivation) Vorlesung Logik Sommersemester 0 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Wir benötigen Algorithmen für Erfüllbarkeitstests, die zumindest in vielen Fällen gutartiges

Mehr