2. Schaltfunktionen und ihre Darstellung

Ähnliche Dokumente
2. Schaltfunktionen und ihre Darstellung

Boolesche Algebra (1)

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik

Informationsverarbeitung auf Bitebene

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.

Logik (Teschl/Teschl 1.1 und 1.3)

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen

Einführung in die Theoretische Informatik. Inhalte der Lehrveranstaltung. Definition (Boolesche Algebra) Einführung in die Logik

1. Grundlagen der Informatik Boolesche Algebra / Aussagenlogik

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch

Logik für Informatiker

Grundlagen der Informationverarbeitung

5.1 Operationen 5.2 Boolsche Algebren 5.3 Monoide, Gruppen, Ringe, Körper 5.4 Quotientenalgebren

Aufgabe. Gelten die folgenden Äquivalenzen?. 2/??

Grundlagen der Logik

Von-Neumann-Rechner / Rechenwerk

Kapitel 1. Aussagenlogik

DuE-Tutorien 4 und 6. Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery. WOCHE 4 AM

Teil 1: Digitale Logik

Technische Informatik - Eine Einführung

Ersetzbarkeitstheorem

Einführung in die Theoretische Informatik

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

5. Aussagenlogik und Schaltalgebra

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln

II. Grundlagen der Programmierung

Logik für Informatiker

A.1 Schaltfunktionen und Schaltnetze

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln

Schaltalgebra und kombinatorische Logik

3. Logik 3.1 Aussagenlogik

Informatik A (Autor: Max Willert)

Grundlagen der diskreten Mathematik

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie

3.6 Bemerkungen zur Umformung boolescher Formeln (NAND): doppelte Negation

Einführung in die Boolesche Algebra

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50)

f(1, 1) = 1, f(x, y) = 0 sonst üblicherweise Konjunktion, manchmal auch

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

Übung 4: Aussagenlogik II

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1

Aussagenlogik. Aussagen und Aussagenverknüpfungen

Allgemeingültige Aussagen

Aussagenlogik. Mengenlehre. Relationen. Funktionen. Zahlentheorie. Vollständige Induktion. Reihen. Zahlenfolgen. WS 2016/17 Torsten Schreiber

Informatik I Tutorium WS 07/08

5. Vorlesung: Normalformen

Logische Aussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden.

Logik für Informatiker

Algorithmen & Programmierung. Logik

Aussagenlogik. 1 Einführung. Inhaltsverzeichnis. Zusammenfassung

Technische Informatik I

Einführung in die Informatik I

Konjunktive und disjunktive Normalformen

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Was ist Logik? Was ist Logik? Logische Konnektoren. Aussagenlogik. Logik stellt Sprachen zur Darstellung von Wissen zur Verfügung

Algebraische Strukturen und Verbände

Brückenkurs Mathematik

kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen

C.34 C Normalformen (4) 5.7 Hauptsatz der Schaltalgebra. 5.7 Hauptsatz der Schaltalgebra (2) 5.7 Hauptsatz der Schaltalgebra (3)

Anwendung Informatik Daten verwalten (2) Ursprüngliche Information Logische Verknüpfungen als Grundlage für die Informationsgewinnung

Erfüllbarkeit und Allgemeingültigkeit

Technische Informatik I, SS03. Boole sche Algebra, Kombinatorische Logik

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr

8 Boolesche Algebra. 8.1 Grundlegende Operationen und Gesetze

Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 =

6. Boolesche Algebren

Satz von De Morgan A B A + B A + B A B A. Transistoren: A B U a A 0 0 Vcc Vcc Vcc V 0

Rechnerstrukturen WS 2012/13

Teil II. Schaltfunktionen

Logik für Informatiker

Formale Grundlagen von Schaltnetzen L6, L7, L8 1. L 6 : Gesetze der Booleschen Algebra

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik.

Künstliche Intelligenz Logische Agenten & Resolution

Signalverarbeitung 1

Einführung in die Mathematik (Vorkurs 1 )

Aussagenlogik Prädikatenlogik erster Stufe. Logik. Logik

Vorkurs Mathematik für Informatiker Aussagenlogik -- Thomas Huckle Stefan Zimmer Matous Sedlacek,

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015

Darstellung von negativen binären Zahlen

Vorlesung 3: Logik und Mengenlehre

Vorkurs Mathematik für Informatiker 5 Logik, Teil 1

4. Induktives Definieren - Themenübersicht

Kleine lateinische Buchstaben wie z. B. p, q, r, s t, usw.

Die Prädikatenlogik erster Stufe: Syntax und Semantik

Vorlesung Diskrete Strukturen Rechnen mit 0 und 1

Boolesche Algebra. Hans Joachim Oberle. Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2

2. Funktionen und Entwurf digitaler Grundschaltungen

Eingebettete Systeme

Mathematik für Informatik 1

3 Verarbeitung und Speicherung elementarer Daten

Beispiel Aussagenlogik nach Schöning: Logik...

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen

Transkript:

2. Schaltfunktionen und ihre Darstellung x y z Schaltalgebra Schaltkreise und -terme Schaltfunktionen Dualitätsprinzip Boolesche Algebra Darstellung von Schaltfunktionen 60

Schaltalgebra Wir untersuchen das Verhalten von Schaltkreisen, die aus elementaren Schaltern zusammengebaut werden. x Ein-Aus-Schalter x y z aus elementaren Schaltern gebauter Schaltkreis Bei welchen Stellungen der Elementarschalter ist der Gesamtschalter geschlossen? 61 Serien/Parallele Schaltkreise Beginnend mit den Elementarschaltern bauen wir neue Schaltkreise durch Serienschaltung oder Parallelschaltung Sind S 1 und S 2 Schaltkreise, so auch S 1 S 2 und S 1 S 2 S1 S2 S1 + S2 62

Serien/Parallel-Terme Jede Serien/Parallelschaltung läßt sich eindeutig durch einen Serien/Parallel-Schaltterm (S/P-Term) beschreiben, wobei die Elementarschalter Variablen entsprechen. 1. 1. Jede Variable ist istein S/P-Term. 2. 2. Sind tt 1 und tt 2 S/P-Terme, so so auch tt 1 + tt 2 und tt 1 tt 2.. Für die nebenstehende Schaltung ergibt sich : x y z S = x ( y + z ) 63 Operationstafeln Das Verhalten zusammengesetzter Schaltungen kann man tabellieren. Für jede Kombination der Komponentenschalter geben wir den Wert des zusammengesetzten Schalters an. Ein = 1 Aus = 0 S 1 S 2 0 1 S 1 S 2 0 1 0 0 1 1 1 1 S1 + S2 0 0 0 1 0 1 S1 * S2 64

Das Verhalten zusammengesetzter Schaltkreise Aus dem Verhalten der elementaren Operatoren + (Parallelschaltung) und (Serienschaltung) lässt sich das Verhalten komplexerer Schaltungen ermitteln : x y z y+z y+z x (( y+z y+z )) 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 S = x ( y + z ) 65 Schaltfunktionen Eine Schaltfunktion ist isteine n-stellige Operation auf der Menge { 0, 0, 1}, 1}, das heißt also eine Abbildung f f :: { 0,, 1 } n { 0, 0, 1} 1} Jeder Schaltkreis realisiert eine Schaltfunktion. (0, (0, 0, 0, 0) 0) 0 (0, (0, 0, 0, 1) 1) 0 Die durch den Term (0, (0, 1, 1, 0) 0) 0 x (y+z) realisierte (0, (0, 1, 1, 1) 1) 0 Schaltfunktion (1, (1, 0, 0, 0) 0) 0 (1, (1, 0, 0, 1) 1) 1 (1, (1, 1, 1, 0) 0) 1 (1, (1, 1, 1, 1) 1) 1 Abkürzung : 2 := { 0, 1 } f : { 0, 1} 3 { 0, 1} f(x,y,z) = x (y+z) 66

Mehrwertige Schaltfunktionen Mehrwertige Schaltfunktionen f f :: 2 n 2 m kann man aus den Komponentenfunktionen ff 1,,...,, ff m zusammensetzen: f(x f(x 1,...,x n )) = (f (f 1 (x (x 1,...,x n )),,...,, ff m (x (x 1,...,x n )))) Beispiel: Halbaddierer Ein Halbaddierer kann zwei Binärziffern addieren. An den Eingängen liegen die Ziffern x und y. An dem Ausgang S liegt die letzte Stelle der Summe, an dem Ausgang C (für Carry) liegt der Übertrag (0 oder 1). x y C S 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 x y Σ /2 C S 67 Äquivalenz Jeder Schaltkreis beschreibt eindeutig eine Schaltfunktion. Verschiedene Schaltkreise können aber dieselbe Schaltfunktion beschreiben. Zwei Schaltkreise heißen äquivalent, falls sie dieselbe Schaltfunktion beschreiben. Die folgenden Schaltkreise sind äquivalent, wie man durch Vergleich ihrer Schaltfunktionen feststellen kann : x y z x x y z x * ( y + z ) (x * y) + (x * z) 68

Gleichungen Sind zwei Schaltkreise äquivalent, so so identifiziert man die zugehörigen S/P-Terme und spricht von einer Gleichung. Man schreibt tt 1 = tt 2,, falls die durch tt 1 und tt 2 beschriebenen Schaltkreise dieselbe Schaltfunktion besitzen. Beispiel für eine Gleichung : x + (y * z) = (x + y) * (x + z) (Distributivität von + über * ) und ihre Herleitung : x y z y ** z x +( +( y*z) y*z) x+y x+y x + z z (x (x + y) y) **(x(x + z) z) 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 69 0 und 1 Aus formalen Gründen führt man noch zwei spezielle Schaltkreise ein: Der immer geschlossene Schaltkreis. Der zugehörige Term heißt 1. Der immer offene Schaltkreis. Der zugehörige Term heißt 0. Diese Schaltkreise werden auch durch die folgenden Gleichungen charakterisiert : x + 0 = x x + 1 = 1 x * 0 = 0 x * 1 = x 70

Gleichungen für Serien/Parallel Schaltkreise x + x = x Idempotenz x * x = x x + y = y + x Kommutativität x * y = y * x x + (y + z) = (x + y) + z Assoziativität x * (y * z) = (x * y) * z x * (x + y) = x Absorption x + (x * y) = x x * (y + z) = x * y + x * z Distributivität x + (y * z) = (x + y) * (x + z) x + 0 = x x * 1 = x x + 1 = 1 x * 0 = 0 Sei M eine nicht-leere Menge, auf der zwei Verknüpfungen + und * definiert sind und in der zwei Elemente 0 und 1 ausgezeichnet sind. Gelten für beliebige x, y, z M die obigen Gleichungen, so heißt (M; *, +, 0, 1) distributiver Verband mit 0 und 1. 71 Dualitätsprinzip Zu einem Term t erhält man den dualen Term t d, indem man jede 0 durch 1 und jede 1 durch 0 ersetzt jedes + durch und jedes durch + ersetzt Definition: Induktiv über den Aufbau der S/P Terme definieren wir den dualen Term t d zu einem Term t: Für die Konstanten sei: 0 d = 1 1 d = 0 Für Variablen x sei: x d = x Für beliebige Terme u und v sei: (u v) d = u d + v d und (u+v) d = u d v d Folgerungen: Für jedem Term t gilt t = t d d. Gilt eine Gleichung t 1 = t 2, so auch t 1d = t 2d. 72

Monotone Schaltfunktionen Jeder S/P-Schaltkreis realisiert eine Schaltfunktion. Ist umgekehrt jede Schaltfunktion durch einen S/P-Schaltkreis realisierbar? Definition: Eine Schaltfunktion f : 2 n 2 heißt monoton, falls gilt : (x 1,...,x n ) (y 1,...,y n ) f(x 1,...,x n ) f(y 1,...,y n ) komponentenweise Satz: Jede durch einen S/P-Term realisierbare Schaltfunktion ist monoton. Dieser Satz wird durch Induktion über den Aufbau von S/P-Termen gezeigt. Wie wir später sehen werden, gilt auch die Umkehrung. Das Beispiel zeigt eine Schaltfunktion, die nicht durch eine S/P-Schaltung realisierbar ist: Wechselschaltung Beispiel: x y f(x,y) 0 0 0 0 1 1 1 0 1 1 1 0 Es gilt (0,1) (1,1) aber f(0,1) > f(1,1). 73 Negation Ist Ist S ein Schaltkreis, so so sei S S derjenige Schaltkreis, welcher genau dann offen ist, wenn S geschlossen ist. S S heißt die Negation von S (oder Komplement bzw. Inverses). Die Negation ist die einfachste nicht-monotone Schaltfunktion. Für die zweifache Negation gilt : S = S 74

Boolesche Schaltungen Ein EinSchaltkreis, in in dem demneben Serien- und und Parallel-Schaltung auch noch die die Negation verwendet werden darf, heißt Boolesche Schaltung. Der Dereiner Booleschen Schaltung entsprechende Term heißt Boolescher Term. Die Die Gleichheit Boolescher Terme definiert man man analog zu zuder Gleichheit von von S/P-Termen. Beispiel für eine Boolesche Gleichung : ( x + y ) = x y (-> de Morgan sche Regeln) und ihre Herleitung : x y x+y x+y (x (x + y) y) x x y y x x ** y y 0 0 0 1 1 1 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 1 1 1 0 0 0 0 Mit den de Morgan schen Regeln zeigt man leicht folgenden Zusammenhang zwischen Dualität und Negation: Kommen in t die Variablen x 1,..., x n vor, so gilt: t d (x 1,...,x n ) = (t(x 1,...,x n )) 75 Boolesche Gleichungen Zu den bereits erwähnten Gleichungen eines distributiven Verbandes kommen noch die folgenden Gleichungen, in denen die Negation auftaucht: (x + y) = x * y de Morgan sche Regeln (x * y) = x + y x + x = 1 Komplementregeln x * x = 0 x = x Ein distributiver Verband mit 0 und 1, in dem ein Komplement so definiert ist, dass die obigen Gleichungen gelten, heißt Boolesche Algebra. 76

Boolesche Algebra Die Die Boolesche Algebra ist istein einalgebraischer Kalkül, der dervielfältige Gebiete beschreibt, darunter insbesondere die die Algebra der deraussagenlogik: ({wahr, falsch};,,,,,, falsch, wahr) die die Mengenalgebra ( (M);,,,, die die Schaltalgebra (2, (2,*, *, +, +,,, 0, 0, 1) 1),,,, M) M) mit mitbeliebiger nicht-leerer Menge M George Boole (1815-1864) : An Investigation into the Laws of Thought 77 Aussagenlogik Die Die Aussagenlogik ist istein einzur zurschaltalgebra isomorphes Modell einer booleschen Algebra. Man Man geht von von einer Menge E von von Elementaraussagen aus. aus. Es Es ist istgefordert, dass man man zu zujedem e E feststellen kann, ob ob e wahr oder falsch ist ist (tertium non non datur). Beispiele von Elementaraussagen : 2+2 = 5 Microsoft ist eine Biersorte Blei ist schwerer als Wasser 1. 1. Jede Elementaraussage ist isteine eineaussage. 2. 2. Sind A1 A1 und und A2 A2 Aussagen, so so auch A1 A1 A2 A2 (Konjunktion), A1 A1 A2 A2 (Disjunktion) und und A1 A1 (Negation). Der Wahrheitswert einer zusammengesetzten Aussage berechnet sich aus den Wahrheitswerten der Teilaussagen anhand der Wahrheitstabellen der logischen Operatoren. 78

Wahrheitstabellen Die Wahrheitstabellen für, und entstehen aus den Tabellen für +, und, indem man jeweils 1 durch W und 0 durch F ersetzt ( Isomorphie). A 2 A A F W 2 1 A F W 1 A A F F W F F F F W W W W W F W W F A 1 A 2 A 1 A 2 A Für die Äquivalenz von Aussagen gelten genau die Gleichungen der Booleschen Algebra. Man muss lediglich +, und durch, und sowie 0 und 1 durch F und W ersetzen. Beispiel : A (A B) = A 79 Mengenalgebra Ausgehend von einer festen Grundmenge M betrachten wir (M), die Menge aller Teilmengen von M. Auf (M) sind die Operationen, und definiert. Zwei Elemente von (M) spielen eine Sonderrolle : und M. Die Gleichungen der Booleschen Algebra gelten, wenn man +, * und durch, und sowie 0 und 1 durch und M ersetzt. Beispiel : Für beliebige U, V, W aus (M) gilt: U (V W) = (U V) ( U W) Satz Satzvon Stone: Jede Boolesche Algebra <A, <A, op op 1, 1, op op 2, 2, op op 3 ;0,1> 3 mit mit endlichem A ist istisomorph zu zueiner Mengenalgebra < (M),,,,, ;;,, M >, >, d.h. d.h. es esgibt gibteine einebijektion Ψ :: Α > > (M) mit: mit: Ψ(x Ψ(x op op 1 y) 1 y) = Ψ( Ψ( x )) Ψ( Ψ( y )) Ψ(x Ψ(x op op 2 y) 2 y) = Ψ( Ψ( x )) Ψ( Ψ( y )) Ψ(op 3 x) 3 x) = Ψ( Ψ( x )) Jede endliche Boolesche Algebra hat eine Elementzahl, die eine Zweierpotenz ist. 80

Vereinfachende Schreibweisen Um Um sich sichschreibarbeit und und Klammern zu zusparen, werden folgende Vereinbarungen getroffen: bindet stärker als als + Negation bindet stärker als als Klammern in in Summen bzw. Produkten mit mitmehreren Operanden entfallen (zulässig wegen der derassoziativgesetze) das das Multiplikationszeichen für fürdie Serienschaltung ** kann entfallen Beispiel: Statt ((x * (y )) * ((x + y) + z)) + (x ) schreibe x y (x+y+z)+x 81 Termvereinfachungen Eine Schaltfunktion kann durch mehrere Boolesche Terme dargestellt werden. Meist sucht man man eine einemöglichst einfache Darstellung. Mit MitHilfe der der Gleichungen kann man man einen Booleschen Term meist auf auf eine eineeinfache Form bringen. (Wir (Wirlassen hier hieroffen, was was genau einfach heißt.) Gegeben sei der Term x y z + x y z + x y z + x y z Durch Anwendung der Gleichungen erhalten wir : = x y (z + z) + x y z + x y z ( Distributivität ) = x y (z + z ) + x y z + x y z ( Kommutativität ) = x y 1 + x y z + x y z ( Komplement ) = x y + x y z + x y z ( x*1=x ) = x y + x y z + x y z + x y z (Absorption) = x y + (x + x) y z + x y z (Distributivgesetz) = x y + 1 y z + x y z (Komplement) = x y + y z + x y z (x*1=x ) 82

Darstellung von Schaltfunktionen Problem: Finde Termdarstellung zu zugegebener Schaltfunktion. Beispiel: Gegeben sei folgende Schaltfunktion g: i i x y z g(x,y,z) 0 0 0 0 1 1 0 0 1 1 2 0 1 0 0 3 0 1 1 0 4 1 0 0 1 5 1 0 1 0 6 1 1 0 0 7 1 1 1 1 Wie kann ein Boolescher Term zur Darstellung von g bestimmt werden? 83 Beispiel: 7-Segmentanzeige 2 1 4 3 5 6 7 Darstellung der Ziffern 0.. 9 durch 4 Eingabebits x 1 x 2 x 3 x 4 7-Segmentansteuerung s 1 s 2 s 3 s 4 s 5 s 6 s 7 1 Segment leuchtet 0 kein Leuchten Zugehörige Schaltfunktion x 1 x 2 x 3 x 4 s 1 s 2 s 3 s 4 s 5 s 6 s 7 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0 0 1 0 1 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 84

Grundbegriffe Sei n 1 die Stelligkeit von Schaltfunktionen. Wir identifizieren im folgenden Schaltfunktionen und ihre Termdarstellung: Ein Literal ist eine Variable x i oder ihre Negation x i. Bezeichnung: x i1 := x i, x i0 := x i. Ein Monom ist ein Produkt von Literalen: x ε 1 i... x ε k 1 i k Eine Klausel ist eine Summe von Literalen: x ε 1 i +...+ x ε k 1 i k mit k n mit k n Monome mit voller Länge k = n werden als Minterme bezeichnet: x ε 1 i... x ε n 1 i. n Klauseln voller Länge heißen Maxterme x ε 1 i +...+ x ε n 1 i. n Ein Monom a über x 1,, x n heißt Implikant einer Schaltfunktion f:2 n -> 2, falls für alle b 1, b n gilt: f a (b 1,,b n ) <= f(b 1,.,b n ). Dabei sei f a (x 1,,x n ) = a. 85 Minterme Ein Minterm ist isteine atomare Schaltfunktion, die für genau eine Eingabe den Wert 1 liefert. Die Schaltfunktion hat dann die Form f(x f(x 1,...,x n )) = x ε 1 ε 1 1 x ε 2 ε 2 2...... x ε n ε n mit x ε i ε i i i = { f f heißt j-ter Minterm m j, j,wobeij j = (ε (ε 1...ε n )) 2.. x i, falls ε i = 1 x i, sonst Beispiele: i x y z m 0 (x,y,z) m 1 (x,y,z) m 4 (x,y,z) m 7 (x,y,z) = x y z = x y z = x y z = x y z 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 2 0 1 0 0 0 0 0 3 0 1 1 0 0 0 0 4 1 0 0 0 0 1 0 5 1 0 1 0 0 0 0 6 1 1 0 0 0 0 0 7 1 1 1 0 0 0 1 86

Atome Sei < A, A, *, *, +,, ;; 0, 0, 1> 1> eine Boolesche Algebra. a A mit a 0 heißt Atom der Booleschen Algebra, falls a * b = a oder a * b = 0 für alle b A. A. Atome einer Booleschen Algebra sind die kleinsten Elemente, die multipliziert mit einem anderen entweder das Element selbst oder Null ergeben. In Mengenalgebren (M) (mit Multiplikation ) sind die Atome gerade die einelementigen Mengen. In der Algebra der Schaltfunktionen sind die Atome die Minterme. 87 Disjunktive Normalform Sei f : 2 n --> 2 eine Schaltfunktion und 0<= i <= 2 n -1 ein Zeilenindex der Funktionstabelle mit i = (i 1...i n ) 2. i heißt einschlägiger Index zu f, falls f(i 1,...,i n ) = 1 ist. Satz: Jede Schaltfunktion f: 2 n -> 2 ist eindeutig darstellbar als Summe der Minterme ihrer einschlägigen Indices, d.h. ist Ι {0,...,2 n 1} die Menge der einschlägigen Indices von f, so gilt: f = Σ i Ι m i und keine andere Minterm-Summe stellt f dar. Diese Darstellung heißt disjunktive Normalform (DNF) von f. Beweis der Existenz und Eindeutigkeit der DNF 88

Beispiel-Fortsetzung Wir betrachten nochmals die Schaltfunktion g: i i x y z g(x,y,z) 0 0 0 0 1 1 0 0 1 1 2 0 1 0 0 3 0 1 1 0 4 1 0 0 1 5 1 0 1 0 6 1 1 0 0 7 1 1 1 1 Die disjunktive Normalform von g ergibt sich zu: g(x,y,z) = m 0 (x,y,z) + m 1 (x,y,z) + m 4 (x,y,z) + m 7 (x,y,z) = x y z + x y z +xy z + xyz 89 Darstellung von Schaltfunktionen mit Maxtermen Das vorgestellte Verfahren liefert für eine Schaltfunktion einen Booleschen Term, welcher umso komplizierter ist, je mehr 1-en die Schaltfunktion hat. Das Dualitätsprinzip eröffnet eine zweite Möglichkeit der Vorgehensweise, die immer dann sinnvoll ist, wenn mehr 1-en als 0-en vorhanden sind. Der endgültige Term ergibt sich dann als Produkt von Elementarsummen, sogenannten Maxtermen. 1. 1. Spezifikation: x y z g(x,y,z) 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1 2. 2. Zerlegung in Maxterme: x y z e 1 e 1 2 e 2 3 3 0 0 0 0 1 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 3. 3. Ergebnis: g(x,y,z) = e 1 * e 2 * e 3 = ( x + y + z ) * ( x + y + z ) * ( x + y + z ) 90

Maxterme und konjunktive Normalform Sei 0<= i <= 2 n -1 mit i = (i 1...i n ) 2 und m i der i-te Minterm. Dann heißt die Funktion M i : 2 n -> 2 mit M i (x 1,...,x n ) := m i (x 1,...,x n ) = (x i 1 1) +... + (x i n n) i-ter Maxterm. Satz: Jede Schaltfunktion f: 2 n -> 2 ist eindeutig darstellbar als Produkt der Maxterme ihrer nicht einschlägigen Indices. Diese Darstellung heißt konjunktive Normalform (KNF) von f. 91 Funktionale Vollständigkeit Ein System B = {f {f 1,...,f n } von Schaltfunktionen heißt (funktional) vollständig, wenn sich jede Schaltfunktion allein durch Einsetzungen bzw. Kompositionen von Funktionen aus B darstellen läßt. Es gilt somit: {+,, } ist vollständig. Mit den de Morganschen Regeln folgt, dass auch {+, } bzw. {, } vollständig sind. Man erkennt leicht, dass alle drei Systeme ohne nicht mehr vollständig sind. Auch { } ist nicht vollständig. Es existieren aber einelementige vollständige Systeme. 92

Einelementige vollständige Systeme Das einelementige System {NAND} ist funktional vollständig, denn {+, } ist funktional vollständig und es existieren NAND-Darstellungen dieser beiden Funktionen: x+y = (x (x NAND x) x) NAND (y (y NAND y) y) x x = (x (x NAND x) x) Analog folgt, daß {NOR} funktional vollständig ist. 93 Bestimmung einer NAND-Darstellung Ausgangspunkt: DNF oder disjunktive Form Doppelte Negation anwenden und innere Negation mit De Morgan nach innen ziehen Beispiel: x y z f(x,y,z) f(x,y,z) 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 DNF: x y z + x y z + x yz + x yz + xy z = (x y z + x y z + x yz + x yz + xy z ) = [(x y z ) (x y z) (x yz ) (x yz) (xy z ) ] mehrstellige NAND- ANwendungen 94