Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung zur Übertragung von Sprache und Bldern über enen gestörten Kanal wrd aufgezegt. Übungsaufgabe 1 a) Bestmmen Se de Generatormatrx enes systematschen, lnearen (7,4)-Blockcodes, be dem de nformatonstragenden Bts als vorderste (lnksstehende) Bts des Codevektors auftreten. De dre Prüfbts enes Codeworts werden so bestmmt, dass das das 5. Bt des Codeworts als Partätsbt fungert und dabe das 2. und 3. und 4. nformatonstragende Bt auf ene gerade Anzahl von Ensen ergänzt ( y5 = x2 x3 x4 ), das 6. Bt des Codeworts als Partätsbt fungert und dabe das 1. und 3. und 4. nformatonstragende Bt auf ene gerade Anzahl von Ensen ergänzt ( y6 = x1 x3 x4 ), das 7. Bt des Codeworts als Partätsbt fungert und dabe das 1. und 2. und 3. nformatonstragende Bt auf ene gerade Anzahl von Ensen ergänzt( y7 = x1 x2 x3 ). G = b) Bestmmen Se mt Hlfe der Multplkaton Y r = X r G alle zu desem Hammng-Code gehörgen Codevektoren. Informatonsvektor X r Codevektor Y r x 1 x 2 x 3 x 2 y 1 y 2 y 3 y 4 y 5 y 6 y 7 H. Günter Hrsch Verson: pa3 Sete 1 (6)
Thema: Lneare Block-Codes Expermentelle Aufgabe 1 Zur Kontrolle der n der vorhergen Aufgabe bestmmten Codevektoren steht unter dem Auswahlmenü zur Kanalcoderung ene Oberfläche mt der Bezechnung Generatormatrx zur Verfügung. Darn können zunächst de Zelen- und de Spaltenanzahl ener Matrx vorgegeben werden. Dmensoneren Se de Werte zur Engabe der zuvor bestmmten Generatormatrx und geben Se anschleßend de bnären Werte zelenwese en. Dabe können Se de 0 und 1 Werte ohne Trennzechen unmttelbar hnterenander engeben. Se können nun nachenander de bnären Werte der nformatonstragenden Vektoren und durch Anklcken des entsprechenden Feldes de Multplkaton ausführen. X r engeben Übungsaufgabe 2 a) We groß st de mnmale Hammngdstanz deses Codes : b) We vele Btfehler lassen sch damt maxmal n enem Codewort erkennen: c) We vele Btfehler lassen sch damt maxmal n enem Codewort korrgeren: Können be Verwendung des Codes zur Fehlerkorrektur auch noch Codewörter, be denen mehr als 1 Btfehler auftreten, erkannt werden: d) We groß st de Wahrschenlchket, dass en 7 Bt langes Codewort be Übertragung über enen symmetrschen Bnärkanal mt ener Btfehlerrate von 1 % enen enfachen Btfehler benhaltet: H. Günter Hrsch Verson: pa3 Sete 2 (6)
Thema: Lneare Block-Codes e) We groß st de Wahrschenlchket, dass en 7 Bt langes Codewort be Übertragung über enen symmetrschen Bnärkanal mt ener Btfehlerrate von 1 % enen zwefachen Btfehler benhaltet: Expermentelle Aufgabe 2 Geben Se de zu der zuvor bestmmten Generatormatrx gehörge Prüfmatrx an: H t = Ermtteln Se mt Hlfe der Prüfmatrx n der graphschen Oberfläche Generatormatrx de Syndromvektoren S r für de n der folgenden Tabelle angegebenen Fehlervektoren möglchen enfachen Btfehler nnerhalb enes Codeworts beschreben. Fehlervektor Syndrom S r, de alle e 1 e 2 e 3 e 4 e 5 e 6 e 7 s 1 s 2 s 3 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 We sehen de Bts enes Syndromvektors aus, wenn Se en zulässges Codewort mt der Prüfmatrx multplzeren: s 1 = s 2 = s 3 = H. Günter Hrsch Verson: pa3 Sete 3 (6)
Thema: Lneare Block-Codes Übungsaufgabe 3 a) En empfangenes Codewort, das enen enfachen Btfehler behaltet, kann man als ene Modulo-2 Addton enes zulässgen Codevektors Y r und enes n der vorstehenden Tabelle angegebenen Fehlervektors darstellen. Erzeugen Se sch durch Modulo-2 Addton enen fehlerhaft empfangenen Codevektor, n dem Se zu enem belebgen, zulässgen Codevektor Y r den Fehlervektor adderen, der enen Fehler n der 3. Btstelle benhaltet: Y r b) Welcher Syndromvektor resultert aus ener Multplkaton des zuvor bestmmten Codevektors mt der Prüfmatrx t H : s 1 = s 2 = s 3 = c) Von dem Syndromvektor kann man mt Hlfe der n der vorhergen Aufgabe erstellten Syndromtabelle auf de fehlerhafte Btstelle schleßen. Führen Se de Korrektur n der nachstehenden Tabelle aus, n dem Se den empfangenen Codevektor und den aus der Syndromtabelle ermttelten Fehlervektor adderen: Y r korr d) Erzeugen Se sch durch Modulo-2 Addton enen fehlerhaft empfangenen Codevektor, n dem Se zu enem belebgen, zulässgen Codevektor Y r den Fehlervektor adderen, der enen Fehler n der 3. Btstelle und enen weteren Btfehler n der 6. Btstelle benhaltet: Y r H. Günter Hrsch Verson: pa3 Sete 4 (6)
Thema: Lneare Block-Codes e) Welcher Syndromvektor resultert aus ener Multplkaton des zuvor bestmmten Codevektors mt der Prüfmatrx t H : s 1 = s 2 = s 3 = f) Von dem Syndromvektor kann man mt Hlfe der n der vorhergen Aufgabe erstellten Syndromtabelle auf de fehlerhafte Btstelle schleßen. Führen Se de Korrektur n der nachstehenden Tabelle aus, n dem Se den empfangenen Codevektor und den aus der Syndromtabelle ermttelten Fehlervektor adderen: Y r korr Verglechen Se den Vektor Y r korr mt dem Vektor Y r, den Se unter d) gewählt haben. In we velen Btstellen unterscheden sch de beden Vektoren:. We lässt sch dese Anzahl fehlerhafter Btstellen erklären:.... Expermentelle Aufgabe 3 Mt Hlfe der graphschen Oberfläche Kanalcoderung kann der Enfluss ener Übertragung enes Sprach- oder Bldsgnals über enen gestörten Kanal mt und ohne Ensatz ener Kanalcoderung untersucht werden. Dabe kann en symmetrscher Bnärkanal durch Angabe ener Nettobtfehlerwahrschenlchket defnert werden. En Sprach- oder Bldsgnal kann über das Sgnal -Menü am oberen Rand ausgewählt und geladen werden. Der Sgnalverlauf des Sprachsgnals bzw. das Bld werden vor und nach der Übertragung dargestellt. Im Auswahlmenü zur Coderung kann ene Übertragung ohne Kanalcoderung bzw. be Ensatz verschedener lnear Block-Codes festgelegt werden. Durch Anklcken des Coderungsfelds kann ene Coderung vorgenommen werden. Da zur Smulaton der Übertragungsfehler en Zufallsgenerator verwendet wrd, st das Ergebns ener wederholten Übertragung über enen gestörten Kanal n der Regel ncht glech. Laden Se das Sprachsgnal artos_ofenrohr_8k.wav, das mt ener Frequenz von 8 khz abgetastet wurde und ene zetlche Länge von etwa 3,35s bestzt. Aus we velen Bts besteht der bnäre Datenstrom, wenn jeder Abtastwert mt 16 Bt quantsert wurde: H. Günter Hrsch Verson: pa3 Sete 5 (6)
Thema: Lneare Block-Codes We vele Bts des Datenstroms werden be den nachstehend angeführten Nettobtfehlerraten gestört werden: Nettobtfehlerrate / % 0.001 0.01 0.1 1 Anzahl gestörter Bts Hören Se sch das Sgnal nach ener Übertragung ohne Kanalcoderung für de zuvor angegebenen Btfehlerraten an. Bestmmen Se be Ensatz enes (7,4)-Hammngcodes, der zur Fehlerkorrektur verwendet wrd, de Restbtfehlerraten für de n der nachstehenden Tabelle angegebenen Nettobtfehlerraten: Nettobtfehlerrate / % 0.01 0.1 1 5 6 Restbtfehlerrate / % Warum wrd de Restbtfehlerrate ab enem gewssen Wert größer als de Nettobtfehlerrate: Laden Se enes der Blder smley_lucky.bmp oder smley_devl.bmp. Dabe wrd jeder Bldpunkt durch de 3 Intenstätswerte für de Grundfarben rot, grün und blau beschreben. Jeder Intenstätswert wrd mt 8 Bt quantsert. Aus we velen Bts besteht der bnäre Datenstrom, der zur Übertragung enes Blds benötgt wrd: Bts Im Folgenden sollen verglechend en (7,4)-Hammngcode, en (15,11)-Hammngcode und en (31,26)-Hammngcode zur Übertragung des Blds verwendet werden. Aus we velen Bts besteht der zu übertragende, bnäre Datenstrom be Verwendung des (7,4)-Hammngcodes: (15,11)-Hammngcodes: (31,26)-Hammngcodes: Bestmmen Se de Restbtfehlerraten für de n der nachstehenden Tabelle angegebenen Nettobtfehlerraten: Nettobtfehlerrate / % 0.01 0.1 1 5 Restbtfehlerrate / % (15,11)-Code (7,4)-Code (31,26)-Code Welcher Code bestzt de besten Korrekturegenschaften: H. Günter Hrsch Verson: pa3 Sete 6 (6)