J Quadratwurzeln Reelle Zahlen

Ähnliche Dokumente
Reelle Zahlen (R)

a heißt Radikand Das (Quadrat-)Wurzelziehen ist die Umkehrung des Quadrierens. Das Quadrieren ist die Umkehrung des (Quadrat-)Wurzelziehens.

2.2 Quadratwurzeln. e) f) 8

1.Rationale und irrationale Zahlen. Quadratwurzel.

Mathematik Quadratwurzel und reelle Zahlen

Demo-Text für Quadratwurzeln ALGEBRA. Teil 1. Einführung und Grundeigenschaften. (Klasse 8 / 9) Friedrich W.

1 Quadratwurzeln 14 2 Reelle Zahlen 16 3 Wurzelziehen und Quadrieren 18 4 Umformen von Wurzeltermen 20

Schritt 1: Bedeutung rationale bzw. irrationale Zahl klären

Ein rechteckiger Garten hat die Seitenlängen a = 55,0 m und b = 42,0 m.

Über das Rechteck weißt du, dass der Umfang 32 cm beträgt. Die Formel für den Umfang eines Rechtecks lautet 2 2.

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN

Zahlen und Funktionen

4 Wurzeln, Dezimalzahlen und eine neue Menge die reellen Zahlen

n: Exponent (= Hochzahl. Zeigt an, wie oft die Basis mit sich selber multipliziert wird.)

M 9.1. Quadratwurzeln. Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: Carina Mittermayer (2010)

M 9.1. Quadratwurzeln. Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: Carina Mittermayer (2010)

2 Reelle Zahlen Am Ende dieses Kapitels hast du gelernt,

Grundwissen 9. Klasse. Mathematik

Basisaufgaben. Aufgabe 2 Berechne soweit möglich. Begründe jeweils, wenn du dies nicht für möglich hältst. a b c.

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

Einführung der Quadratwurzel

Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium

DOWNLOAD. Wurzeln. Quadratwurzeln, Wurzelgesetze, Wurzelziehen. Michael Körner. Downloadauszug aus dem Originaltitel: Grundwissen Wurzeln und Potenzen

Test 1 zu Kapitel 1 bis 7 (Wurzelfunktionen und Quadratische Funktionen) 64 Test 2 zu Kapitel 8 bis 13 (Anwendungen quadratischer Gleichungen und

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

Wurzelgleichungen. 1.1 Was ist eine Wurzelgleichung? 1.2 Lösen einer Wurzelgleichung. 1.3 Zuerst die Wurzel isolieren

Einführung und Grundeigenschaften (Klasse 8 / 9)

Quadratwurzeln. Reelle Zahlen

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand:

Jahresplanung. Seitentitel/ Schularbeit

Michael Körner. Grundwissen Wurzeln und Potenzen Klasse VORSCHAU. Bergedorfer Kopiervorlagen. zur Vollversion

QUADRATWURZELN FRANZ LEMMERMEYER

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 4. Semester ARBEITSBLATT 5 WURZELGLEICHUNGEN

Tandembogen und Irrgarten eine Einführung der irrationalen Zahlen. Irmgard Letzner, Berlin. M 1 Die rationalen Zahlen Brüche würfeln und berechnen

1.2 Mengenlehre-Einführung in die reellen Zahlen

Die Kanten der Grundfläche mit je 7 cm sind die Katheten a und b des rechtwinkligen Dreiecks, die Hypotenuse c ist die gesuchte Bodendiagonale c.

Mathematik Klasse 8 Zusammenfassung

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE

1. die ganzen Zahlen, denn 7= 1. a ist diejenige nicht negative Zahl, die quadriert a ergibt: 16 = 4; 0 = = 36 = 25 = e) Grundwissen 9.

1 Mein Wissen aus der 3. Klasse

1.8 Mengenlehre-Einführung in die reellen Zahlen

Mathematik-Dossier Potenzen und Wurzeln Stoffsicherung und repetition.

1 Mengen und Mengenoperationen

1 x. Eine kurze Erinnerung an die Definition der Betragsfunktion:

1.2 Mengenlehre I-Einführung in die reellen Zahlen

Wiederholung der Algebra Klassen 7-10

Wurzelgleichungen. W. Kippels 16. August 2014

Curriculare Analyse. Beispiel Reelle Zahlen. H. Buck, 2009

Gott hat für kleine Mädchen die Barbie Puppe erfunden und für Realschüler die Bruchgleichungen. Vielen Dank, lieber Gott.

Stichwortverzeichnis. Symbole. Stichwortverzeichnis

4 x

Mathe Leuchtturm Übungsleuchtturm 5.Kl.

1. Binomische Formel. Hilfe 1.1. Seite Binomische Formel: (a + b)² = a² + 2ab + b²= a a + 2 a b + b b

Quadratische Gleichungen

Unterrichtsinhalte in der Jahrgangsstufe 5 Seite 1

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Klett Ich kann Mathe: Brüche und Dezimalzahlen 5./6.

Potenzen, Wurzeln, Logarithmen

perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche StrandMathe GbR

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Grundwissen Mathematik - Wurzeln und Potenzen

1.9 Ungleichungen (Thema aus dem Gebiet Algebra)

1 Intervallschachtelung von Quadratwurzeln Umformen von Quadratwurzeln Wurzelgleichungen... 18

4 Wurzeln, Dezimalzahlen und schon wieder eine neue Menge Die reellen Zahlen

Quadratische Gleichungen

Quadratische Gleichungen

Reelle Zahlen, Termumformungen, Gleichungen und Ungleichungen

Die Formelsammlung: Meine Mathematische Werkzeugkiste Formel, Skizze BESCHREIBUNG ergibt Beispiel(e) Alle Summanden addieren bestimmt den... einer...

45 = 9; beides sind natürliche Zahlen) 5 = -4

Terme und Gleichungen

Reelle Zahlen Potenzen mit negativen Exponenten

( 3) = Sektor. Mittelpunktswinkel. Brüche. Begriffe Zähler. Welcher Teil des Ganzen ist dunkel gefärbt? Bruch = Nenner

Kompetenzraster Mathematik 8

Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2

SCHULINTERNES CURRICULUM MATHEMATIK 2016 Seite 1 von 5

Einfache quadratische Funktionen und Gleichungen. x y Wertetabelle. y-achse

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen.

7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen

Formelsammlung Mathematik 9

QUADRATISCHE GLEICHUNGENN

Zahlen 25 = = 0.08

MATHEMAT IK 4. Kompetent AUFSTEIGEN. Kompetenzen erwerben und festigen Bildungsstandards erreichen. Kompetenzorientiert Bildungsstandards

AG 2.1 Einfache Terme und Formeln aufstellen, umformen und im Kontext deuten können

Quadratische Gleichungen

Schulcurriculum (1/4 der Jahresstunden)

DOWNLOAD VORSCHAU. Vertretungsstunden Mathematik 24. zur Vollversion. 9. Klasse: Quadratische Gleichungen. Vertretungsstunden Mathematik 9./10.

Klassenarbeit Quadratische Funktionen

Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Wiederholung von Äquivalenzumformungen (Lösen von Ungleichungen):

Funktionen Lineare Zuordnungen mit eigenen Worten in Wertetabellen, Graphen und in Termen darstellen und zwischen diesen Darstellungen wechseln.

1 Zahlen. 1.1 Die Quadratwurzel. 1.2 Rechnen mit Quadratwurzeln. Grundwissen Mathematik 9

Quadratische Gleichungen

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele.

Marco Bettner/Erik Dinges Vertretungsstunden Mathematik Klasse: Quadratische Gleichungen Marco Bettner/Erik Dinges Unterrichtsideen

Wurzelgleichungen. W. Kippels 26. Oktober Inhaltsverzeichnis. 1 Vorwort 3. 2 Grundlagen 4

Grundlage ist das Lehrbuch Fundamente der Mathematik, Cornelsen Verlag, ISBN

Terme und Aussagen und

Quadratische Gleichungen Teil 1. Nach diesem reichhaltigen Übungsmaterial sollte man fit sein. Wenig Theorie und viel Training. Datei Nr.

2018, MNZ. Jürgen Schmidt. Vorkurs. Mathematik RECHNEN. Tag. Wintersemester 2018/19

Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt.

Lösen von quadratischen Gleichungen mit der pq-formel. Aufgabe & Lösung Erläuterungen

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe

Mathematik. für das Ingenieurstudium. 1 Grundlagen. Jürgen Koch Martin Stämpfle.

Transkript:

J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen 1 Quadratwurzeln Ein Quadrat habe einen Flächeninhalt von 64 cm. Will man wissen, wie lang die Seiten des Quadrates sind, so muss man herausfinden, welche positive Zahl mit sich selbst multipliziert das Ergebnis 64 liefert. Es ist die Zahl 8, denn 8 8 = 64. Man schreibt hierfür auch Ï 64 = 8 (lies: Die Wurzel aus 64 ist 8. ). Das Quadrat hat also die Seitenlänge 8 cm. Ganz allgemein gilt: Diejenige nicht negative Zahl, die mit sich selbst multipliziert a ergibt, heißt Quadratwurzel aus a (Wurzel aus a). Man schreibt hierfür Ï a. Die nichtnegative Zahl a heißt Radikand. Merke: Für a $ 0 ist Ï a $ 0 und Ï a Ï a = a. Beispiele a) Ï 5 = 5, denn 5 5 = 5 und 5 $ 0. b) Ï,5 = 1,5, denn 1,5 1,5 =,5 und 1,5 $ 0. Ï 9 4 = 3, denn 3 3 = 9 4 und 3 $ 0. d) ( ) ( ) = 4, aber Ï 4 Þ, denn Wurzeln sind nie negativ. e) Ï 5 ist nicht definiert, denn der Radikand darf nicht negativ sein. f) Ï 5 können wir nur näherungsweise ermitteln. Wir geben beim Taschenrechner BÁ ein und erhalten den Näherungswert,3606798. 1. Ermittle die Quadratwurzel ohne Hilfe eines Taschenrechners. a) Ï 9 b) Ï 4 Ï 100 d) Ï 144 e) Ï 49 f) Ï 1 g) Ï 81 h) Ï 169. a) Ï 4 9 b) Ï 16 5 Ï 1 36 d) Ï 11 5 3. Gib ohne TR an, zwischen welchen beiden natürlichen Zahlen die Quadratwurzel liegt. Bestimme anschließend mit Hilfe des TR einen auf fünf Dezimalen gerundeten Näherungswert für die Quadratwurzel. a) Ï 10 b) Ï 0 Ï 70 d) Ï 180 80

1 Quadratwurzeln 4. a) Berechne. Du darfst auch einen TR benutzen. Ï 400 = Ï 4 = Ï 0,04 = Ï 0,0004 = Ï 0,0144 = Ï 1,44 = Ï 144 = Ï 14 400 = b) Ergänze: Verschiebt man das Komma beim Radikanden um zwei, vier, sechs, Stellen nach rechts bzw. links, so 5. Berechne ohne TR. Nutze die Erkenntnisse aus Aufgabe 4. a) Ï 9 = Ï 900 = Ï 0,09 = Ï 0,0009 = b) Ï 196 = Ï 1,96 = Ï 19 600 = Ï 0,0196 = 6. Eine 18 m langes und 3 m breites rechteckiges Grundstück soll gegen ein quadratisches Grundstück mit gleichem Flächeninhalt getauscht werden. 7. Berechne im Kopf. a) Ï 0 b) Ï 10 6 Ï Ï 16 d) Ï 4 Ï 81 8. Ein Würfel hat einen Oberflächeninhalt von 384 cm (13,5 m ). Berechne sein Volumen. 9. Zwei Quadrate mit je 1 cm Seitenlänge werden entlang einer Diagonale halbiert. Die vier entstehenden Dreiecke werden dann zu einem neuen Quadrat zusammengesetzt. Begründe, dass das neue Quadrat eine Seitenlänge von Ï cm besitzt. 1 cm 1 cm 1 cm cm 10. Die Zeichnung zeigt ein Quadrat mit der Seitenlänge cm. Welche Zahl wird durch die gezeigte Vorgehensweise auf der Zahlengeraden markiert? Begründe. 0 1 3 81

J Quadratwurzeln Reelle Zahlen Reelle Zahlen Alle rationalen Zahlen können als Brüche dargestellt werden, wobei Zähler und Nenner ganze Zahlen sind. Der Nenner darf jedoch nicht Null sein. Gibt man rationale Zahlen als Dezimalzahlen an, so gibt es drei mögliche Fälle, wie die folgenden Beispiele zeigen: 11 = 1,375 ist eine abbrechende Dezimalzahl. 8 3 = 0,6666 = 0, 6 ist eine reinperiodische Dezimalzahl. 7 1 = 0,583333 = 0,58 3 ist eine gemischt-periodische Dezimalzahl. Ï ; Ï 3 ; Ï 5 ; Ï 6 sind Beispiele für Zahlen, die man nicht als gewöhnliche Brüche darstellen kann. Man nennt solche Zahlen irrationale Zahlen. Schreibt man eine irrationale Zahl als Dezimalzahl, so ist diese weder abbrechend noch periodisch und besitzt unendlich viele Dezimalen. Die Menge Q der rationalen Zahlen und die Menge I der irrationalen Zahlen ergeben zusammen die Menge R der reellen Zahlen. Q I R Beispiel 1 a) Ï 8 ist eine irrationale Zahl und kann nicht als gewöhnlicher Bruch dargestellt werden. Mit dem TR erhält man Ï 8 =,884715 b) Ï 9 ist keine irrationale Zahl, sondern eine rationale Zahl, denn es ist Ï 9 = 3 = 3 1. Ï ist eine irrationale Zahl, denn Ï = 1 Ï, und da man Ï nicht als gewöhnlichen Bruch darstellen kann, kann mann auch 1 Ï = Ï nicht als gewöhnlichen Bruch darstellen. 11. Gib drei irrationale Zahlen zwischen 1 und 10 an. 1. a) Ordne zu: Ï 7 ; Ï 5 ; Ï 36 ;,3478; 3,1010010001 ; 4,578 3 rationale Zahlen: irrationale Zahlen: b) Ordne die Zahlen nun der Größe nach. 8

Reelle Zahlen Eine Quadratwurzel, z. B. Ï 6, kann näherungsweise durch eine Intervall - schach telung bestimmt werden, indem man schrittweise immer kleinere Intervalle angibt, in denen Ï 6 liegt. Die folgende Tabelle zeigt ein Beispiel hierfür. Beispiel linke Intervallgrenze rechte Intervallgrenze Begründung 3 < Ï 6 < 3, denn < 6 < 3,4,5,4 < Ï 6 <,5, denn,4 < 6 <,5,44,45,44 < Ï 6 <,45, denn,44 < 6 <,45,449,450,449 < Ï 6 <,450, denn,449 < 6 <,450,4494,4495,4494 < Ï 6 <,4495, denn,4494 < 6 <,4495,44948,44949,44948 < Ï 6 <,44949, denn,44948 < 6 <,44949 Mit diesen Ergebnissen können wir sicher sein, dass Ï 6 mit der Ziffernfolge,44948 beginnt, und wir können runden: Ï 6 <,4495. 13. Gib nach dem oben gezeigten Beispiel eine Intervallschachtelung für Ï 1 an. Führe sie so weit aus, bis du auf drei Dezimalen runden kannst. linke Intervallgrenze rechte Intervallgrenze Begründung 3 4 3 < Ï 1 < 4, denn 14. Beurteile die folgenden Aussagen. a) Zwischen zwei reellen Zahlen gibt es immer weitere reelle Zahlen. b) Die Null ist keine reelle Zahl. Das Produkt zweier irrationalen Zahlen ist wieder eine irrationale Zahl. d) Die Summe aus einer rationalen und einer irrationale Zahl ist irrational. 83

J Quadratwurzeln Reelle Zahlen 3 Wurzelziehen und Quadrieren Beim Quadrieren wird eine Zahl mit sich selbst multilpiziert. Jede reelle Zahl kann quadriert werden, das Ergebnis ist stets nicht negativ. Quadrieren Quadrieren Wurzelziehen 5 5 4 16 +4 Wurzelziehen Das Wurzelziehen kann man nur mit nicht negativen reellen Zahlen durchführen. Das Ergebnis ist wieder nicht negativ. Ist die Ausgangszahl nicht negativ, z. B. 5, so wird das Quadrieren der Zahl durch das Wurzelziehen rückgängig gemacht. Man sagt für diesen Fall auch: Das Wurzelziehen ist die Umkehrung des Quadrierens. Ist die Ausgangszahl hingegen negativ, z. B. 4, so ist das Wurzelziehen nicht die Umkehrung des Quadrierens. Allgemein gilt also: Ï a = a, falls a $ 0 oder in Kurzform: Ï a = a. a, falls a < 0 Beispiel 1 a) Ï 4 = Ï 16 = 4 b) Ï 16 existiert nicht, denn 16 < 0 Ï ( 5) = Ï 5 = 5 d) Ï 5 existiert nicht, denn 5 = 5 Beispiel a) Ï 1,75 = 1,75 b) Ï ( 3,18) = 3,18 Ï ( ) 4 = Ï 16 = 4 15. Setze eines der Zeichen = oder Þ passend ein. Es sei x Þ 0. a) ( 4) 4 b) 3 3 ( ) 8 8 d) ( x) x e) x x f) ( x) 6 x 6 16. Berechne im Kopf. a) Ï ( 7) b) Ï,5 Ï ( 1) 4 d) Ï ( 3) 4 e) Ï 16 f) Ï ( 10) 6 84

3 Wurzelziehen und Quadrieren Die Gleichung x = 4 hat zwei verschiedene Lösungen, nämlich und ( ), denn = 4 und ebenso ( ) ( ) = 4. Es ist also L = { ;. Auch die Gleichung x = hat zwei Lösungen. Sie lauten Ï und Ï, denn Ï Ï = und 1 Ï 1 Ï =. Es ist L = 5 Ï ; Ï 6. Die Gleichung x = 0 hat nur eine Lösung, nämlich 0. Es ist L = {0. Die Gleichung x = 4 hingegen hat keine Lösung, denn keine reelle Zahl ergibt quadriert die Zahl 4. Es ist also L = {. Ganz allgemein gilt: Die Gleichung x = a hat (1) die beiden Lösungen Ï a und Ï a, falls a > 0, () die Lösung 0, falls a = 0 und (3) keine Lösung, falls a < 0. a) Die Gleichung x = 5 hat die Lösungen Ï 5 und Ï 5, es ist L = 5 Ï 5 ; Ï 5 6. b) Die Gleichung x 3 = 0 formen wir zunächst um zu x = 3. Nun können wir die Lösungsmenge ablesen: L = 5 Ï 3 ; Ï 3 6. Die Gleichung x + 9 = 0 formen wir zunächst um zu x = 9. Nun erkennen wir, dass diese Gleichung keine Lösung hat; es ist L = {. Der Wurzelterm Ï x + 8 ist für solche Zahlen x definiert, für die sein Radikand x + 8 nicht negativ ist, also für alle Lösungen der Ungleichung x + 8 $ 0. Durch Äquivalenzumformungen erhalten wir x $ 4. Die Definitionsmenge D des Wurzelterms lautet also D = {x * R x $ 4. Beispiel 3 Beispiel 4 17. Bestimme die Lösungsmenge ohne TR. a) x = 81 b) x = 1 x = 100 d) x 5 = 0 e) x = ( 4) f) x = 7 g) x 34 = 0 h) 7 3x = 0 18. a) x = 0 b) x = 5 49 x = Ï 5 d) 3u 18 = u 19. Bestimme die Definitionsmenge des Wurzelterms. a) Ï x + 5 b) Ï 6 x Ï x + 1 d) Ï Ï x 0. Welche reellen Zahlen lösen die folgenden Gleichungen? a) Ï x = x b) Ï x = x Ï ( x) = x d) Ï ( x) = x 85

J Quadratwurzeln Reelle Zahlen 4 Umformen von Wurzeltermen Alle Gesetze, die du für das Rechnen mit rationalen Zahlen kennen gelernt hast, gelten auch für reelle Zahlen. Zusätzlich gibt es spezielle Gesetze für das Rechnen mit Wurzeln bzw. Wurzeltermen. Für alle folgenden Umformungen gilt: Die Radikanden dürfen nie negativ sein. Durch Null darf man nicht teilen. Wird durch eine Wurzel geteilt, so muss deren Radikand positiv sein. (W1) Ï a Ï b = Ï a b (W) Ï a : Ï b = Ï a = Ï b Ï a b (W3) Ï a = a = 1 Ï a Beispiel 1 Beispiel Anwendung der Gesetze W1 bis W3 a) Ï 3 Ï 1 = Ï 3 1 = Ï 36 = 6 b) Ï 75 : Ï 3 = Ï 75 3 = Ï 5 = 5 Ï 3 Ï 4 Ï 8 = Ï 3 4 = Ï 9 = 3 d) 8 Ï ( 3) Ï 3 = 3 = 3 3 3 = 1 Teilweises Wurzelziehen: Zerlege den Radikanden so in ein Produkt, dass einer der beiden Faktoren eine möglichst große Quadratzahl ergibt. a) Ï 50 = Ï 5 = Ï 5 Ï = 5 Ï b) Ï 48 = Ï 16 3 = Ï 16 Ï 3 = 4 Ï 3 1. Vereinfache mithilfe der Gesetze (W1) bis (W3). a) Ï Ï 3 b) Ï 8 Ï Ï 0,5 Ï 8 d) Ï 40 Ï 10 e) Ï 0 Ï 11 f) Ï 8 Ï 18 g) Ï 3 Ï 3 8 h) Ï 7 0 Ï 3 5. a) Ï 18 : Ï b) Ï 15 : Ï 5 Ï : Ï 0,5 d) Ï 7 Ï 3 3. a) Ï 18 Ï Ï 75 Ï 3 b) Ï 40 Ï,5 Ï 1 3 Ï 15 Ï 5 d) Ï ( ) ( 18) 4. Vereinfache durch teilweises Wurzelziehen. a) Ï 8 b) Ï 300 Ï 7 d) Ï 1a e) Ï 5 9 f) Ï 98 g) Ï 3 9 h) Ï 43 86

4 Umformen von Wurzeltermen Einen positiven Vorfaktor unter die Wurzel bringen: Schreibe den positiven Vorfaktor v als die Wurzel Ï v und wende dann das Gesetz (W1) an. Beispiel 3 a) Ï 5 = Ï 4 Ï 5 = Ï 0 b) v Ï = Ï v Ï = Ï v Wurzelterme ausmultiplizieren und ausklammern Beispiel 4 a) 1 Ï + Ï 8 Ï = Ï Ï + Ï 8 Ï = + Ï 16 = + 4 = 6 b) 1 Ï 3 Ï 1 = 1 Ï 3 Ï 3 Ï 1 + 1 Ï 1 = 3 Ï 36 + 1 = 3 5 Ï + Ï 8 = 5 Ï + Ï 4 = 5 Ï + Ï = (5 + ) Ï = 7 Ï Einen Nenner rational machen: Erweitere den Bruch mit dem Wurzelterm, der im Nenner steht, und vereinfache Nenner und Zähler anschließend. Beispiel 5 a) 5 Ï 3 = 5 Ï 3 Ï 3 Ï 3 = 5 Ï 3 3 b) a Ï b = a Ï b Ï b Ï b = a Ï b b 5. Bringe den Vorfaktor unter die Wurzel. a) Ï 7 b) 0,5 Ï 0 6. Multipliziere aus und vereinfache. 3 Ï 7 d) b Ï a b a) Ï 3 1 Ï 1 + Ï 7 b) 1 Ï 5 + Ï 0 Ï 5 1 + Ï 5 Ï 80 7. Wende die binomischen Formeln an. a) 1 Ï + Ï 3 b) 1 Ï 0 Ï 5 1 Ï 7 + 1 Ï 7 8. Beseitige die Wurzelterme im Nenner. a) 3 Ï 5 b) 4 Ï 11 Ï 3 d) 1 Ï a e) 5 Ï 5 f) 1 Ï 3 Tipp zu f): Erweitere mit + Ï 3 und wende die 3. binomische Formel an. 9. Begründe mithilfe der Gesetze (W1) bis (W3) folgende Umformungen. a) Ï a b = a Ï b b) Ï a b = Ï b d) Ï a b 4 = a b e) 1 Ï 1 Ï = 1 a Ï a b = a Ï b f) Ï a + a + 1 = a + 1 87