1 Quadratwurzeln 14 2 Reelle Zahlen 16 3 Wurzelziehen und Quadrieren 18 4 Umformen von Wurzeltermen 20

Ähnliche Dokumente
J Quadratwurzeln Reelle Zahlen

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

Reelle Zahlen (R)

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

Quadratwurzeln. Reelle Zahlen

2. Die Satzgruppe des Pythagoras

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand:

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE

Mathematik Klasse 8 Zusammenfassung

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

Test 1 zu Kapitel 1 bis 7 (Wurzelfunktionen und Quadratische Funktionen) 64 Test 2 zu Kapitel 8 bis 13 (Anwendungen quadratischer Gleichungen und

Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2

1. die ganzen Zahlen, denn 7= 1. a ist diejenige nicht negative Zahl, die quadriert a ergibt: 16 = 4; 0 = = 36 = 25 = e) Grundwissen 9.

M 9.1. Quadratwurzeln. Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: Carina Mittermayer (2010)

M 9.1. Quadratwurzeln. Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: Carina Mittermayer (2010)

Klasse Mathematische Inhalte Kompetenzen Zeitvorgaben 5 1. Zahlen und Größen

1 Zahlen. 1.1 Die Quadratwurzel. 1.2 Rechnen mit Quadratwurzeln. Grundwissen Mathematik 9

Formelsammlung Mathematik 9

Rechnen mit Quadratwurzeln

Direkte Proportionalität

Direkte Proportionalität

Lineare Funktionen 1 Die Funktion x m x + c 14 2 Proportionale Funktionen 15 3 Geradengleichungen 16

Curriculum Mathematik

Direkte Proportionalität

Grundwissen 9. Klasse. Mathematik

Direkte Proportionalität

Curriculum Mathematik

@ GN GRUNDWISSEN MATHEMATIK. Inhalt... Seite

MARKGRAFEN. Lehrplan im Fach Mathematik, Klasse 8

Direkte Proportionalität

Grundwissen 9. Klasse

Unterrichtsinhalte in der Jahrgangsstufe 5 Seite 1

Die Kanten der Grundfläche mit je 7 cm sind die Katheten a und b des rechtwinkligen Dreiecks, die Hypotenuse c ist die gesuchte Bodendiagonale c.

Stoffverteilungsplan Mathematik 9 und 10 auf Grundlage der Rahmenpläne Schnittpunkt 9 und 10 Klettbuch

M 8.1. Direkte Proportionalität. Wann heißen zwei Größen (direkt) proportional? Ananas kosten. Bestimme den Proportionalitätsfaktor.

Themen des schulinternen Curriculums Mathematik

Schulcurriculum (1/4 der Jahresstunden)

M 8.1. Direkte Proportionalität. Wann heißen zwei Größen (direkt) proportional? M 8.2. Indirekte Proportionalität

Jahresplanung. Seitentitel/ Schularbeit

Heinrich-Mann-Gymnasium schulinterner Lehrplan Stand

Minimalziele Mathematik

Stichwortverzeichnis. Symbole. Stichwortverzeichnis

Stoffverteilungsplan Mathematik 9 auf der Grundlage des Lehrplans Schnittpunkt 9 Klettbuch

sfg Direkte Proportionalität Zwei einander zugeordnete Größen x und y sind (direkt) proportional, wenn

Direkte Proportionalität. Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn

2. Bereich der reellen Zahlen IR

Themen des schulinternen Curriculums Mathematik

Grundlagen für die Mittelstufe 7 1. SYMBOLE UND ZEICHEN DIE NATÜRLICHEN ZAHLEN N...19

Demo-Text für Quadratwurzeln ALGEBRA. Teil 1. Einführung und Grundeigenschaften. (Klasse 8 / 9) Friedrich W.

1. Funktionale Zusammenhänge

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240.

Zahlen. Bruchrechnung. Natürliche Zahlen

4 x

Grundwissen 9. Sabine Woellert

Stoffverteilungsplan Elemente der Mathematik 3 Baden-Württemberg ISBN

Andreas Gymnasium / SchiC / Teil C Fach: Mathematik 9 Stand: Monat/Jahr_Juni-2017_

Fach Mathematik. Themen und Inhalte der Jahrgangsstufe 5 am Gymnasium Laurentianum

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

1 Intervallschachtelung von Quadratwurzeln Umformen von Quadratwurzeln Wurzelgleichungen... 18

Mathematik für die Berufsfachschule II

8.1 Proportionalität. 8.2 Funktionen Proportionale Zuordnungen Funktion. P = x y ist der Vorrat von 6000g.

1 Zahlen. 1.1 Kürzen ( ) ( ) ( ) 1.2 Addieren und Subtrahieren. 1.3 Multiplizieren und Dividieren Beispiele: Grundwissen Mathematik 8

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9

a heißt Radikand Das (Quadrat-)Wurzelziehen ist die Umkehrung des Quadrierens. Das Quadrieren ist die Umkehrung des (Quadrat-)Wurzelziehens.

Definitions- und Formelübersicht Mathematik

Grundwissen Mathematik 9. Klasse

Mathematik. für das Ingenieurstudium. 1 Grundlagen. Jürgen Koch Martin Stämpfle.

Lösung Aufgabe P1: Abschlusspruefung Realschule Mathematik 2008 Loesung. 1 von Berechnung der Dreiecksseite :

Grundwissen. 8. Jahrgangsstufe. Mathematik

Über das Rechteck weißt du, dass der Umfang 32 cm beträgt. Die Formel für den Umfang eines Rechtecks lautet 2 2.

Grundwissen Mathematik Klasse 9

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN

Kompetenzraster Mathematik 8

Gymnasium Hilpoltstein Grundwissen 8. Jahrgangsstufe

1. Funktionen. 1.3 Steigung von Funktionsgraphen

Geschwister-Scholl-Gymnasium Unna Schulinterner Lehrplan Mathematik

Buch Medien / Zuordnung zu den Kompetenzbereichen Seite Methoden inhaltsbezogen prozessbezogen

Erftgymnasium der Stadt Bergheim Schulinternes Curriculum für das Fach Mathematik in der Sekundarstufe I

Digitaler Mathe-Adventskalender Lehrplan Mathematik. Sekundarstufe I. Geschwister-Scholl-Gymnasium Pulheim, August 2001.

1.Rationale und irrationale Zahlen. Quadratwurzel.

Inhaltsbezogene Mathematische Kompetenzen

perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche StrandMathe GbR

Duden WISSEN ÜBEN TESTEN. 9. Klasse. Mathematik. 4., aktualisierte Auflage. Dudenverlag Berlin

Stunden/Seiten Inhaltsbereiche gemäß Lehrplan Eigene Bemerkungen. Inhalte von Maßstab Band 9 ISBN:

Direkt und indirekt proportionale Größen

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen

Fachcurriculum. Mathematik Klassen 7 und 8

Gleichungsarten. Quadratische Gleichungen

Klasse 9+ (Mittelstufe Plus) Hinweise und Lösungen

Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium

Stoffverteilungsplan Mathematik 9 und 10 auf Grundlage der Rahmenpläne Schnittpunkt 9 und 10 Klettbuch

Umgekehrter Dreisatz Der umgekehrte Dreisatz ist ein Rechenverfahren, das man bei umgekehrt proportionalen Zuordnungen anwenden kann.

Schritt 1: Bedeutung rationale bzw. irrationale Zahl klären

Grundwissen Mathematik 9. Klasse

Kompetenzraster Mathematik 9

Inhalt. 1 Algebra-Wiederholung Funktionen Lineare Gleichungen, Ungleichungen und Gleichungssysteme... 23

Grundwissen 9. Klasse Mathematik

Transkript:

Inhalt A Grundlagen 6 1 Gleichungen und Ungleichungen 6 Bruchterme 7 3 Einfache Bruchgleichungen 8 4 Lineare Gleichungssysteme 9 5 Zinsen und Zinseszinsen 11 6 Wahrscheinlichkeiten 1 7 Umfang und Flächeninhalt des Kreises 13 B Quadratwurzeln Reelle Zahlen 14 1 Quadratwurzeln 14 Reelle Zahlen 16 3 Wurzelziehen und Quadrieren 18 4 Umformen von Wurzeltermen 0 C Quadratische Funktionen 1 Die Funktion f mit f(x) = ax und ihr Graph Die Funktionen f: x x + e und f: x (x d) 4 3 Die Scheitelpunktform f: x a(x d) + e 5 4 Binomische Formeln und quadratische Ergänzung 6 5 Die allgemeine quadratische Funktion 8 D Quadratische Gleichungen 30 1 Quadratische Gleichungen 30 Quadratische Gleichungen zeichnerisch lösen 31 3 Lösen mit quadratischer Ergänzung 3 4 Quadratische Gleichungen mit einer Lösungsformel lösen 34 5 Lösen von verwandten Gleichungen 36 6 Zerlegung in Linearfaktoren und der Satz von Vieta 38 7 Lösbarkeit quadratischer Gleichungen 39 8 Anwendungsaufgaben 40 E Zentrische Streckung und Ähnlichkeit 4 1 Zentrische Streckungen 4 Ähnliche Dreiecke 44 3 Ähnliche Vielecke 46 4 Strahlensätze 47 5 Vermischte Übungen 49 4

F Flächensätze am rechtwinkligen Dreieck 50 1 Der Satz des Pythagoras 50 Streckenlängen berechnen 5 3 Kathetensatz und Höhensatz 54 4 Anwendungen 56 G Trigonometrie am rechtwinkligen Dreieck 58 1 Winkelbeziehungen am rechtwinkligen Dreieck 58 Berechnungen am rechtwinkligen Dreieck 60 3 Beziehungen zwischen Sinus, Kosinus und Tangens 6 4 Die Sinusfunktion für alle Winkel 63 H Potenzen und Wurzeln 64 1 Potenzbegriff und Potenzgesetze 64 Normdarstellung von Zahlen 67 3 Wurzeln höheren Grades 68 4 Potenzen mit rationalen Exponenten 70 I Wahrscheinlichkeitsrechnung 7 1 Zufallsexperimente und Wahrscheinlichkeiten 7 Ereignisse und Summenregel 74 3 Mehrstufige Zufallsexperimente und Pfadregeln 76 4 Simulation von Zufallsexperimenten 79 J Raumgeometrie 80 1 Prismen 80 Oberflächeninhalt und Volumen von Prismen 8 3 Kreis und Kreisteile 84 4 Kreiszylinder 87 5 Pyramiden 88 6 Kreiskegel 90 7 Das Prinzip des Cavalieri 9 Lösungen 93 Mathematische Zeichen 149 Stichwortverzeichnis 150 5

A Grundlagen 1 Gleichungen und Ungleichungen Beim systematischen Lösen einer Gleichung oder Ungleichung werden Äquivalenzumformungen angewendet. Drei Schritte führen dabei zur Lösung: (1) Beide Seiten vereinfachen, () sortieren, (3) die Variable isolieren. Nicht immer ist eine Gleichung eindeutig lösbar. Lässt sich eine Gleichung durch Äquivalenzumformungen auf die Form 0 = 0 bringen, so sind alle Zahlen der Grundmenge Lösung der ursprünglichen Gleichung. Man nennt die Gleichung auch allgemein gültig. Ergibt sich dagegen durch Äquivalenzumformungen ein Widerspruch, wie z. B. 0 = 1, so hat die ursprüngliche Gleichung keine Lösung; man nennt sie dann unlösbar. Beispiel 1 Beispiel Löse in Q: (x + 4)(x 5) = x 5 (x + 4) (x 5) = x 5 Ausmultiplizieren, zusammenfassen x x 0 = x 5 x, danach + 0 x = 5 ( 1) x = 5 Probe: Setze in der Ausgangsgleichung für x die Zahl 5 ein: Linksterm = (5 + 4)(5 5) = 9 0 = 0; Rechtsterm = 5 5 = 0 Weil 0 = 0 wahr ist, löst 5 die Gleichung, also ist L = {5}. Löse in Z: 4x ( x) < 7 4x ( x) < 7 Minusklammer auflösen, zusammenfassen 6x < 7 +, danach : 6 x < 1,5 Stichprobe: Man ersetzt x durch 1: Linksterm = 4 1 ( 1) = 4 0 = 4 Weil 4 < 7 wahr ist, löst 1 die Ungleichung. Man ersetzt x durch : Linksterm = 4 ( ) = 8 + = 10 Weil 10 < 7 falsch ist, löst die Ungleichung nicht. 6

Bruchterme Terme, bei denen im Nenner eine Variable vorkommt, heißen Bruchterme. Die Terme 3 : x = 3 } x 4 + y oder (4 + y) : (3x ) = }}} sind Beispiele dafür. 3x Die Definitionsmenge D besteht aus allen Zahlen der Grundmenge, für die der Nenner des Bruchterms nicht 0 wird. Bruchterme kann man wie Brüche erweitern und kürzen. Erweitern heißt: Zähler und Nenner werden mit dem gleichen Term multipliziert. Kürzen heißt: Zähler und Nenner werden durch den gleichen Term dividiert. Bruchterme werden ähnlich wie Brüche addiert oder subtrahiert. Sind die Nennerterme gleich, so werden nur die Zählerterme addiert (subtrahiert) und der gemeinsame Nenner beibehalten. Sind die Nennerterme verschieden, musst du die Bruchterme zuerst auf den gleichen Nenner bringen, bevor du sie addieren (subtrahieren) kannst. Für die Multiplikation und Division von Bruchtermen gelten die gleichen Regeln wie für das Bruchrechnen. Achtung: Beim Umformen von Bruchtermen oder beim Rechnen mit Bruchtermen kann sich die Definitionsmenge ändern. Der alte und der neue Term sind nur für die Einsetzungen gleichwertig, für die beide Terme zugleich definiert sind. Erweitere den Bruchterm }} x 1 mit (x + 1). Bestimme die Definitionsmenge des x ursprünglichen und des neuen Bruchterms. Beispiel 1 Lösung (x 1) (x + 1) }}}}} = x 1 x }}}. Im ursprünglichen Bruchterm ist nur die Einsetzung x = 0 (x + 1) x 3 + x nicht erlaubt. Für den neuen Bruchterm aber gilt: D = Q { 1; 0}. x Vereinfache: 1 }}}} x + x + 1 }} x + 1 x 1 Beispiel x 1 }}}} x + x + 1 }} x + 1 (x + 1) (x 1) (x + 1) = }}}}}}}} = 1 (Erst binomische Formeln anwenden und x 1 (x + 1) (x 1) dann kürzen.) Bedingung: D = Q { 1; 1} 7

A Grundlagen 3 Einfache Bruchgleichungen Ein Gleichung wie }} x 1 } 1 x = } 1 nennt man Bruchgleichung, denn die Variable x kommt hier im Nenner vor. Am besten gehst du so vor: (1) Ermittle die Definitionsmenge D. () Ermittle für alle vorkommenden Nenner einen gemeinsamen Nenner GN. (3) Multipliziere beide Seiten der Gleichung mit GN und kürze möglichst weit. (4) Löse die so entstandene (bruchfreie) Gleichung. (5) Prüfe, welche der gefundenen Lösungen zur Definitionsmenge D der ursprünglichen Bruchgleichung gehören, und mache mit diesen die Probe. Beispiel }} x 1 } 1 x = } 1 ; D = Q\{0; 1} 6x GN: (x 1) 6x }} x 1 } 1 x = } 1 6x (x 1) 6x }} x 1 (x 1) 6x } 1 x (x 1) 6x = } 1 (x 1) 6x 6x 6x (x 1) 3 = (x 1) TU 9x + 3 = x 1 x 3 8x = 4 : 8 x = } 1 Zuerst bestimmen wir die Definitionsmenge. Da x ein Teiler von 6x ist, verwenden wir als gemeinsamen Nenner das Produkt (x 1) 6x und multiplizieren beide Seiten der Gleichung damit. Nun kürzen wir so weit wie möglich. Die neu entstandene Gleichung lösen wir wie üblich. Probe: }}} 1 } 1 1 }}} 1 } 1 0 1 }}} 6 1 } 1 } } 3 } 1 1 0 } 1 } 6 } 4 3 ( 1) 0 } 1 3 } 1 3 = } 1 3 (wahr) L = 5 1 } 6 Da die Zahl } 1 in D enthalten ist, kommt } 1 auch als Lösung der Bruchgleichung infrage. Wir machen deshalb die Probe. 8

4 Lineare Gleichungssysteme Werden zwei lineare Gleichungen mit zwei Variablen gleichzeitig betrachtet, so liegt ein lineares Gleichungssystem (LGS) mit zwei Variablen vor. Ein Zahlenpaar (x y) heißt Lösung des LGS, wenn es jede einzelne dieser Gleichungen erfüllt. Zeichnerische Lösung eines LGS in Q: Zeichne die zu den Gleichungen gehörenden Geraden in dasselbe Koordinatensystem. Schneiden sich die Geraden im Punkt (x y), so ist das Paar (x y) die einzige Lösung. Sind die Geraden identisch, so gibt es unendlich viele Lösungen. Sind sie parallel, so gibt es keine Lösung. Gegeben ist das Gleichungssystem (1) x y = 1 () x + 3y = 1 Zeichnerische Lösung Löse die Gleichungen (1) und () nach y auf. Du erhältst die Geradengleichungen g 1 : y = x 1 und g = } 3 x + 4. Zeichne g 1 und g in dasselbe Koordinatensystem. Die Geraden schneiden sich im Punkt S(3 ). Also löst das Zahlenpaar (3 ) das Gleichungssystem. Rechnerische Probe: (1) 3 = 1 (wahr) () 3 + 3 = 1 (wahr) Antwort: L = {3 } y 4 3 1 1 g s Beispiel 1 1 3 4 5 6 x g 1 Ein LGS aus zwei Gleichungen mit zwei Variablen kannst du auch durch Äquivalenzumformungen lösen. Dabei musst du entscheiden, ob du das Gleichsetzungsverfahren, das Einsetzungsverfahren oder das Additionsverfahren anwenden willst. Lösung mit dem Gleichsetzungsverfahren 1. Löse beide Gleichungen nach derselben Variablen auf.. Setze die beiden rechten Seiten gleich. 3. Löse die durch das Gleichsetzen entstandene Gleichung. 4. Setze die Lösung von Schritt 3 in Gleichung (1) oder () ein und bestimme den Wert der anderen Variablen. 5. Führe die Proben durch und gib die Lösungsmenge an. 9

A Grundlagen Beispiel Löse mit dem Gleichsetzungsverfahren: (1) x + 3y = 8,5 () x + y = 5 1. Löse beide Gleichungen (1') x = 4,5 1,5y nach der Variablen x auf. (') x = 5 y. Setze die rechten Seiten gleich. (3) 4,5 1,5y = 5 y 3. Löse die Gleichung (3): y = 1,5 4. Setze in () für y die Zahl 1,5 ein. (4) x + 1,5 = 5 x = Die Probe gelingt mit beiden Gleichungen, also: L = {( 1,5)} Lösung mit dem Einsetzungsverfahren 1. Löse eine der beiden Gleichungen nach einer Variablen auf.. Ersetze in der anderen Gleichung diese Variable durch den im ersten Schritt erhaltenen Term. 3. Löse die in Schritt entstandene Gleichung. 4. Weiter wie beim Gleichsetzungsverfahren. Beispiel 3 Löse mit dem Einsetzungsverfahren: (1) x + 3y = 8,5 () x + y = 5 1. Löse Gleichung () nach x auf. (') x = 5 y. Ersetze in (1) x durch 5 y. (1') (5 y) + 3y = 8,5 3. Löse Gleichung (1 ), weiter wie im Beispiel! y = 1,5 Lösung mit dem Additionsverfahren 1. Multipliziere eine oder beide Gleichungen so mit geeigneten Zahlen, dass ein Zahlenfaktor einer bestimmten Variablen in der ersten und der entsprechende Zahlenfaktor in der zweiten Gleichung Gegenzahlen sind.. Ersetze eine der zwei Gleichungen durch die Summe beider Gleichungen. 3. Löse die in Schritt entstandene neue Gleichung 4. Weiter wie bei den anderen Verfahren. Beispiel 4 Löse mit dem Additionsverfahren: (1) x + 3y = 8,5 () x + y = 5 1. Schreibe Gleichung (1) hin (1) x + 3y = 8,5 und multipliziere () mit. (') x 4y = 10. Ersetze Gleichung (1) durch die Summe (1) + ('). (1') y = 1,5 3. Löse (1') nach y auf. y = 1,5 4. Weiter wie bei den anderen Verfahren! 10

5 Zinsen und Zinseszinsen Grundbegriffe: Zinssatz p % Kapital K Jahreszinsen Z j 4 % von 1000 1 sind 480 1. Grundaufgaben Berechnung der Jahreszinsen: Berechnung des Zinssatzes: Berechnung des Kapitals: Z j = K }} 100 p p % = Z j } K 100 % K = Z j } p 100 Zinsen für t Tage: Z t = }} K 100 p }} t 360 ; Zinsen für m Monate: Z m = }} K 100 p } m 1 Zinseszinsen Berechnung des Endkapitals K n bei gleichbleibendem Zinssatz p %: K n = K q q q q = K q n mit q = 1 + }} p 100 n Faktoren q Frankas Konto wies seit dem 15. September 007 ein Soll von 400,00 1 auf. Dafür musste sie 9,5 % Schuldzinsen zahlen. Bestimme den Kontostand zum 31. Dezember 007. Gegeben: K = 400,00 1; p = 9,5 %; t = 105 Tage Rechnung: (1) Z t = }}}} 4 00,001 9,5 }} 105 100 360 = 4,00 1 9,5 } 7 4 = 116,38 1 () K n = K + Z t = 400,00 1 + 116,38 1 = 4316,38 1 Antwort: Frankas Konto zeigte am 31. Dez. 007 ein Soll von 4 316,38 1. Ein Stiftungskapital von 10000 1 bringt in einem Jahr 6600 1 Zinsen. Zu welchem Zinssatz ist es angelegt? Gegeben: Z J = 6600 1; K = 10000 1; Gesucht: p % Rechnung: p % = Z J 6600 1 } 100 % = }}}} 100 % = 5,5 % K 10000 1 Antwort: Das Kapital wurde zu 5,5 % angelegt. Jan legt am 1. Januar 008 einen Betrag von 3 600 Euro an. Die Bank zahlt im ersten Jahr 4,5 % Zinsen, im. und 3. Jahr 5,0 % Zinsen und im 4. und 5. Jahr 6,0 % Zinsen. Berechne sein Guthaben zum 31.1. 01. Gegeben: K 0 = 3 600,00 1; p 1 = 4,5 % (q 1 = 1,045); p = p 3 = 5 % (q = q 3 = 1,05) ; p 4 = p 5 = 6 % (q 4 = q 5 = 1,06) Ansatz: K n = K 0 q 1 q q 3 q 4 q 5 Rechnung: K n = 3 600,00 1 1,045 1,05 1,05 1,06 1,06 = 4 660,0 1 Antwort: Jan hat am 31. 1. 01 ein Guthaben von 4 660,0 1. Beispiel 1 Beispiel Beispiel 3 11

A Grundlagen 6 Wahrscheinlichkeiten Die Wahrscheinlichkeit, mit dem bei einem Zufallsexperiment ein bestimmtes Ergebnis eintritt, kann man mithilfe der relativen Häufigkeit schätzen, wenn man das Experiment sehr oft wiederholt. Alle möglichen Ergebnisse eines Zufallsexperiments fasst man zum Ergebnisraum S (zur Ergebnismenge) zusammen. Ein Ereignis E wird durch die Menge der zu ihm gehörenden Ergebnisse festgelegt. Summenregel: Man bestimmt die Wahrscheinlichkeit P(E) eines Ereignisses E, indem man die Wahrscheinlichkeiten der zu E gehörenden Ergebnisse addiert. Bei den so genannten Laplace-Experimenten sind die möglichen Ergebnisse gleich wahrscheinlich. Bei diesen Zufallsexperimenten kann man die Wahrscheinlichkeit eines Ereignisse E so berechnen: Anzahl der für E günstigen Ergebnisse Wahrscheinlichkeit von E = P(E) = }}}}}}}}}}}}}}} Anzahl aller möglichen Ergebnisse Beispiel 1 Tage mit Niederschlag in München (langjähriges Mittel). Monat J F M A M J J A S O N D Anzahl 19 16 17 16 13 14 16 11 16 15 17 16 Wie groß ist die Wahrscheinlichkeit, dass es a) an einem beliebigen Tag im Mai regnet, b) an einem beliebigen Tag im August nicht regnet? Lösung a) P(Regentag im Mai) = } 13 < 0,419 = 41,9 % 31 b) P(Trockener Tag im Aug.) = 1 P(Regentag im Aug.) = 1 } 11 31 < 64,5 % Beispiel Wie groß ist die Wahrscheinlichkeit, dass der Zeiger des Glücksrads nach dem Drehen a) auf der Zahl 1, b) auf der Zahl 4, c) auf einer ungeraden Zahl stehen bleibt? Lösung Es handelt sich um ein Laplace-Experiment, denn der Zeiger bleibt auf jedem Feld mit der gleichen Wahrscheinlichkeit stehen. a) P(1) = } 4 8 = } 1 = 50 % b) P(4) = 0 (unmögliches Ereignis!) c) P(1;3) = } 4 8 + } 1 8 = } 5 8 = 6,5 % 1 3 1 1 1 1

7 Umfang und Flächeninhalt des Kreises Der Kreis ist die Ortslinie für alle Punkte, die von einem festen Punkt M (dem Mittelpunkt des Kreises) den gleichen Abstand r (= Radius des Kreises) besitzen. Für den Umfang U und den Flächeninhalt A eines Kreises gelten: U Kreis = p r A Kreis = p r² Ist der Durchmesser d gegeben, kannst du auch diese Formeln benutzen: U Kreis = p d A kreis = } p 4 d Die Zahl p kann nur als Näherungswert angegeben werden. Merke dir: p < 3,1416. Vor Großmutters Ruhebank stehen zwei Beistelltische, einer links und einer rechts. Ihre Enkelin Sophia meint, dass die beiden kreisrunden Tischplatten nicht genau gleich groß seien. Hat sie Recht? Unter einer Platte klebt ein Schild Oberfläche = 0,30 m² (Tisch 1). Den Umfang des zweiten Tisches misst Sophia zu 188 cm. Beispiel 1 Lösung 188 cm Aus U = 188 cm folgt r = }}} < 9,9 cm (TR; Wert in den Speicher legen) p Tisch hat die Oberfläche A = p r < 81,6 cm² < 0,8 m². Seine Platte ist also etwas kleiner als die des anderen Tisches. Gegeben ist ein Quadrat mit s =,0 cm mit Umkreis und Inkreis. a) Wie lang sind die Radien dieser Kreise? b) Berechne die Flächeninhalte dieser Kreise. Beispiel Lösung a) Die Länge der Quadrat-Diagonalen beträgt e = f =,0 cm Ï }. Also ist: r u =,0 cm Ï} }}}} = Ï } cm < 1,4 cm und r i = 1,0 cm. b) A u = p 1 Ï } cm < 6,8 cm ; A i = p (1 cm) < 3,14 cm 13

B Quadratwurzeln Reelle Zahlen 1 Quadratwurzeln Ein Quadrat habe einen Flächeninhalt von 64 cm. Will man wissen, wie lang die Seiten des Quadrates sind, so muss man herausfinden, welche positive Zahl mit sich selbst multipliziert das Ergebnis 64 liefert. Es ist die Zahl 8, denn 8 8 = 64. Man schreibt hierfür auch Ï } 64 = 8 (lies: Die Wurzel aus 64 ist 8. ). Das Quadrat hat also die Seitenlänge 8 cm. Ganz allgemein gilt: Diejenige nicht negative Zahl, die mit sich selbst multipliziert a ergibt, heißt Quadratwurzel aus a (Wurzel aus a). Man schreibt hierfür Ï } a. Die nichtnegative Zahl a heißt Radikand. Merke: Für a $ 0 ist Ï } a $ 0 und Ï } a Ï } a = a. Beispiele a) Ï } 5 = 5, denn 5 5 = 5 und 5 $ 0. b) Ï },5 = 1,5, denn 1,5 1,5 =,5 und 1,5 $ 0. c) Ï } 9 } 4 = 3 }, denn 3 } 3 } = 9 } 4 und 3 } $ 0. d) ( ) ( ) = 4, aber Ï } 4 Þ, denn Wurzeln sind nie negativ. e) Ï } 5 ist nicht definiert, denn der Radikand darf nicht negativ sein. f) Ï } 5 können wir nur näherungsweise ermitteln. Wir geben beim Taschenrechner BÁ ein und erhalten den Näherungswert,3606798. Aufgaben 1. Ermittle die Quadratwurzel ohne Hilfe eines Taschenrechners. a) Ï } 9 b) Ï } 4 c) Ï } 100 d) Ï } 144 e) Ï } 49 f) Ï } 1 g) Ï } 81 h) Ï } 169. a) Ï } 4 } 9 b) Ï } 16 } 5 c) Ï } 1 } 36 d) Ï } 11 }} 5 3. Gib ohne TR an, zwischen welchen beiden natürlichen Zahlen die Quadratwurzel liegt. Bestimme anschließend mit Hilfe des TR einen auf fünf Dezimalen gerundeten Näherungswert für die Quadratwurzel. a) Ï } 10 b) Ï } 0 c) Ï } 70 d) Ï } 180 14

1 Quadratwurzeln 4. a) Berechne. Du darfst auch einen TR benutzen. Ï } 400 = Ï } 4 = Ï } 0,04 = Ï } 0,0004 = Ï } 0,0144 = Ï } 1,44 = Ï } 144 = Ï } 14 400 = b) Ergänze: Verschiebt man das Komma beim Radikanden um zwei, vier, sechs, Stellen nach rechts bzw. links, so 5. Berechne ohne TR. Nutze die Erkenntnisse aus Aufgabe 4. a) Ï } 9 = Ï } 900 = Ï } 0,09 = Ï } 0,0009 = b) Ï } 196 = Ï } 1,96 = Ï } 19 600 = Ï } 0,0196 = 6. Ein 18 m langes und 3 m breites rechteckiges Grundstück soll gegen ein quadratisches Grundstück mit gleichem Flächeninhalt getauscht werden. 7. Berechne im Kopf. a) Ï } 0 b) Ï } 10 6 c) Ï } Ï } 16 d) Ï } 4 Ï } 81 8. Ein Würfel hat einen Oberflächeninhalt von 384 cm (13,5 m ). Berechne sein Volumen. 9. Zwei Quadrate mit je 1 cm Seitenlänge werden entlang einer Diagonale halbiert. Die vier entstehenden Dreiecke werden dann zu einem neuen Quadrat zusammengesetzt. Begründe, dass das neue Quadrat eine Seitenlänge von Ï } cm besitzt. 1 cm 1 cm 1 cm cm 10. Die Zeichnung zeigt ein Quadrat mit der Seitenlänge cm. Welche Zahl wird durch die gezeigte Vorgehensweise auf der Zahlengeraden markiert? Begründe. 0 1 3 15

B Quadratwurzeln Reelle Zahlen Reelle Zahlen Alle rationalen Zahlen können als Brüche dargestellt werden, wobei Zähler und Nenner ganze Zahlen sind. Der Nenner darf jedoch nicht Null sein. Gibt man rationale Zahlen als Dezimalzahlen an, so gibt es drei mögliche Fälle, wie die folgenden Beispiele zeigen: } 11 = 1,375 ist eine abbrechende Dezimalzahl. 8 } 3 = 0,6666 = 0, } 6 ist eine reinperiodische Dezimalzahl. 7 } 1 = 0,583333 = 0,58 } 3 ist eine gemischt-periodische Dezimalzahl. Ï } ; Ï } 3 ; Ï } 5 ; Ï } 6 sind Beispiele für Zahlen, die man nicht als gewöhnliche Brüche darstellen kann. Man nennt solche Zahlen irrationale Zahlen. Schreibt man eine irrationale Zahl als Dezimalzahl, so ist diese weder abbrechend noch periodisch und besitzt unendlich viele Dezimalen. Die Menge Q der rationalen Zahlen und die Menge I der irrationalen Zahlen ergeben zusammen die Menge R der reellen Zahlen. Q I R Beispiel 1 a) Ï } 8 ist eine irrationale Zahl und kann nicht als gewöhnlicher Bruch dargestellt werden. Mit dem TR erhält man Ï } 8 =,884715 b) Ï } 9 ist keine irrationale Zahl, sondern eine rationale Zahl, denn es ist Ï } 9 = 3 = 3 } 1. c) Ï } ist eine irrationale Zahl, denn Ï } = 1 Ï }, und da man Ï } nicht als gewöhnlichen Bruch darstellen kann, kann mann auch 1 Ï } = Ï } nicht als gewöhnlichen Bruch darstellen. Aufgaben 11. Gib drei irrationale Zahlen zwischen 1 und 10 an. 1. a) Ordne zu: Ï } 7 ; Ï } 5 ; Ï } 36 ;,3478; 3,1010010001 ; 4,578 } 3 rationale Zahlen: irrationale Zahlen: b) Ordne die Zahlen nun der Größe nach. 16

Reelle Zahlen Eine Quadratwurzel, z. B. Ï } 6, kann näherungsweise durch eine Intervall - schach telung bestimmt werden, indem man schrittweise immer kleinere Intervalle angibt, in denen Ï } 6 liegt. Die folgende Tabelle zeigt ein Beispiel hierfür. Beispiel linke Intervallgrenze rechte Intervallgrenze Begründung 3 < Ï } 6 < 3, denn < 6 < 3,4,5,4 < Ï } 6 <,5, denn,4 < 6 <,5,44,45,44 < Ï } 6 <,45, denn,44 < 6 <,45,449,450,449 < Ï } 6 <,450, denn,449 < 6 <,450,4494,4495,4494 < Ï } 6 <,4495, denn,4494 < 6 <,4495,44948,44949,44948 < Ï } 6 <,44949, denn,44948 < 6 <,44949 Mit diesen Ergebnissen können wir sicher sein, dass Ï } 6 mit der Ziffernfolge,44948 beginnt, und wir können runden: Ï } 6 <,4495. 13. Gib nach dem oben gezeigten Beispiel eine Intervallschachtelung für Ï } 1 an. Führe sie so weit aus, bis du auf drei Dezimalen runden kannst. Aufgaben linke Intervallgrenze rechte Intervallgrenze Begründung 3 4 3 < Ï } 1 < 4, denn 14. Beurteile die folgenden Aussagen. a) Zwischen zwei reellen Zahlen gibt es immer weitere reelle Zahlen. b) Die Null ist keine reelle Zahl. c) Das Produkt zweier irrationalen Zahlen ist wieder eine irrationale Zahl. d) Die Summe aus einer rationalen und einer irrationale Zahl ist irrational. 17

B Quadratwurzeln Reelle Zahlen 3 Wurzelziehen und Quadrieren Beim Quadrieren wird eine Zahl mit sich selbst multilpiziert. Jede reelle Zahl kann quadriert werden, das Ergebnis ist stets nicht negativ. Quadrieren Quadrieren Wurzelziehen 5 5 4 16 +4 Wurzelziehen Das Wurzelziehen kann man nur mit nichtnegativen reellen Zahlen durchführen. Das Ergebnis ist wieder nichtnegativ. Ist die Ausgangszahl nichtnegativ, z. B. 5, so wird das Quadrieren der Zahl durch das Wurzelziehen rückgängig gemacht. Man sagt für diesen Fall auch: Das Wurzelziehen ist die Umkehrung des Quadrierens. Ist die Ausgangszahl hingegen negativ, z. B. 4, so ist das Wurzelziehen nicht die Umkehrung des Quadrierens. Allgemein gilt also: Ï } a = a, falls a $ 0 oder in Kurzform: Ï } a = a. a, falls a < 0 Beispiel 1 a) Ï } 4 = Ï } 16 = 4 b) Ï } 16 existiert nicht, denn 16 < 0 c) Ï } ( 5) = Ï } 5 = 5 d) Ï } 5 existiert nicht, denn 5 = 5 Beispiel a) Ï } 1,75 = 1,75 b) Ï } ( 3,18) = 3,18 c) Ï } ( ) 4 = Ï } 16 = 4 Aufgaben 15. Setze eines der Zeichen = oder Þ passend ein. Es sei x Þ 0. a) ( 4) 4 b) 3 3 c) ( ) 8 8 d) ( x) x e) x x f) ( x) 6 x 6 16. Berechne im Kopf. a) Ï } ( 7) b) Ï },5 c) Ï } ( 1) 4 d) Ï } ( 3) 4 e) Ï } 16 f) Ï } ( 10) 6 18

Stichwortverzeichnis Absolutglied 30 Additionsverfahren 10 ähnlich 4 allgemein gültig 6 Ankathete 58 Äquivalenzumformungen 6 Basis 64 Bogenlänge 84 Bogenmaß 84 Bruchgleichungen 8, 36 Bruchterme 7 Definitionsmenge 7 Diskriminante 34 Dreiecke, ähnliche 44 Einsetzungsverfahren 10 Ereignis 1 Ereignis, sicheres 74 Ereignis, unmögliches 74 Ergänzung, quadratische 6, 3 Ergebnismenge 7 Ergebnisse 7 Exponenten 64 Flächeninhalt 13 Formeln, binomische 6 Funktion, quadratische, 8 Gegenereignis 74 Gegenkathete 58 gemischtquadratisch 30 Gleichsetzungsverfahren 9 Gleichung 6 Gleichung, biquadratische 36 Gleichung, quadratische 30 Gleichungssystem, lineares 9 Glied, lineares 30 Glied, quadratisches 30 Grundflächen 80 Grundzahl 64 Hochzahl 64 Höhe 80, 87 Höhensatz 54 Hypotenuse 58 Jahreszinsen 11 Kapital 11 Kathetensatz 54 Kosinus 58 Kreis 13 Kreisausschnitt 84 Kreiskegel 90 Kreiszylinder 87 Laplace-Experimenet 1, 7 Linearfaktoren 38 Mantelfläche 80 Mantellinie 90 Maximum 9 Minimum 9 Netz 81 Normalform 34 Normalparabel Normdarstellung 67 Nullstelle 40 Parabel Pfadregeln 76 150

Stichwortverzeichnis Potenzgesetze 64 Prisma, gerades 80 Pyramide 88 Pyramidenstumpf 89 Quadratfunktion Quadratwurzel 14 Quadrieren 18 Radikand 14, 68 reinquadratisch 30 Satz des Pythagoras 50 Scheitel Scheitelpunktform 5 Schnittstelle 40 Schrägbild 81 Seitenflächen 80 Sinus 58 Sinusfunktion 63 Spitze 88 Strahlensätze 47 Summenregel 1, 74 Tangens 58 Umfang 13 Ungleichung 6 unlösbar 6 Vielecke, ähnliche 46 Wahrscheinlichkeit 1, 7 Wahrscheinlichkeitsverteilung 7 Wurzelexponent 68 Wurzelgesetze 69 Wurzelgleichungen 36 Wurzelterme 0 Wurzelziehen 18 Zahlen, reelle 16 Zinseszinsen 11 Zinssatz 11 Zufallsexperiment 7 Zufallsexperimente, mehrstufige 76 Zylinder 87 151