Die. Zeltla1.08. bis Stadtgemeinde St.Valentin

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Die. Zeltla1.08. bis 08.08.201. Stadtgemeinde St.Valentin www.takatuka.at"

Transkript

1 Die m n e i e c h e F Zeltl1.08. bis l t n N ge im Stdtgemeinde St.Vlentin

2 Liebe Kinde! Liebe Elten! 2 Beeits in wenigen Wochen beginnen die Sommefeien. Die Stdtgemeinde Snkt Vlentin ht deshlb im Tk-Tuk-Lnd wiede ein bwechslungseiches Pogmm fü die Snkt Vlentine Kinde vobeeitet. Alle neun Feienwochen bieten wi eine tolles Feizeitngebot. In gewohnte Weise findet die Gnztgesbeteuung fü Kinde von 6 bis 12 Jhen in den esten und letzten vie Wochen de Feien sttt. In de fünften Feienwoche fhen wi nch Rechbeg uf Zeltlge. Die Beteuung unsee Kleinsten wude heue wiede neu geegelt! Die Beteuung de Kindegtenkinde efolgt in den esten und letzten dei Feienwochen im Kindegten. Im Tk-Tuk- Lnd weden keine Kindegtenkinde beteut!! In de vieten bis sechsten Feienwoche ht wiede die Pippilott-Guppe im Tk-Tuk- Lnd geöffnet. Diese beteut usschließlich Kindegtenkinde. Fü die Beteuung im Kindegten musste beeits ein Bedf ngemeldet weden. Fü die Pippilott-Guppe ist dies nicht efodelich. Alle Infomtionen übe ds Tk-Tuk-Lnd und die Möglichkeit zu Anmeldung fü ds Zeltlge finden Sie uf unsee Homepge: Wi wünschen nun schöne Feien und feuen uns schon uf Dich! Mg. Kestin Suchn-My Bügemeistein STR Heinich Lechne Stdtt Kinde-Jugend-Fmilie Ing.Mg. Anold Motts Jugendefet de Stdtgemeinde Mehkindebtt Ds zweite, ditte,... Kind ehält 20% Emäßigung beim Zeltlge in Rechbeg! Anmeldungen und Infos: Tk-Tuk-Lnd Jugendefet de Stdtgemeinde Anold Motts Huptpltz St.Vlentin 07435/ 505 DW

3 Ulub zu Huse Tk-Tuk-Ketiv - im Somme In den Sommefeien öffnet ds Tk-TukLnd fü cht Wochen seine Pfoten (In Woche 5 sind wi uf Zeltlge in Rechbeg!). Hie finden Kinde von 6 bis 12 Jhen eine Gnztgesbeteuung. Ein buntes und bwechslungseiches Pogmm wid den Kinden geboten. Die tollen Räumlichkeiten in Hezogd 38 bieten jede Menge Pltz. Bei schönem Wette können de Spielpltz des Kindegtens und de ngenzende öffentliche Spielpltz mitgenutzt weden. Gespielt wid vowiegend in offenen Guppen - ds heißt die Beteueinnen bieten veschiedene Aktivitäten n, die Kinde spielen dot mit, wouf sie gede Lust hben. Ntülich gibt es uch Ruhezonen. Die Kleinsten weden ls eigene Pippilott-Guppe gefüht. Je nch Kindezhl beteuen dei bis sieben usgebildete Beteueinnen de Stdtgemeinde die Kinde. We ein Mittgessen benötigt, muss dies bis spätestens 9:00 Uh melden. Die Teilnhme n de Gnztgesbeteuung ist kostenlos, fü ds Mittgessen wid ein Unkostenbeitg von EUR 3,50 eingehoben. Eine Vonmeldung ist nicht nötig! Nu fü Kinde us Snkt Vlentin ode Kinde, deen Elten in Snkt Vlentin beiten! Telefon (nu in den Feien): 07435/ Tk-Tuk-Ketiv bis Montg bis Feitg, 7:00 bis 17:00 Uh Teilnhme kostenlos, Mittgessen EUR 3, bis Montg bis Feitg, 7:00 bis 17:00 Uh Teilnhme kostenlos, Mittgessen EUR 3,50 Tk-Tuk-Ketiv Jhe 6-12 Jhe 3

4 Pippilott-Guppe Gnztgesbeteuung fü die Kleinen Ab diesen Somme weden die Kindegtenkinde im Tk-Tuk-Lnd in eine eigenen Guppe gefüht! Die Beteuung findet in einem eigenen Guppenum mit eigenen BeteueInnen sttt. Dmit sich die Kleinen wohl fühlen, können wi einen Guppenum und den Tunsl im Kindegten Hezogd benützen. Auch de Spielpltz im Gten steht zu Vefügung. Unsee Beteueinnen sogen fü ein bwechslungseiches Pogmm. Auch ein wmes Mittgessen knn ngeboten weden. Eingng und Anmeldung wie gewohnt im Tk-Tuk-Lnd! Altesuntegenze: Die Gnztgesbeteuung ist fü Kinde, die beeits den Kindegten besucht hben - jedoch nicht fü Kinde, die est in den Kindegten kommen!! Achtung: In den esten und letzten dei Feienwochen weden im Tk-Tuk-Lnd keine Kindegtenkinde beteut! Die Beteuung findet im jeweiligen Kindegten sttt!! Bitte im Kindegten Bedf nmelden! Keine Vonmeldung nötig! bis Gnztgesbeteuung Montg bis Feitg, 7:00 bis 17:00 Uh Teilnhme kostenlos, Mittgessen EUR 3,50 Jhe 4

5 Spß in de Ntu... Abenteue-Kindezeltlge im Nntl m i e g Zeltl l t n N Vom 01. bis 08. August venstlten wi wiede unse Kindezeltlge. Dieses findet im Nntl bei Rechbeg sttt. Unse Zeltpltz liegt uf einem ntubelssenen Pltz neben de Nn. Dot weden wi unsee bewähte Zeltstdt ufbuen. Unsee BeteueInnen hben ein tolles und lustiges Pogmm fü die Kinde vobeeitet. Wenn ds Wette mitspielt, steht ntülich uch viel Bden in de Nn ode uch ml im Bdesee von Rechbeg uf dem Pogmm. Die Aneise findet mit dem Bus sttt. Fü die Beteuung sogt ein efhenes BeteueInnen-Tem. Geschlfen wid in Guppenzelten zu je cht Kinden. Fü useichende Vepflegung ist gesogt! Wi kochen uch glutenfei! Jede Menge Fotos und ein Film von unseen Zeltlgen unte: bis Unkostenbeitg: EUR 95,Mehkindeemäßigung! 6-12 Jhe 5

6 Kindestdt Snkt Vlentin 18. bis 20. August 2015 im Tk-Tuk-Lnd Täglich von 8:00 bis 16:00 Uh! 6

7 Wi spielen dei Tge Kindestdt! Ds Tk-Tuk-Lnd vewndelt sich fü dei Tge in eine Stdt, in de die Kinde von 6-12 Jhen jede Menge Spß hben weden. Wie funktioniet die Kindestdt? Im gnzen Tk-Tuk-Lnd veteilt gibt es veschiedene Dienstleiste und Betiebe, die den Kinden Abeitsplätze nbieten. We dot beitet, bekommt dfü Geld. Dieses knn in de Kindestdt wiede usgegeben weden. Gekuft weden können Podukte us den Betieben, Dienstleistungen ode uch Essen im Cfe ode Gsthus. Im Gsthus knn uch ds selbst vediente Mittgessen eingenommen weden. We Abeit sucht, de meldet sich im Abeitsmt und bekommt eine zugeteilt. Nch getne Abeit knn mn sich seinen Vedienst bei de Bnk bholen. Ds Geld soll dnn ntülich uch wiede usgegeben weden. Ds Spiel wid von einem efhen BeteueInnen-Tem des Tk-Tuk-Lndes beteut. Eine Vonmeldung ist nicht efodelich! Einfch kommen und mitspielen! Achtung: Kindestdt knn süchtig mchen! bis Die Teilnhme ist kostenlos! Eine Vonmeldung nicht nötig! Jhe 7

8 Zugestellt duch Post.t.t www nte: gu ldun Anme.t ktuk Infomtionsbltt de Stdtgemeinde St.Vlentin N Tk-Tuk-Lnd 4300 St.Vlentin, Hezogd / 505 DW 4230 (nu in den Feien) Jugendefet de Stdtgemeinde St.Vlentin 4300 St.Vlentin, Huptpltz / 505 DW Jhe Feienspiel de Stdtgemeinde St.Vlentin 8 Impessum: Stdtgemeinde St.Vlentin, Jugendefet: Ing.Mg. Anold Motts 4300 St.Vlentin, Huptpltz 7, 07435/ , Duck: PEHA Medien GmbH

Lösen einer Gleichung 3. Grades

Lösen einer Gleichung 3. Grades Lösen eine Gleichung Gdes We sich uf dieses Abenteue einlssen will, bucht einige Kenntnisse übe komlee Zhlen Es eicht be, wenn mn folgende Schvehlte kennt und kochezettig (mn nehme) nwenden knn: Es gibt

Mehr

Die Lagrangepunkte im System Erde-Mond

Die Lagrangepunkte im System Erde-Mond Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn bochdt.tthis@t-online.de Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind

Mehr

(a) Entscheide, ob aus der angegebenen Stellung Spieler A gewinnen kann. (Der Index gibt jeweils die Zugnummer an.)

(a) Entscheide, ob aus der angegebenen Stellung Spieler A gewinnen kann. (Der Index gibt jeweils die Zugnummer an.) Detment Mthemtik Tg de Mthemtik 31. Oktobe 2009 Klssenstufen 9, 10 Aufgbe 1 (6+7+7 Punkte). Zwei Siele A und B sielen uf einem 2 9- Kästchen-Sielfeld. Sie ziehen bwechselnd, Siele A beginnt. Ein Zug besteht

Mehr

in Erfurt Geheimnisse unserer Stadt: Ein altes Badehaus Tierisch hoch: Giraffen In luftiger Höhe: Erfurter Fluglotsen Abenteuerreise durch BELANTIS

in Erfurt Geheimnisse unserer Stadt: Ein altes Badehaus Tierisch hoch: Giraffen In luftiger Höhe: Erfurter Fluglotsen Abenteuerreise durch BELANTIS Ds kostenlose Stdt- und Mitmchmgzin fü Kinde N.1/12 Tieisch hoch: Giffen in Efut In luftige Höhe: Efute Fluglotsen Geheimnisse unsee Stdt: Ein ltes Bdehus Abenteueeise duch BELANTIS Hllo Kinde, Hie bin

Mehr

Entdecke die Welt! Australien USA

Entdecke die Welt! Australien USA Entdecke die Welt! Die Feien sind zu Ende endlich sieht Leon seine Feunde wiede! Jede von ihnen w im Ulub in einem ndeen Lnd. Sie hben lle Postkten geschieben und etws mitgebcht. Die blonde Nicole w in

Mehr

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche Modul Integle 3 Volumen von Rottionsköpen, Bogenlänge und Mntelfläche In diesem Modul geht es um einige spezielle Anwendungen de Integlechnung, und Volumin, Längen und Flächen zu estimmen. Fngen wi mit

Mehr

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Text Nr Stand Vesie de Agnesi Tet N. 5455 Stnd 5.. FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5455 Vesie de Agnesi Vowot Die Vesie de Agnesi ist eine lgebische Kuve. Gdes, die mn uf eine

Mehr

Versiera der Agnesi DEMO. Text Nr Stand FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Versiera der Agnesi DEMO. Text Nr Stand FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Vesie de Agnesi Tet N. 5455 Stnd 5.. FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5455 Vesie de Agnesi Vowot Die Vesie de Agnesi ist eine lgebische Kuve. Gdes, die mn uf eine

Mehr

Kapitel 2. Schwerpunkt

Kapitel 2. Schwerpunkt Kpitel Schwepunkt Schwepunkt Volumenschwepunkt Fü einen Köpe mit dem Volumen V emittelt mn die Koodinten des Schwepunktes S (Volumenmittelpunkt) us S dv dv z S S z S dv dv z dv dv z S S S Flächenschwepunkt

Mehr

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren.

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren. Kntonsschule Solothun Vektoechung RYS Vektoechnung. Gundlgen. Skl / Vekto In de Phsik untescheiden wi gundsätlich wei veschiedene Tpen phsiklische Einheiten: Skle und Vektoen. Ein Skl ist eine elle Zhl.

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

Abitupüfung Mthemtik Bden-Wüttembeg (ohne CAS) Pflichtteil Aufgben Aufgbe : ( VP) Bilden Sie die este Ableitung de Funktion f mit f() ( ) e weit wie möglich. und veeinfchen Sie so Aufgbe : ( VP) Beechnen

Mehr

Übungen: Extremwertaufgaben

Übungen: Extremwertaufgaben Übungen: Extemwetufgben.0 Eine Stenwte ht meist die Fom eines Zylindes (Rdius, Höhe h) mit eine oben ufgesetzten Hlbkugel (siehe z. B. die im Bild unten gezeigte Fitz-Weiths-Stenwte in Neumkt). Die gesmte

Mehr

Aufgaben zu Kreisen und Kreisteilen

Aufgaben zu Kreisen und Kreisteilen www.mthe-ufgben.com ufgben zu Keisen und Keisteilen Keisfläche: ( Rdius des Keises) Keisumfng: U Keisingfläche: ( ußen innen ) Keisusschnitt / Keissekto: Öffnungswinkel, b Keisbogen α bzw. b 60 α α b 60

Mehr

Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern

Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern Wolte/Dhn: Anlsis Individuell c Spinge 75 Kpitel 9 Integlechnung fü Funktionen eine Veändelichen 9.6 Volumen von Rottionsköpen Wi wenden uns jetzt de Bestimmung des Volumens eines sogennnten Rottionsköpes

Mehr

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf:

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf: Aufgbe : ) Lösen Sie die folgenden Gleichungen nch uf: = kein Problem einfch die Wurel iehen und ds ± nicht vergessen.. = = ±, b) + 5 = 0 Hier hben wir bei jedem Ausdruck ein, lso können wir usklmmern:

Mehr

n n n

n n n mthbu.ch9+ Repetition mthbu.ch9+ LU 901 1. Die Route de Steetpde in Züich ist 3.8 km lng. Wie lnge ist sie uf eine Kte mit dem Mssstb 1 : 5 000? 15. cm. Auf eine Kte des Mssstbs 1 : 5 000 misst du einen

Mehr

Schülerkurs. Mathematik > Lineare Algebra > Lineare Gleichungen Lineare Gleichungssysteme > Teil I: Theorie. Michael Buhlmann

Schülerkurs. Mathematik > Lineare Algebra > Lineare Gleichungen Lineare Gleichungssysteme > Teil I: Theorie. Michael Buhlmann Michel Buhlmnn Schülekus Mthemtik > Linee Alge > Linee Gleichungen Linee Gleichungssysteme > Teil I: Theoie Linee Gleichungen und linee Gleichungssysteme duchziehen den Mthemtikunteicht in llen Schulfomen

Mehr

n r 3 5 3 9 0 G ie s s en 14.06. bis 15.06.2014 ti o n en 4 7 w o r k o u ts m it D En B T r a in in g

n r 3 5 3 9 0 G ie s s en 14.06. bis 15.06.2014 ti o n en 4 7 w o r k o u ts m it D En B T r a in in g in B d e z e n t u m RGiniegssle n lee G u tf le is c h s t s s e 2 4 3 5 3 9 0 G ie s s en 14.06. bis 15.06.2014 ti o n en N 10 s u n te en es P N TE ES 4 7 w o k o u ts m it D En B c i m n E B e D N

Mehr

Ausbildung zum Passagement-Consultant

Ausbildung zum Passagement-Consultant M & MAICONSULTING Mngementbertung Akdemie M MAICONSULTING Mngementbertung & Akdemie MAICONSULTING GmbH & Co. KG Hndschuhsheimer Lndstrße 60 D-69121 Heidelberg Telefon +49 (0) 6221 65024-70 Telefx +49 (0)

Mehr

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer!

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer! hben Freunde Deine Zähne sind wie deine sportmnnschft und du bist der Triner! Und jeder Triner weiß, wie wichtig jeder einzelne Spieler ist eine wichtige und schöne Aufgbe! Drum sei nett zu deinen Zähnen

Mehr

VR-FinalSparen. Raiffeisenbank Altdorf-Ergolding eg. Jeder Mensch hat etwas, das ihn antreibt. h n. im 4

VR-FinalSparen. Raiffeisenbank Altdorf-Ergolding eg. Jeder Mensch hat etwas, das ihn antreibt. h n. im 4 Mai 2010 - An alle Haushalte oe, T h Me sen: n i Z meh % 5 2, 3. Jah im 4 VR-FinalSpaen Unse Anlagepodukt spielt Ihnen beeits vo dem esten Anstoß de Fußball-Weltmeisteschaft 2010 in Südafika einen exklusiven

Mehr

Mathematik in eigenen Worten Arbeitsblätter und Kopiervorlagen

Mathematik in eigenen Worten Arbeitsblätter und Kopiervorlagen Mthemtik in eigenen Woten Abeitsblätte und Kopievolgen Abeitsblätte und Kopievolgen stehen unte www.klett.ch/spektumschule kostenlos ls Downlod zu Vefügung. Ihe Vewendung fü den eigenen Unteicht wid vom

Mehr

3 Wiederholung des Bruchrechnens

3 Wiederholung des Bruchrechnens 3 Wiederholung des Bruchrechnens Ein Bruch entsteht, wenn ein Gnzes in mehrere gleiche Teile zerlegt wird. Jeder Bruch besteht us dem Zähler, der Zhl über dem Bruchstrich, und dem Nenner, der Zhl unter

Mehr

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik)

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik) Physik EI1 Mechnik - Einfühung Seie I MECHNIK 1. EINÜHRUNG Gundlgen, Kinemik, Dynmik (Wiedeholung de Schulphysik) _Mechnik_Einfuehung1_Bneu.doc - 1/9 Die einfühenden Kpiel weden wi zunächs uf dem Niveu

Mehr

Versuch 31: Bestimmung der Licht- und Signalgeschwindigkeit Seite 1

Versuch 31: Bestimmung der Licht- und Signalgeschwindigkeit Seite 1 Vesuch 31: Bestimmun de icht- und Sinleschwindikeit Seite 1 Teil 1: ichteschwindikeit Aufben: Messvefhen: Vokenntnisse: ehinhlte: itetu: Bestimmun de ichteschwindikeit im Zeit- und Fequenzbeeich. Diffeenzielle

Mehr

ttly' Landes 0eslndheils Aml 8a dsn-l ürtto mborg

ttly' Landes 0eslndheils Aml 8a dsn-l ürtto mborg .\"W ff ryi Bden-Iftirnemberg LANDESGESU NDHEITSAMT SNOENI-\,üÜNTTEMBERG rm REGrERUNcspnnsrorum srurrcnni - Aus-, Fort- und Weiterbildung Hygiene 20 13 Hygiene in prxen für Medizinische und Zhnmedizinische

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

B Figuren und Körper

B Figuren und Körper B Figuen und Köpe 1 Keis und Keisteile Ein Keis mit dem Rdius ht den Flächen inhlt A = p 2 und den Umfng U = 2p. Die Keiszhl p = 3,14159 ist eine itionle Zhl. Als Nähe ungswete fü p benutzt mn oftmls p

Mehr

AKTUELL. Bilder und Berichte aus dem Saarpark-Center Neunkirchen

AKTUELL. Bilder und Berichte aus dem Saarpark-Center Neunkirchen Bilde und Beichte us dem Spk-Cente Neunkichen N. 291 Anzeige Anzeige Einfch himmlisch Im Spk-Cente Neunkichen können Besuche die Vofeude uf Weihnchten mit llen Sinnen genießen Unkompliziet Mit Geschenkgutscheinen

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8 Mthemtik für Wirtschftswissenschftler im WS /3 Lösunen zu den Übunsufben Bltt 8 Aufbe 3 Berechnen Sie die folenden Interle durch prtielle Intertion. ) c) e d. (Hinweis: Interieren Sie zweiml prtiell).

Mehr

Elektronische Bandstruktur und elektrische Leitfähigkeit

Elektronische Bandstruktur und elektrische Leitfähigkeit ExpeimentlPhysik IV SS15-1 - (3. July 015) Wiedeholung k h ikx π Feies Elektonen Gs: E =, ψ ( x ) = Ce, k = ( nx, ny, nz ) m L V Zustndsdichte im k-rum: ρ( k ) = 3 (π) WICHTIG: k -Vektoen sind NICHT uf

Mehr

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE Vektoechnung Anltische Geometie 7. VEKTORRECHNUNG ANALYTISCHE GEOMETRIE 7.1. Vektoen () Definition Schiet mn einen Punkt P 1 im Koodintensstem in eine ndee Lge P so ist diese Schieung duch Ange des Upunktes

Mehr

Abb. 1: Klassische Rhombenfigur

Abb. 1: Klassische Rhombenfigur Hns Wlser, [216931] Rhombenfiguren 1 Worum geht es Es wird ein Beispiel einer Rhombenfigur vorgestellt, bei der im grfentheoretischen Sinne jeder Punkt den Grd 4 ht. 2 Problemstellung: Grd 4 Die Abbildung

Mehr

Wert eines Terms berechnen

Wert eines Terms berechnen gnz kl: Mthemtik 3 - Ds Feienheft mit Efolgsnzeige 3 Wet eines Tems eechnen Teme sind sinnvolle Rechenusdücke, die us Zhlen, Vilen, Rechenzeichen und Klmmen estehen können. Sinnlose Rechenusdücke (z. B.:

Mehr

Quadratische Funktionen und p-q-formel

Quadratische Funktionen und p-q-formel Arbeitsblätter zum Ausdrucken von softutor.com Qudrtische Funktionen und -q-formel Gib den Vorfktor und die Anzhl der Schnittstellen mit der -Achse n. x 3 Beschreibe die Reihenfolge beim Umformen einer

Mehr

34. Elektromagnetische Wellen

34. Elektromagnetische Wellen Elektizitätslehe Elektomagnetische Wellen 3. Elektomagnetische Wellen 3.. Die MXWELLschen Gleichungen Die MXWELLschen Gleichungen sind die Diffeentialgleichungen, die die gesamte Elektodynamik bestimmen.

Mehr

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt 5 Rigoose Behndlung des Kontktpoblems Hetsche Kontkt In diesem Kpitel weden Methoden u exkten Lösung von Kontktpoblemen im Rhmen de "Hlbumnäheung" eläutet. Wi behndeln dbei usfühlich ds klssische Kontktpoblem

Mehr

1. Stegreifaufgabe aus der Physik Lösungshinweise

1. Stegreifaufgabe aus der Physik Lösungshinweise . Stegreifufgbe us der Physik Lösungshinweise Gruppe A Aufgbe Ds.Newtonsche Gesetz lässt sich zum Beispiel so formulieren: Wirkt uf einen Körper keine Krft (oder ist die Summe ller Kräfte null) so bleibt

Mehr

Wärmedurchgang durch Rohrwände

Wärmedurchgang durch Rohrwände ämeuchgng uch Rohwäne δ - L Rohlänge Bl: Sonäe ämeleung uch ene enschchge zylnsche n Fü e ämeleung gl llgemen: λ x Fü ene ünne konzensche Schch es Rohes von e Dcke gl: &Q λ Fläche: f(): 2 π L (Mnelfläche)

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

6 zusatzlehren. für / zum polybauer. gerüstbau. sonnenschutzsysteme. spengler

6 zusatzlehren. für / zum polybauer. gerüstbau. sonnenschutzsysteme. spengler gerüstbu 6 zustzlehren für / zum polybuer bdichten DªCHdecken fssdenbu sonnenschutzsysteme spengler deine krriere! polybuer berufe mit perspektiven Gebäudehülleningenieur (FH)* Polybu- Meister (HFP) Gebäudehüllentechniker

Mehr

Darstellung von Ebenen

Darstellung von Ebenen Drstellung von Ebenen. Ebenengleichung in Prmeterform: Sei E eine Ebene. Dnn lässt sich die Ebene drstellen durch eine Gleichung der Form p u x = p + r v u + s v (r, s R). p u v Der Vektor p heißt Stützvektor

Mehr

lehrberufe.somedia.ch

lehrberufe.somedia.ch lehrberufe.somedi.ch DU HAST TALENT MACH WAS DRAUS. INFORMATIKER/IN QUICK FACTS Gute Englisch- und Mthemtikkenntnisse Temfähigkeit Geduld und Ausduer Hohe Konzentrtionsfähigkeit Räumliches Vorstellungsvermögen

Mehr

FDT-VERLEGESCHULUNGEN

FDT-VERLEGESCHULUNGEN 25 % RABATT SICHERN. BIS 15.11.2015 online buchbr FDT-VERLEGESCHULUNGEN KURSSTAFFEL 2016 WEITERBILDEN. OPTIMIEREN. WISSEN! 02 03 WEITERBILDEN. OPTIMIEREN. WISSEN! FDT-Verlegeschulungen Schulungen für Verleger

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: Prof. Dr. J. Pnnek Dynmics in Logistics Vorkurs Mthemtik für Ingenieur Innen WS 207/208 Übung 3 Aufgbe : Trigonometrie () Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Mehr

Für den Endkunden: Produkt- und Preissuche

Für den Endkunden: Produkt- und Preissuche Fü den Endkunden: Podukt- und Peissuche Ducke Mit finde.ch bietet PoSelle AG eine eigene, umfassende Podukt- und Peissuchmaschine fü die Beeiche IT und Elektonik. Diese basiet auf de umfassenden Datenbank

Mehr

für/zum Polybauer 6 Zweitausbildungen gerüstbau sonnenschutzsysteme spengler

für/zum Polybauer 6 Zweitausbildungen gerüstbau sonnenschutzsysteme spengler gerüstbu 6 Zweitusbildungen für/zum Polybuer bdichten DªCHdecken fssdenbu sonnenschutzsysteme spengler Deine Krriere! Polybuer Berufe mit Perspektiven Bchelor of Science in Butechnik mit Vertiefung in

Mehr

Schülerfragebogen. Baseline-Testung 4. Schulstufe Geburtsmonat: Geburtsjahr: Geschlecht:

Schülerfragebogen. Baseline-Testung 4. Schulstufe Geburtsmonat: Geburtsjahr: Geschlecht: o n Schülerfrgebogen Bseline-Testung 4. Schulstufe 2010 Geburtsmont: Geburtsjhr: Geschlecht: h p j l Liebe Schülerin! Lieber Schüler! Bitte bentworte in diesem Heft Frgen - über dich und deine Lernumgebung

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

Unfallversicherungsschutz für Kinder in Tagespflege

Unfallversicherungsschutz für Kinder in Tagespflege Unfallvesicheungsschutz fü Kinde in Tagespflege Infomationen fü Tagesmütte und -väte Unfallvesicheungsschutz fü Kinde in Tagespflege Inhalt Einleitung 3 Was ist die gesetzliche Unfallvesicheung? 4 Gesetzliche

Mehr

Mathematik: Mag. Wolfgang Schmid Arbeitsblatt Semester ARBEITSBLATT 11 EXTREMWERTAUFGABEN

Mathematik: Mag. Wolfgang Schmid Arbeitsblatt Semester ARBEITSBLATT 11 EXTREMWERTAUFGABEN Mtemtik: Mg. Wolfgng Smid beitsbltt 11 6. Semeste BEITSBLTT 11 EXTEMWETUFGBEN In diesem beitsbltt befssen wi uns mit ufgben, bei denen einem gegebenen Köpe ein ndee Köpe eingesieben ode umsieben wid. Beispiel:

Mehr

10. Riemannsche Geometrie I: Riemannsche Metrik. Variable Bilinearformen.

10. Riemannsche Geometrie I: Riemannsche Metrik. Variable Bilinearformen. 10. Riemnnsche Geometrie I: Riemnnsche Metrik Wir können in der hyperbolischen Geometrie noch nicht wirklich messen. Hierfür bruchen wir ein Riemnnsches Längen- und Winkelmß, d.h. eine Riemnnsche Geometrie.

Mehr

Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen

Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen Teil 1: Rechenregeln us der Mittelstufe Allgemeine Termumformungen Kommuttivgesetz: Bei reinen Produkten oder Summen ist die Reihenfolge egl x y z = z y x = x z y =.. x+y+z = z+y+x = x+z+y =.. Ausklmmern:

Mehr

Mittelwerte und Zahlenfolgen Beat Jaggi, beat.jaggi@phbern.ch

Mittelwerte und Zahlenfolgen Beat Jaggi, beat.jaggi@phbern.ch vsmp sspmp ssimf Mittelwete ud Zhlefolge Bet Jggi, bet.jggi@phbe.ch Eileitug Ds Bilde vo Mittelwete ist ei zetles Kozept i de Mthemtik: Lgemsse i de Sttistik (Mittelwet, Medi, Modus); Mitte, Mittelliie

Mehr

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Mthemtik: Mg Schmid Wolfgng Arbeitsbltt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Bisher hben wir die Lge von Punkten und Gerden lediglich in der Ebene betrchtet. Nun wollen wir die Lge dieser

Mehr

S 1. Definition: Ein endlicher Automat ist ein 5-Tupel. Das endliche Eingabealphabet

S 1. Definition: Ein endlicher Automat ist ein 5-Tupel. Das endliche Eingabealphabet Der endliche Automt Modell: Eingend rechtsseitig unegrenzt F F F F F F F F F F F F F F Lesekopf S 1 Definition: Ein endlicher Automt ist ein 5-Tupel A = ( Σ;S;F;s 0 ; ϕ ) Dei ist Σ= {e 1;e 2...e n} Ds

Mehr

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x Bltt 1: Hilfe zur Umformung von Gleichungen mit vielen Vriblen Im Mthemtikunterricht hben Sie gelernt, wie mn Gleichungen mit einer Vriblen umformt, um diese Vrible uszurechnen. Meistens hieß sie. In Physik

Mehr

2.12 Dreieckskonstruktionen

2.12 Dreieckskonstruktionen .1 Deieckskonstuktionen 53.1 Deieckskonstuktionen.1.1 B aus a, b und c. Keis um mit Radius b 3. Keis um B mit Radius a 4. Schnittpunkt de Keise ist Bemekung: Es entstehen zwei konguente B..1. B aus α,

Mehr

Das Röthenbacher Saure-Zipfel-Flatrate-Turnier

Das Röthenbacher Saure-Zipfel-Flatrate-Turnier Ds Röthnbch Su-Zipfl-Fltt-Tuni Lngwil im Jnu? Nicht mit uns! D s R ö t h Bi uns ght s dn Sun Zipfln n dn Kgn! Di Bognschützn d SSG Röthnbch ldn hzlich in zum 4. Röthnbch Su-Zipfl-Fltt-Tuni m Smstg, dn

Mehr

In der Stadt unterwegs

In der Stadt unterwegs 11 In der Stdt unterwegs 1 2 6 7 8 FOLGE 11: GUSTAV HEINEMANN CD 2 01 1 Sehen Sie die Fotos n. Ws meinen Sie? b Wen sucht Niko? Wrum ht Niko Blumen dbei? 2 Ws ist richtig? Niko nimmt... Ich glube, Niko

Mehr

Download. Grundlagen Nähen und Sticken. Textiles Gestalten an Stationen. Stationen für das Textile Gestalten. A. Haschtmann, C.

Download. Grundlagen Nähen und Sticken. Textiles Gestalten an Stationen. Stationen für das Textile Gestalten. A. Haschtmann, C. Download A. Haschtmann, C. Spellne Gundlagen Nähen und Sticken Stationen fü das Textile Gestalten Downloadauszug aus dem Oiginaltitel: Gundschule Alena Haschtmann Cathin Spellne Textiles Gestalten an Stationen

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:

Mehr

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration Integrieren Regeln (f() + g())d = f()d + g()d c f()d = c f()d b f()d = f()d b Einige Integrle die mn uswendig kennen sollte s d = s + s+ + C (für s ) d = ln + C cos d = sin + C sin d = cos + C sinh d =

Mehr

DAS JUGENDKONTO, das NICHT NUR AUF

DAS JUGENDKONTO, das NICHT NUR AUF DAS JUGENDKONTO, ds NICHT NUR AUF dein GELD AUFPASST. Hndy oder Lptop 1 Jhr grtis Versichern!* Mitten im Leben. *) Näheres im Folder FÜR ALLE VON 14-19, DIE MITTEN IM LEBEN STEHEN! Mit 14 Lebensjhren mcht

Mehr

Satz des Pythagoras. c 2. a 2. b 2

Satz des Pythagoras. c 2. a 2. b 2 Stz des Pythgors 01 c b Hypotenusenqudrt = Summe der beiden Kthetenqudrte ² = c² b² = c² b² ² + b² = c² b² = c² ² b= c² ² c² = ² + b² c= ² + b² 0 Der Stz des Pythgors und seine rechnerische Anwendung Beispiel:

Mehr

Phi- Geometrie 1. Dritte Übungen aus der heiligen Geometrie zum persönlichen Nachvollzug und zur Vertiefung. Von Franz Delaquis

Phi- Geometrie 1. Dritte Übungen aus der heiligen Geometrie zum persönlichen Nachvollzug und zur Vertiefung. Von Franz Delaquis Pi- Geometie Ditte Übungen us de eiligen Geometie zum pesönlicen Ncvollzug und zu Vetiefung. Von Fnz Delquis Aus den Quellen des eindücklicen Buces Vom ewig beginnenden Ende von Andes OttigeAmmnn, AnOA-

Mehr

Internet, Telekommunikation und Geld

Internet, Telekommunikation und Geld Internet, Telekommuniktion und Geld Aufgbe 1: Schreiben Sie möchten eine CD im Internet kufen, ber Sie wissen nicht, wie Sie die Rechnung bezhlen sollen. Sie rufen die Firm n, ber es ist immer besetzt.

Mehr

Wie beschreibt man Prozesse? Wie beschreibt man Prozesse? Nicht nur eine Matrix, sondern viele Matrizen 0,5 0, 2 0,3 A 0, 2 0,7 0,1

Wie beschreibt man Prozesse? Wie beschreibt man Prozesse? Nicht nur eine Matrix, sondern viele Matrizen 0,5 0, 2 0,3 A 0, 2 0,7 0,1 25.11.2014 Nicht nur eine Mtrix, sondern viele Mtrizen 0,5 0, 2 0,3 A 0, 2 0,7 0,1 015 0,15 0,75 075 01 0,1 Wie beschreibt mn Prozesse? Mkov-Modell Modell Mrkov- Prozess Mrkov-Kette ber keine Mtrize und

Mehr

1. Ableitung von Funktionen mit einer Veränderlichen

1. Ableitung von Funktionen mit einer Veränderlichen . Ableitung von Funktionen mit einer Veränerlichen. Algebrische Interprettion Die Ableitung einer Funktion f f f+ f = lim. 0 = ist efiniert ls In Worten usgerückt ist ie Ableitung er Grenzwert er Änerungsrte

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

Deister Süntel. rund um und. HERRMANN I M M O B I L I E N Bauen & wohnen. Nicht Dallas oder Denver sondern Springe* IDEEN FÜR JEDEN

Deister Süntel. rund um und. HERRMANN I M M O B I L I E N Bauen & wohnen. Nicht Dallas oder Denver sondern Springe* IDEEN FÜR JEDEN HERRMANN I M M O B I L I E N Buen & wohnen und um und Deiste Süntel AUSGABE XV Novembe 2011 Exposé 11-050 K *Spine oßzüies und individuelles Einfmilienhus, seh uhie Hnle in Wldndnähe, c. 380 m² Wfl. zzl.

Mehr

Sicherheitssysteme Digitale Videoüberwachung

Sicherheitssysteme Digitale Videoüberwachung Sicherheitssysteme Digitle Videoüberwchung PM11 M11_A- 6-4- 1 Sie hben lles unter Kontrolle. Für Objekte ller Größen Viele Unternehmen benötigen mehr ls nur eine punktuelle Videoüberwchung. Kom- Lösungen.

Mehr

Integrationsmethoden

Integrationsmethoden Universität Perborn Dezember 8 Institut für Mthemtik C. Kiser Integrtionsmethoen Prtielle Integrtion (Prouktintegrtion) Unbestimmte Integrtion er Prouktregel (u v) () = u ()v() + u()v () liefert (u v)()

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

REGSAM-Handbuch. für neue Facharbeitskreissprecherinnen und -sprecher

REGSAM-Handbuch. für neue Facharbeitskreissprecherinnen und -sprecher REGSAM-Hndbuch für neue Fchrbeitskreissprecherinnen und -sprecher Inhlte Vorwort. 2 Über REGSAM. o Wozu REGSAM? o REGSAM holt lle Hndelnden n einen Tisch o Wie wird gerbeitet? Oder: Die Gremien o Zentrler

Mehr

Teilbereich 5: Exponential Funktionen 1. Grundkursniveau. Hier eine Musteraufgabe mit Lösung Auf CD alles komplett. Datei Nr

Teilbereich 5: Exponential Funktionen 1. Grundkursniveau. Hier eine Musteraufgabe mit Lösung Auf CD alles komplett. Datei Nr Püfungsaufgaben Mündliches Abitu Analysis Teilbeeich 5: Eponential Funktionen Gundkusniveau Hie eine Musteaufgabe mit Lösung Auf CD alles komplett Datei N. 495 Fiedich Buckel Oktobe 003 INTERNETBIBLIOTHEK

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (4)

Einführung in die Physik I. Dynamik des Massenpunkts (4) Einfühung in die Physik I Dynmik des Mssenpunkts (4) O. von de Lühe und U. Lndgf Gvittion Die Gvittionswechselwikung ist eine de fundmentlen Käfte in de Physik m 1 m Sie wikt zwischen zwei Mssen m 1 und

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6. Vorbemerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Opertionen. Sie heben sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

Gruppentheoretische Methoden in der Physik 1 Prof. Dr. H.-R. Trebin Auszug aus dem Vorlesungsmanuskript, WS 06/07

Gruppentheoretische Methoden in der Physik 1 Prof. Dr. H.-R. Trebin Auszug aus dem Vorlesungsmanuskript, WS 06/07 1 Guppentheoetische Methoden in de Physik 1 Pof. D. H.-R. Tebin Auszug aus dem Volesungsmanuskipt, WS 06/07 3.3.3 Die eigentlichen Punktguppen Diese Punktguppen enthalten keine Spiegelungen und keine Invesion.

Mehr

Verschaffe dir den Durchblick!

Verschaffe dir den Durchblick! Veschaffe di den Duchblick! Kennst du schon das geheimnisvolle Vitamin A? Mit folgenden «Duchblicken» tauchst du tiefe in die vebogene Welt de Vitamine und besondes des Vitamins A. Du kannst sowohl alle

Mehr

Diplom-Lehrgang Lebens- und Sozialberatung

Diplom-Lehrgang Lebens- und Sozialberatung Ausbildungsktlog Diplom-Lehrgng Lebens- und Sozilbertung Sttlich-Zertifiziert Akdemie des Österreichischen Instituts für Gnzheitliche Therpie - ÖIGT Inhlt ÖIGT-Akdemie für Bertungs- und Gesundheitsberufe...

Mehr

Einführungsmöglichkeiten des Skalarprodukts. r r

Einführungsmöglichkeiten des Skalarprodukts. r r Einfühungsmöglihkeiten des Sklpodukts Jügen Zumdik I. Geometishe Zugänge im Euklidishen Vektoum Euklidishe Länge eines Vektos ist eeits eingefüht Polem Winkel zwishen Vektoen R² α β ϕ α-β osϕ osα-β osαosβ

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Der Weg zum Billett. Der neue TNW-Automat einfach praktisch

Der Weg zum Billett. Der neue TNW-Automat einfach praktisch Der neue TNW-Automt einfch prktisch NE Der Weg zum Billett Ob Einzelbillette, Mehrfhrtenkrte oder $ mit dem neuen Automten kommen Sie schnell und einfch zum gewünschten Billett. Auf den Innenseiten finden

Mehr

7.4. Das Komprimieren von Daten

7.4. Das Komprimieren von Daten 7.4. Ds Kompimieen von Dten 7.4.1. Einfühung Die ständig zunehmende Menge n mittels Rechne zu veeitende Dten ht in den vegngenen Jhen zu Speichemedien mit extem hohe Speichepzität gefüht. So wuden noch

Mehr

Exkurs: Portfolio Selection Theory

Exkurs: Portfolio Selection Theory : Litetu: Reinhd Schmidt und Ev Tebege (1997): Gundzüge de Investitions- und Finnzieungstheoie, 4. Auflge, Wiesbden: Gble Velg BA-Mikoökonomie II Pofesso D. Mnfed Königstein 1 Aktien und Aktienenditen

Mehr

schreien er schrie halten er hielt steigen er stieg schweigen er schwieg fallen er fiel

schreien er schrie halten er hielt steigen er stieg schweigen er schwieg fallen er fiel Wörter mit ie Amnd und mir ist etws ufgefllen. Ws denn? Bei vielen unwörtern schreibt mn in der Vergngenheit ein ie. 1 ies die Wortpre lut und präge sie dir gut ein. lufen rufen schlfen lssen stoßen ich

Mehr

EXPOSE. Kleines renovierungsbedürftiges Einfamilienhaus in Süden von Halle Halle OBJEKT 5541 HÄUSER. Kirchhof & Schön Immobilienberatung GbR

EXPOSE. Kleines renovierungsbedürftiges Einfamilienhaus in Süden von Halle Halle OBJEKT 5541 HÄUSER. Kirchhof & Schön Immobilienberatung GbR OBJEKT 5541 HÄUSER Kleines renovierungsbedürftiges Einfmilienhus in Süden von Hlle 06132 Hlle Eckdten Objektrt Häuser Bujhr 1930 Lgert Stdtrnd Kufpreis 26.000,00 Gesmtfläche 105 m² Grundstücksfläche 119

Mehr

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen. Trnsformtionsstz von Sebstin üller Integrtion über Normlgebiete Allgemein knn mn im R n ein Normlgebiet wie folgt definieren: G : { R n 1 b, ϕ 1 ( 1 ) ψ 1 ( 1 ), ϕ ( 1, ) 3 ψ ( 1, ),... ϕ n 1 ( 1,...,

Mehr

Brüche gleichnamig machen

Brüche gleichnamig machen Brüche gleichnmig mchen L Ds Erweitern von Brüchen (siehe L ) ist lediglich ein Instrument, ds vorwiegend eingesetzt wird, um Brüche mit unterschiedlichem Divisor gleichnmig zu mchen. Brüche gleichnmig

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

Wir feiern 25jähriges Jubiläum feiern Sie mit!

Wir feiern 25jähriges Jubiläum feiern Sie mit! W f 25jähgs Juläum f S mt Zhlch Juläums-Akto, gussoll Vkostug, Fchtug, Gwspl ud l gut Lu wt S d Edlwss-Apothk. Ut dm Motto GESUND VON KOPF BIS FUSS wd 1.2.2014 gz Woch lg usgg gft. Nütz S us Juläumswoch

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte

Einführung in die Physik I. Kinematik der Massenpunkte Einfühung in die Phsik I Kinemik de Mssenpunke O. von de Lühe und U. Lndgf O und Geschwindigkei Wi bechen den O eines ls punkfömig ngenommenen Köpes im Rum ls Funkion de Zei Eindimensionle Posiion O O

Mehr

im Beruf Gespräche führen: Über Gepflogenheiten (Versammlungen, Feste und Geschenke) am Arbeitsplatz sprechen pressmaster/fotolia.

im Beruf Gespräche führen: Über Gepflogenheiten (Versammlungen, Feste und Geschenke) am Arbeitsplatz sprechen pressmaster/fotolia. 1 Sehen Sie die Fotos n und ergänzen Sie: Welches Wort psst? c pressmster/fotoli.com dp/c Jochen Lüke d e der Betriesusflug die Besprechung die Betriesversmmlung die Aschiedsfeier (von den Auszuildenden)

Mehr

PKV-Beitragsoptimierer-Auftragserteilung

PKV-Beitragsoptimierer-Auftragserteilung PKV-Beitagsoptimiee-Auftagseteilung zu einmaligen Beatung Bei dem Vesichee : mit de Vetagsnumme : fü folgende Pesonen : Auftaggebe Name : Geb.-Dat. : Staße : PLZ und Ot : Telefon : Mobil : E-Mail : Beuf

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr