Wasserwirtschaftliche Planungsmethoden

Größe: px
Ab Seite anzeigen:

Download "Wasserwirtschaftliche Planungsmethoden"

Transkript

1 Wasserwirtschaftliche Planungsmethoden 6. Optimierungsverfahren o.univ.prof. Dipl.Ing. Dr. H.P. Nachtnebel Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau 6 Optimierungsverfahren

2 Optimierungsverfahren Grundsätzlich zwischen Optimierungsverfahren mit - einer oder - mehreren Variablen unterschieden Weiters kann optimierende Funktion - linear - nicht linear sein 6 Optimierungsverfahren 2

3 Lineare Optimierung die Zielfunktion und die Restriktionen sind linear Zielfunktion Z = a+ b x x 1 + c 2 max x 1,2 Entscheidungsvariable Restriktionen (Beispiele) x 1 0 x 0 1 d x1 + e x2 f 6 Optimierungsverfahren 3

4 Lineare Optimierung Beispiel 3 Verfahren, um ein Produkt herzustellen, wobei verschiedene Ressourcen benötigt werden Verfahren 1 Verfahren 2 Verfahren 3 Verfügbare Elektroenergie Wasser Ziel x i Restriktionen max Energieverbrauch Wasserverbrauch 2 x1 + 3 x x 3 5 x1 + 2 x2 + 3 x3 x i Um eindeutige Lösung zu finden muss Entscheidungsbereich konvex sein 6 Optimierungsverfahren 4

5 Nicht lineare Optimierung Quadratische Optimierung Zielfunktion Z 2 2 = ( x1 4) + ( x2 5) min Abb.:quadratische Optimierung graphisch 6 Optimierungsverfahren 5

6 Nicht lineare Optimierung Wenn keine Restriktionen Optimum dort wo erste Ableitung 0 ist df dx = 0 Probleme mit Restriktionen in Probleme ohne Restriktionen Zielfunktion F(x) Restriktion g(x) < 0 neue Zielfunktion F'(x) = F(x)+λg(x) neue Variable (λ) 6 Optimierungsverfahren 6

7 Beispiel Hochwasserschutz für eine Gemeinde Gesucht: wirtschaftlich optimale Hochwasserschutz Bemessungszeit: 25 Jahre Entscheidungsvariable: Höhe des Dammes gegeben Funktionen für Beziehung des Abflusses (Q) und 6 Optimierungsverfahren 7

8 Beispiel Zielfunktion: maximaler Schutz bei minimalen Kosten ährlicher Schaden ohne Schutz: Schaden in 25 Jahren: Schaden in 25 Jahren mit HW-Schutz: (ohne Baukosten) - nicht lineare Optimierung ohne Restriktionen - edoch nicht differenzierbar 0 S( Q) f ( Q) dq S( Q) f ( Q) dq [ ] 2 25 (1 + i) (1 + i) (1 + ) 0 i Z = c S( Q) f( Q) dq+ BKQ ( A ) Q A Qa c S ( Q) f ( Q) dq Minumum 6 Optimierungsverfahren 8

9 Beispiel: Wasseraufteilung Optimierung mit Restriktionen Die verfügbare Wassermenge Q ist auf drei Nutzer (Nutzungen) aufzuteilen, wobei ein möglichst hoher Gewinn zu erzielen ist. Der Netto-Nutzen ist aber für ede Nutzung unterschiedlich. Es gilt: NB =a(1-exp(-bx)) Die Mengen x sind zu ermitteln, wobei gilt: x1+x2+x3 =Q 6 Optimierungsverfahren 9

10 6 Optimierungsverfahren 10 Beispiel: Wasseraufteilung { } { } = = = = Q x x b a X L Maximiere Q x Multiplier Lagrange Methode Die Q x wobei x b a X NB Maximiere ) ( )) exp( (1 ), ( : 0 : _ : )) exp( (1 ) ( : λ λ λ

11 6 Optimierungsverfahren 11 Beispiel: Wasseraufteilung ) ( ) ( ( ) ln( 1 _ 0 0, 0, 0, b b b b Q b a e b a b x Lösung Die L x L x L x L + + Π = = = = = = λ λ λ

12 Dynamische Optimierung Vorgangsweise für mehrstufige Entscheidungsprozesse Vorteil liegt darin, dass - hochkomplexe Probleme mit - großen Anzahl an Variablen - in eine Reihe von Untersystemen transferiert und diese Untersysteme rekursiv gelöst werden können 6 Optimierungsverfahren 12

13 Dynamische Optimierung Bewirtschaftung eines Speichers typisches dynamisches Optimierungsproblem Entscheidungsvariable ist Abgabemenge Q Man unterscheidet zw. deterministische dynamische Optimierung - eine gegebene Zuflussganglinie verwendet - und eine Zielfunktion stochastische dynamische Optimierung - Erwartungswert und sein Schwankungsbereich statt der fixen Zufallsgröße multiobektive dynamische Optimierung - mehrere Ziele (mit gegenläufigen Eigenschaften) - Zielgrößen sind ökonomische, ökologische und soziale Aspekte 6 Optimierungsverfahren 13

14 Dynamische Optimierung Probleme oft auf mehrere Weisen formuliert Teil der dynam. Optimierung dir effizienteste Lösung zu finden Haupteigenschaft fortschreitendes Netzwerk für Lösung von eder Stufe - wird abschließende Stufe - mit vorgegebenen Anzahl von Stufen erreicht 6 Optimierungsverfahren 14

15 Dynamische Optimierung Wenn Erträge unabhängig und additiv sind, ist f n [ r ( x, d ) + f ( x )] ( xn) = max n n n n 1 n 1 d n eine typische wiederkehrende Beziehung wobei x Zustandsgröße d Entscheidungsvariable r Ertragsfunktion n eine Stufe x n-1 Formel zur Transformation von Stufe zu Stufe f 0 (x 0 ) für alle abschließenden Stufen gegeben 6 Optimierungsverfahren 15

16 Bellman Kriterium Die rekursive Formulierung beruht auf dem Prinzip, dass man, - egal in welchem Zustand von welcher Stufe man sich befindet, - von diesem Zustand und dieser Stufe - in einer optimalen Art und Weise fortfahren muss Mathematisch ausgedrückt Z ( s ) max { NB ( x ) + Z ( s x )} = x s 6 Optimierungsverfahren 16

17 Bellman Kriterium Beispiel: 3 Nutzer haben Zugang zu einer Menge Q Jeder hat andere Nutzen- und Kostenstrukturen Wie ist die Ressource aufzuteilen? 6 Optimierungsverfahren 17

18 Beispiel Angenommen, dass nur diskrete Mengen 0, 1, 2, 3, 4, 5 möglich Q=5 ist gegeben a, b, c, d gegeben Nutzen: Kosten: Restriktionen: NB K = = a c x ( 1 exp( b x d x x = Q > 0 )) Zielfunktion: Z Q) = max NB1 ( x1 ) + x1 Q NB2 ( x ) + ( NB ( x )) ( max 2 max x Q x 0 x Q x x Optimierungsverfahren 18

19 Beispiel für Q-x 1 =s 2 Q-x 1 -x 2 =s 3 allgemeine Darstellung (Ballmann Formulierung): Z ( s ) { ( ) ( )} NB x + Z s x = max x s 6 Optimierungsverfahren 19

20 Beispiel Fall x 1 =0 welche Optionen für x 2 und x 2 =0 welche Optionen fürx 3 6 Optimierungsverfahren 20

21 Beispiel Nutzenmatrix für einzelne Nutzer x NB 1 (x ) NB 2 (x ) NB 3 (x ) ,5 6,5-6, , ,6 10,9 6, ,6 11,5 5 13,1 7 15,6 daraus Zuerst optimale Menge für den Benutzer 3 dann in Abhängigkeit davon die Mengen für die Benutzer 2 und 1 6 Optimierungsverfahren 21

22 Beispiel NB 3 (x 3 ) s 3 x f 3 (s 3 ) x 3 * , , ; ,9 0 6,3 6, ,9 0 6,3 11,5 11, ,9 0 6,3 11,5 15,6 15,6 5 f (x ) eweils maximaler Wert x * gibt optimale Entscheidung an NB 2 (x 2 +Z 3 (s 3 )) s 2 x f 2 (s 2 ) x 2 * ,5 6, ,5 10,1 10, ,3 6,5 10,1 10,9 10, ,5 12,8 10,1 10,9 9,6 12, , ,4 10,9 9, NB 2 (x 2 +Z 3 (s 3 )) Q x f 1 (Q) x 1 * ,3 13,9 16,7 16,5 13, größten Nutzen bei Kombination x 1 =0 x 2 =1 NB = 18, 0 x 3 =4 6 Optimierungsverfahren 22

23 Dynamische Optimierung Fallbeispiel Dynamische Programmierung bei der Bewirtschaftung von einem Wasserreservoir in Thailand 6 Optimierungsverfahren 23

24 Bewirtschaftung von einem Wasserreservoir Pasak Damm Mehrzweckdamm in der Lopbuir Provinz in Zentral Thailand Einzugsgebiet ist km² für Bewässerung, Hochwasserschutz und Schifffahrt verwendet Zielfunktion Verluste durch Wassermangel und Überflutungen zu minimieren f ( d ) = min{ Loss( R )} t Entscheidungsvariablen d t - Speicherinhalt zum Zeitpunkt t+1 (S t+1 ) oder - Abfluss zum Zeitpunkt t (R t ) sein t R t Abfluss aus dem Speicher 6 Optimierungsverfahren 24

25 Bewirtschaftung von einem Wasserreservoir Zustandsvariablen von Art der Programmierung abhängig - bei der deterministischen dynamischen Programmierung Speicherinhalt zum Zeitpunkt t - bei der stochastischen dynamischen Programmierung Speicherinhalt S t und der Zufluss I t Eingangsdaten der monatliche oder mittlere monatliche Zufluss die mittlere monatliche potentielle Verdunstung monatliche oder mittlere monatliche Wasserbedarf 6 Optimierungsverfahren 25

26 Bewirtschaftung von einem Wasserreservoir Ergebnisse des Modells sind das Wasserdefizit an eder Bewässerungsstelle die Verluste durch Wassermangel und Überflutungen die optimale Bewirtschaftung Um dynamische Programmierungsproblem zu lösen - Speicherinhalt diskretisiert und - Verlustfunktionen für Überschwemmungen und Wassermangel müssen aufgestellt werden 6 Optimierungsverfahren 26

27 Deterministische dynamische Programmierung (DDP) Annahme Zufluss ist bekannt (Unsicherheiten ignoriert) rekursive Gleichung für das Speicherziel f n t { } n+ 1 ( S ) = min Loss( R ) + f ( S ) t S t + 1 t t+ 1 t Ergebnis während Monsunzeit wird Wasser gespeichert in Trockenperiode Wasserabgabe sinnvolles Ergebnis Speicherinhalt April Juni August Oktober Dezember Februar Falls Schadensfunktion auch eine Funktion der Dauer der Trockenheit ist deterministische dynamische Programmierung nicht geeignet 6 Optimierungsverfahren 27

28 Stochastische dynamische Programmierung (SDP) probabilistische Verteilung beim Zufluss wird berücksichtigt Zufluss in Klassen eingeteilt - gleiche Klassengröße - Klassen gleicher Wahrscheinlichkeiten rekursive Funktion f n t = kilt kilt Rt t n 1 ( k, i) min Loss ( R ) + P f ( l, ) anfängliches Speichervolumen und Zufluss sind Variablen mit bedingter Wahrscheinlichkeit i t+ 1 6 Optimierungsverfahren 28

29 Stochastische dynamische Programmierung (SDP) unter der Annahme - Speicher am Beginn des Jahres voll und - Zufluss eden Monat in der höchsten Klasse Ergebnis obere Regelkurve unter der Annahme - Zu Beginn des Jahres ist Inhalt minimal - Zufluss eden Monat in der niedrigsten Klasse Ergebnis untere Regelkurve Reservoir wird nie mit mehr oder weniger Inhalt als der beiden Regelkurven bewirtschaftet bei Verwendung eines Vorhersagemodell für Zufluss sehr nützliches Modell 6 Optimierungsverfahren 29

30 Multi-obektive stochastische dynamische Programmierung (MOSDP) Studie beachtet zwei unterschiedliche Ziele - Verluste durch Wassermangel und Überschwemmungen zu minimieren - Fehlerrisiko zu minimieren Bewirtschaftung abhängig von - der Schadensfunktion - einem zusätzlich hypothetischen Nachteil Variation des Nachteiles verschiedene Bewirtschaftungspolitiken hypothetische Nachteil wurde von 0 bis variiert Kombinationen mit Zufluss, Speicherinhalt zu Beginn berechnet 6 Optimierungsverfahren 30

31 Multi-obektive stochastische dynamische Programmierung (MOSDP) Erhaltene Bewirtschaftungsregeln Wenn der Zufluss und der Speicherinhalt hoch sind mehr Wasser zu Beginn des Monsuns ablassen. Speicherinhalt erreicht Maximum in Perioden mit Spitzenzufluss Wenn der Speicherinhalt hoch ist, der Zufluss aber gering weniger Wasser zu Beginn der Auffüllperioden ablassen, aber mehr während Perioden mit Spitzenzufluss Wenn der Speicherinhalt gering ist, aber der Zufluss hoch weniger Wasser ablassen um das Reservoir früher aufzufüllen Wenn sowohl der Speicherinhalt als auch der Zufluss niedrig Ergebnis nicht signifikant von dem mit SDP erhaltenen verschieden 6 Optimierungsverfahren 31

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Hinreichende Bedingung für lokale Extrema Voraussetzungen Satz D R n konvex und offen Funktion f : D R zweimal stetig partiell differenzierbar

Mehr

Kapitel 2. Mathematik für Mikroökonomie

Kapitel 2. Mathematik für Mikroökonomie Kapitel Mathematik für Mikroökonomie 1 Mathematik der Optimierung Ökonomische Theorien basieren auf der Annahme, dass die Agenten versuchen, den optimalen Wert einer Funktion zu wählen. Konsumenten maximieren

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

(Lineare) stochastische Optimierung

(Lineare) stochastische Optimierung (Lineare) stochastische Optimierung Bsp: Aus zwei Sorten Rohöl wird Benzin und Heizöl erzeugt. Die Produktivität sowie der Mindestbedarf (pro Woche) und die Kosten sind in folgender Tabelle angegeben:

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Gliederung 1 : Einführung 2 Differenzieren 2 3 Deskriptive 4 Wahrscheinlichkeitstheorie

Mehr

Kuhn-Tucker Bedingung

Kuhn-Tucker Bedingung Kapitel 13 Kuhn-Tucker Bedingung Josef Leydold Mathematik für VW WS 017/18 13 Kuhn-Tucker Bedingung 1 / Optimierung unter Nebenbedingungen Aufgabe: Berechne das Maximum der Funktion f (x, y) g(x, y) c,

Mehr

Kapitel 12. Lagrange-Funktion. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28. f (x, y) g(x, y) = c. f (x, y) = x y 2

Kapitel 12. Lagrange-Funktion. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28. f (x, y) g(x, y) = c. f (x, y) = x y 2 Kapitel 12 Lagrange-Funktion Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28 Optimierung unter Nebenbedingungen Aufgabe: Berechne die Extrema der Funktion unter der Nebenbedingung

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Optimierung: Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Optimierungsprobleme Optimierung Suche nach dem Maximum oder Minimum

Mehr

Dynamische Optimierung

Dynamische Optimierung Dynamische Optimierung Mike Hüftle 28. Juli 2006 Inhaltsverzeichnis 1 Einleitung 2 1.1.................................... 2 2 Dynamisches Optimierungmodell 3 2.1 Grundmodell der dynamischen Optimierung............

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Theorie: Quadratische Funktionen

Theorie: Quadratische Funktionen 1 Theorie: Quadratische Funktionen Ben Hambrecht Inhaltsverzeichnis 1 Zahlenfolgen und ihre Differenzen 2 2 Parabeln 3 3 Einfache quadratische Funktionen 4 4 Allgemeine quadratische Funktionen 5 5 Quadratische

Mehr

(3D-)Extrema unter Nebenbedingungen. Problemstellung (lokale Optimierung)

(3D-)Extrema unter Nebenbedingungen. Problemstellung (lokale Optimierung) (3D-)Extrema unter Nebenbedingungen Wir beschränken uns wieder (meistens) auf Funktionen von zwei Variablen x, y. Bei drei oder mehr Variablen x 1,..., x n sind die gleichen Techniken analog anwendbar,

Mehr

Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009

Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009 Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009 Daten Modelle Steuerung Wilfried Grossmann Teil 3: Steuerung Mathematische Modelle werden häufig dazu verwendet um ein optimales Verhalten zu bestimmen

Mehr

Übung 5, Analytische Optimierung

Übung 5, Analytische Optimierung Übung 5, 5.7.2011 Analytische Optimierung Aufgabe 5.1 Bei der Herstellung von Konserven werden für Boden und Deckel bzw. für den Konservenmantel verschiedene Materialien verwendet, die g 1 = bzw. g 2 =

Mehr

Aufgabensammlung zum UK Mathematische Optimierung

Aufgabensammlung zum UK Mathematische Optimierung Aufgabensammlung zum UK Mathematische Optimierung Mehrdimensionale Analysis Stetigkeit. Man bestimme den natürlichen Definitionsbereich D f der folgenden Funktionen f: a) f(x, y) = ln(x y ) b) f(x, y)

Mehr

Teil II Optimierung. Modellgestützte Analyse und Optimierung Kap. 5 Einführung Optimierung. Peter Buchholz 2006

Teil II Optimierung. Modellgestützte Analyse und Optimierung Kap. 5 Einführung Optimierung. Peter Buchholz 2006 Teil II Optimierung Gliederung 5 Einführung, Klassifizierung und Grundlagen 6 Lineare Optimierung 7 Nichtlineare Optimierung 8 Dynamische Optimierung (dieses Jahr nur recht kurz) (9 Stochastische Optimierungsmethoden

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Differentialrechnung für Funktionen mehrerer

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

Bildverarbeitung: Kontinuierliche Energieminimierung. D. Schlesinger BV: () Kontinuierliche Energieminimierung 1 / 9

Bildverarbeitung: Kontinuierliche Energieminimierung. D. Schlesinger BV: () Kontinuierliche Energieminimierung 1 / 9 Bildverarbeitung: Kontinuierliche Energieminimierung D. Schlesinger BV: () Kontinuierliche Energieminimierung 1 / 9 Idee Statt zu sagen, wie die Lösung geändert werden muss (explizite Algorithmus, Diffusion),

Mehr

Operations Research II (Nichtlineare und dynamische Optimierung)

Operations Research II (Nichtlineare und dynamische Optimierung) Operations Research II (Nichtlineare und dynamische Optimierung) 5. April 007 Frank Köller,, Hans-Jörg von Mettenheim & Michael H. Breitner 8.4.007 # Nichtlineare Optimierung: Überblick Allgemeine Form:

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2018 / 2019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen

Mathematische Werkzeuge R. Neubecker, WS 2018 / 2019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 018 / 019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen 1 Optimierung Optimierungsprobleme Suche nach dem Maximum oder Minimum

Mehr

7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9.

7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9. 7. Übung: Aufgabe 1 b), c), e) Aufgabe a), c), e) Aufgabe 3 c), e) Aufgabe 4 b) Aufgabe 5 a) Aufgabe 6 b) Aufgabe 7 e) Aufgabe 8 c) Aufgabe 9 a), c), e) Aufgabe 10 b), d) Aufgabe 11 a) Aufgabe 1 b) Aufgabe

Mehr

Substitutionsverfahren vs. Lagrange-Methode

Substitutionsverfahren vs. Lagrange-Methode Substitutionsverfahren vs. Lagrange-Methode 1 Motivation Substitutionsverfahren und Lagrange-Methode sind Verfahren, die es ermöglichen, Optimierungen unter Nebenbedingungen durchzuführen. Die folgende

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar Statistische Methoden in der Physik Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen

Mehr

Beispiel 6 (Einige Aufgaben zur Gleichverteilung)

Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Aufgabe (Anwendung der Chebyshev-Ungleichung) Sei X eine Zufallsvariable mit E(X) = µ und var(x) = σ a) Schätzen Sie die Wahrscheinlichkeit dafür, daß

Mehr

Musterlösung zu Blatt 1

Musterlösung zu Blatt 1 Musterlösung zu Blatt Analysis III für Lehramt Gymnasium Wintersemester 0/4 Überprüfe zunächst die notwendige Bedingung Dfx y z = 0 für die Existenz lokaler Extrema Mit x fx y z = 8x und y fx y z = + z

Mehr

Übung zum IS-LM Modell. Vorbereitet durch: Florian Bartholomae / Sebastian Jauch / Angelika Sachs

Übung zum IS-LM Modell. Vorbereitet durch: Florian Bartholomae / Sebastian Jauch / Angelika Sachs Übung zum IS-LM Modell (Blanchard-Illing Kapitel 5) Vorbereitet durch: Florian Bartholomae / Sebastian Jauch / Angelika Sachs Wahl des geldpolitischen Instrument Substanzielle Frage: Unter welchen Bedingungen

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

Mikroökonomik Prof. Dr. Stefan Klonner SoSe Übungsblatt 1

Mikroökonomik Prof. Dr. Stefan Klonner SoSe Übungsblatt 1 1 Funktionen Definition 1 (Funktion). Übungsblatt 1 Eine Funktion f(x) einer reellen Variable x mit Definitionsbereich D ist eine Regel, die jeder Zahl x in D eine reelle Zahl f(x) eindeutig zuordnet.

Mehr

Aufgabe des Monats Januar 2012

Aufgabe des Monats Januar 2012 Aufgabe des Monats Januar 2012 Ein Unternehmen stellt Kaffeemaschinen her, für die es jeweils einen Preis von 100 Euro (p = 100) verlangt. Die damit verbundene Kostenfunktion ist gegeben durch: C = 5q

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

2 Extrema unter Nebenbedingungen

2 Extrema unter Nebenbedingungen $Id: lagrange.tex,v 1.6 2012/11/06 14:26:21 hk Exp hk $ 2 Extrema unter Nebenbedingungen 2.1 Restringierte Optimierungsaufgaben Nachdem wir jetzt die bereits bekannten Techniken zur Bestimmung der lokalen

Mehr

Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen. Graphentheorie

Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen. Graphentheorie Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen Graphentheorie Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen Def.: eine Funktion n f :D mit D,x (x,...x

Mehr

Optimierung unter Nebenbedingungen

Optimierung unter Nebenbedingungen Optimierung unter Nebenbedingungen Kapitel 7: Optimierung unter Nebenbedingungen Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 1. Juli 2009 1 / 18 7.1 Bemerkung

Mehr

Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher

Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher Planen mit mathematischen Modellen 00844: Computergestützte Optimierung Leseprobe Autor: Dr. Heinz Peter Reidmacher 11 - Portefeuilleanalyse 61 11 Portefeuilleanalyse 11.1 Das Markowitz Modell Die Portefeuilleanalyse

Mehr

14.4 Warum die Methode der Lagrange-Multiplikatoren funktioniert

14.4 Warum die Methode der Lagrange-Multiplikatoren funktioniert 14 Optimierung unter Nebenbedingungen 14.4 Warum die Methode der Lagrange-Multiplikatoren funktioniert [1] Lösen sie die folgenden Probleme, indem Sie diese auf ein univariates Problem zurückführen. Zeigen

Mehr

Statistik für Ingenieure Vorlesung 3

Statistik für Ingenieure Vorlesung 3 Statistik für Ingenieure Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 14. November 2017 3. Zufallsgrößen 3.1 Zufallsgrößen und ihre Verteilung Häufig sind

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Aufgabe des Monats Juni 2011

Aufgabe des Monats Juni 2011 1 Aufgabe des Monats Juni 2011 Aufgabenteil a): Lesen Sie die Artikel, auf welche Weise der ehemalige Berliner Finanzsenator ermittelt, wie hoch das Essensbudget für einen Hartz-IV Haushalt ausfallen muss,

Mehr

Optimale Steuerung 1

Optimale Steuerung 1 Optimale Steuerung 1 Kapitel 5: Eindimensionale Nichtlineare Optimierung Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Beispiel: Optimierung des Rohrleitungsdurchmessers für den

Mehr

Dynamische Optimierung im Dienstleistungsbereich

Dynamische Optimierung im Dienstleistungsbereich Dynamische Optimierung im Dienstleistungsbereich Univ.-Prof. Dr. Jochen Gönsch Universität Duisburg-Essen Mercator School of Management Lehrstuhl für Betriebswirtschaftslehre, insb. Service Operations

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89 9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89 Beweis. Der Beweis erfolgt durch vollständige Induktion. Angenommen wir hätten den Satz für k 1 gezeigt. Dann ist wegen auch Damit ist f(g(y), y) = 0 0 = D y

Mehr

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass

Mehr

Newton- und und Quasi-Newton-Methoden in der Optimierung. János Mayer

Newton- und und Quasi-Newton-Methoden in der Optimierung. János Mayer Newton- und und Quasi-Newton-Methoden in der Optimierung János Mayer 1 GLIEDERUNG Newton-Methode für nichtlineare Gleichungen nichtlineare Gleichungssysteme freie Minimierung. Quasi-Newton-Methoden für

Mehr

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 Markus Sinnl 1 markus.sinnl@univie.ac.at http://homepage.univie.ac.at/markus.sinnl basierend auf Folien von Dr. Ivana Ljubic, Mag. Christian Spreitzer und Mag.

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

Über- und unterbestimmte

Über- und unterbestimmte Über- und unterbestimmte Systeme (verallgemeinerte Lösungen) Über- und unterbestimmte Systeme Ax = b ist genau dann für alle b R m eindeutig lösbar, wenn m = n und rk A = n. Falls m n oder rk A < min{m,

Mehr

Bachelor-Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL Wintersemester 2015/ Aufgabe Punkte

Bachelor-Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL Wintersemester 2015/ Aufgabe Punkte Bachelor-Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL Wintersemester 2015/16 23.02.2016 Bitte gut leserlich ausfüllen: Name: Vorname: Matr.-nr.: Wird vom Prüfer ausgefüllt: Aufgabe

Mehr

6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode

6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode 6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode In diesem Kapitel orientieren wir uns stark an den Büchern: 1. Knut Sydsæter, Peter Hammond, Mathematik für Wirtschaftswissenschaftler,

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Stützvektormethode Katharina Morik LS 8 Informatik 8.11.2011 1 von 38 Gliederung 1 2 Lagrange-Optimierung 2 von 38 Übersicht über die Stützvektormethode (SVM) Eigenschaften

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Dynamische Programmierung

Dynamische Programmierung Universität Bayreuth 29.06.08 1 2 3 4 5 Bezeichnungen und Formulierung Beispiel Lagerhaltungsproblem Beispiel Rucksackproblem Diskretes Dynamisches Optimierungsproblem Bezeichnungen und Formulierung Beispiel

Mehr

SYSTEMANALYSE 2 Kapitel 10: Einführung in die dynamische Optimierung gekoppelter Systeme

SYSTEMANALYSE 2 Kapitel 10: Einführung in die dynamische Optimierung gekoppelter Systeme Universität Koblenz-Landau Fachbereich 7: Natur-und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) SYSTEMANALYSE 2 Kapitel 10: Einführung in die dynamische Optimierung

Mehr

Ein Buch. Für Anwendungen des Stoffs in den Wirtschaftswissenschaften: Knut Sydsæter, Peter Hemmond: Mathematik für Wirtschaftswissenschaftler

Ein Buch. Für Anwendungen des Stoffs in den Wirtschaftswissenschaften: Knut Sydsæter, Peter Hemmond: Mathematik für Wirtschaftswissenschaftler Ein Buch Für Anwendungen des Stoffs in den Wirtschaftswissenschaften: Knut Sydsæter, Peter Hemmond: Mathematik für Wirtschaftswissenschaftler (Aber bei der Mathematik ein bisschen aufpassen!) 4 Extremstellen

Mehr

Kalmanfiter (1) Typische Situation für den Einsatz von Kalman-Filtern

Kalmanfiter (1) Typische Situation für den Einsatz von Kalman-Filtern Kalmanfiter (1) Typische Situation für den Einsatz von Kalman-Filtern Vorlesung Robotik SS 016 Kalmanfiter () Kalman-Filter: optimaler rekursiver Datenverarbeitungsalgorithmus optimal hängt vom gewählten

Mehr

Bearbeiten Sie 6 der 8 Aufgaben nach Ihrer Wahl.

Bearbeiten Sie 6 der 8 Aufgaben nach Ihrer Wahl. Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL (Prof. Dr. Lutz Arnold) Sommersemester 2011 16.8.2011 Bitte gut leserlich ausfüllen: Name: Vorname: Matr.-nr.: Wird vom Prüfer ausgefüllt:

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Stützvektormethode Katharina Morik LS 8 Informatik Technische Universität Dortmund 12.11.2013 1 von 39 Gliederung 1 Hinführungen zur SVM 2 Maximum Margin Methode Lagrange-Optimierung

Mehr

Mathematische Behandlung des Risikos in der Portfolio-Optimierung

Mathematische Behandlung des Risikos in der Portfolio-Optimierung Mathematische Behandlung des Risikos in der Portfolio-Optimierung Michael Manger Mathematisches Institut Universität Bayreuth Seminar Stochastische Dynamische Optimierung Bayreuth, 5. März 2008 Michael

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

3.3 Optimale binäre Suchbäume

3.3 Optimale binäre Suchbäume 3.3 Optimale binäre Suchbäume Problem 3.3.1. Sei S eine Menge von Schlüsseln aus einem endlichen, linear geordneten Universum U, S = {a 1,,...,a n } U und S = n N. Wir wollen S in einem binären Suchbaum

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Autonomes Kreuzungsmanagement für Kraftfahrzeuge

Autonomes Kreuzungsmanagement für Kraftfahrzeuge Autonomes Kreuzungsmanagement für Kraftfahrzeuge Trajektorienplanung mittels Dynamischer Programmierung Torsten Bruns, Ansgar Trächtler AUTOREG 2008 / Baden-Baden / 13.02.2008 Szenario Kreuzungsmanagement

Mehr

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h.

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h. Konvexe Menge Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, dh Kapitel Extrema konvex: h x + h y D für alle h [0, ], und x,

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

14. Das Minimumprinzip

14. Das Minimumprinzip H.J. Oberle Variationsrechnung u. Optimale Steuerung SoSe 2008 14. Das Minimumprinzip In diesem Abschnitt behandeln wir die Idee der dynamischen Programmierung, die auf Bellmann 31 (1957) zurückgeht und

Mehr

Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung

Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung 8. Optimierung Inhalt 8.1 Motivation 8.2 Optimierung ohne Nebenbedingungen 8.3 Optimierung unter Nebenbedingungen 8.4 Lineare Programmierung 8.5 Kombinatorische Optimierung 2 8.1 Motivation Viele Anwendungen

Mehr

Das REISE-Projekt: Risiko-basierte Planung von Hochwasserschutzkonzepten

Das REISE-Projekt: Risiko-basierte Planung von Hochwasserschutzkonzepten Das REISE-Projekt: Risiko-basierte Planung von Hochwasserschutzkonzepten D. Bachmann, H. Schüttrumpf 11. Symposium Flussgebietsmanagement beim Wupperverband Regionales Wasserwirtschaftsforum Institut für

Mehr

Vorlage für das Schulcurriculum Qualifikationsphase

Vorlage für das Schulcurriculum Qualifikationsphase Vorlage für das Schulcurriculum Qualifikationsphase Grundkurs/grundlegendes Anforderungsniveau Kompetenzen/ Fähigkeiten L1 Leitidee: Algorithmus und Zahl - lösen lineare Gleichungssysteme mithilfe digitaler

Mehr

118 Monotone Transformation der Zielfunktion

118 Monotone Transformation der Zielfunktion SoSe 16 (3D-)Extrema unter Nebenbedingungen Wir beschränken uns wieder (meistens) auf Funktionen von zwei Variablen x, y. Bei drei oder mehr Variablen x 1,..., x n sind die gleichen Techniken analog anwendbar,

Mehr

Prüfungsklausur Mathematik II für Wirtschaftsingenieure,

Prüfungsklausur Mathematik II für Wirtschaftsingenieure, HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Wirtschaftsingenieure, 15.7.2014 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 5 6 gesamt erreichbare P. 10

Mehr

Lineare (Un-)Gleichungen und lineare Optimierung

Lineare (Un-)Gleichungen und lineare Optimierung Lineare (Un-)Gleichungen und lineare Optimierung Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-6020 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung In der linearen

Mehr

Seminar: Finanzmathematik. Portfoliooptimierung im vollständigen Finanzmarktmodell. Katharina Hasow

Seminar: Finanzmathematik. Portfoliooptimierung im vollständigen Finanzmarktmodell. Katharina Hasow Seminar: Finanzmathematik Portfoliooptimierung im vollständigen Finanzmarktmodell Katharina Hasow 11. Mai 2010 1 Inhaltsverzeichnis 1 Einführung 1 1.1 Nutzenfunktion............................ 1 1.2 Formulierung

Mehr

Zeitreihenanalyse. H.P. Nachtnebel. Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau. Definitionen und Anwendung

Zeitreihenanalyse. H.P. Nachtnebel. Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau. Definitionen und Anwendung .. Zeitreihenanalyse H.P. Nachtnebel Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau Definitionen und Anwendung Definition Zeitreihe zeitliche Abfolge von Messwerten, deren Auftreten

Mehr

16. FUNKTIONEN VON MEHREREN VARIABLEN

16. FUNKTIONEN VON MEHREREN VARIABLEN 16. FUNKTIONEN VON MEHREREN VARIABLEN 1 Reelle Funktionen auf dem R 2 Wir betrachten Funktionen f(x 1, x 2 ) von zwei reellen Variablen x 1, x 2, z.b. f(x 1, x 2 ) = x 2 1 + x2 2, g(x 1, x 2 ) = x 2 1

Mehr

Objekt Attributwerte Klassifizierung X Y

Objekt Attributwerte Klassifizierung X Y AUFGABE : Entscheidungsbäume Betrachten Sie das folgende Klassifizierungsproblem: bjekt Attributwerte Klassifizierung X Y A 3 B 2 3 + C 2 D 3 3 + E 2 2 + F 3 G H 4 3 + I 3 2 J 4 K 2 L 4 2 ) Bestimmen Sie

Mehr

1 Einstimmung 2. 2 Die Reduktionsmethode 5. 3 Die Methode der Lagrange-Multiplikatoren 6. 4 *Ergänzungen und Verallgemeinerungen* 10

1 Einstimmung 2. 2 Die Reduktionsmethode 5. 3 Die Methode der Lagrange-Multiplikatoren 6. 4 *Ergänzungen und Verallgemeinerungen* 10 Universität Basel 9 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Extremwertprobleme mit Nebenbedingung Inhaltsverzeichnis 1 Einstimmung 2 2 Die Reduktionsmethode

Mehr

Wasserreservoir-Management als Beispiel für stochastische, dynamische Optimierung

Wasserreservoir-Management als Beispiel für stochastische, dynamische Optimierung Wasserreservoir-Management als Beispiel für stochastische, dynamische Optimierung (entnommen aus: Linear quadratic dynamic programming for water reservoir management, E.C. Özelkan et al., Applied Math.

Mehr

Extrema mit Nebenbedingungen

Extrema mit Nebenbedingungen Extrema mit Nebenbedingungen Gesucht ist das Extremum der Funktion f(x,y) = 5 x y unter der Nebenbedingung g(x,y) = x+y =. 5 y x In diesem einfachen Fall kann die Nebenbedingung nach einer Variablen aufgelöst

Mehr

Prof. Dr. Stefan Luckhaus WS 2013/14. Übungsserie 1. Mathematik für Wirtschaftswissenschaftler

Prof. Dr. Stefan Luckhaus WS 2013/14. Übungsserie 1. Mathematik für Wirtschaftswissenschaftler Prof. Dr. Stefan Luckhaus WS 203/4 Übungsserie Aufgabe. Seien f : R R, g : R R Funktionen, die wie folgt definiert sind: fx) =, gx) = x +. + x2 Stellen Sie die Funktionen als Quotienten von Polynomen dar.

Mehr

Inhaltsübersicht für heute:

Inhaltsübersicht für heute: Inhaltsübersicht für heute: Branch-and-Bound Konvexe Mengen, konvexe Hülle, konvexe Funktionen Relaxation Inhaltsübersicht für heute: Branch-and-Bound Konvexe Mengen, konvexe Hülle, konvexe Funktionen

Mehr

4.2 Moment und Varianz

4.2 Moment und Varianz 4.2 Moment und Varianz Def. 2.10 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: EX p

Mehr

Hydrologie und Flussgebietsmanagement

Hydrologie und Flussgebietsmanagement Hydrologie und Flussgebietsmanagement o.univ.prof. DI Dr. H.P. Nachtnebel Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau Wiederholung Statistische Grundlagen Definitionen der statistischen

Mehr

Fehlerfortpflanzung. M. Schlup. 27. Mai 2011

Fehlerfortpflanzung. M. Schlup. 27. Mai 2011 Fehlerfortpflanzung M. Schlup 7. Mai 0 Wird eine nicht direkt messbare physikalische Grösse durch das Messen anderer Grössen ermittelt, so stellt sich die Frage, wie die Unsicherheitsschranke dieser nicht-messbaren

Mehr

Zusatzübungen. Berechne alle Produkte zweier oben genannten Matrizen, die möglich sind (also A B, B A, C B,..., usw., wenn möglich).

Zusatzübungen. Berechne alle Produkte zweier oben genannten Matrizen, die möglich sind (also A B, B A, C B,..., usw., wenn möglich). Zusatzübungen (Lösungen am Ende) Aufgabe 1: ( ) ( ) 1 1 2 3 1 3 A =, B =, C = 3 1 2 2 5 2 0 Berechne alle Produkte zweier oben genannten Matrizen, die möglich sind (also A B, B A, C B,..., usw., wenn möglich).

Mehr

Maclaurinsche Reihe 1-E1. Ma 2 Lubov Vassilevskaya

Maclaurinsche Reihe 1-E1. Ma 2 Lubov Vassilevskaya Maclaurinsche Reihe 1-E1 Colin Maclaurin Colin Maclaurin (1698-1746), schottischer Mathematiker, der Erfinder der nach ihm benannten Maclaurinschen Reihe und Mitentwickler der Euler-Maclaurin-Formel. 1-E

Mehr

Bearbeiten Sie 6 der 8 Aufgaben nach Ihrer Wahl.

Bearbeiten Sie 6 der 8 Aufgaben nach Ihrer Wahl. Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL (Prof. Dr. Lutz Arnold) Wintersemester 2011/12 28.2.2012 Bitte gut leserlich ausfüllen: Name: Vorname: Matr.-nr.: Wird vom Prüfer ausgefüllt:

Mehr

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 }

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 } A Analsis, Woche Implizite Funktionen A Implizite Funktionen in D A3 Wenn man den Kreis mit Radius um, beschreiben möchte, dann ist { x, ; x + = } eine Möglichkeit Oft ist es bequemer, so eine Figur oder

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Extrema von Funktionen mit Nebenbedingung

Extrema von Funktionen mit Nebenbedingung Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen mit Nebenbedingung Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 6/7 837 Aufgabe Punkte): Gegeben sei das lineare Gleichungssystem Ax = b mit A = 6 3 und

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 7 1 Inhalt der heutigen Übung Statistik und Wahrscheinlichkeitsrechnung Vorrechnen der Hausübung D.9 Gemeinsames Lösen der Übungsaufgaben D.10: Poissonprozess

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr