Aufgabe des Monats Juni 2011

Größe: px
Ab Seite anzeigen:

Download "Aufgabe des Monats Juni 2011"

Transkript

1 1 Aufgabe des Monats Juni 2011 Aufgabenteil a): Lesen Sie die Artikel, auf welche Weise der ehemalige Berliner Finanzsenator ermittelt, wie hoch das Essensbudget für einen Hartz-IV Haushalt ausfallen muss, damit man sich ausgewogen ernähren kann. Aufgabeteil b): Sie sitzen für die SPD im Berliner Senat, agieren als Finanzsenator und möchten einen Speiseplan für Hartz-IV Empfänger aufstellen. Es wird angenommen, dass der Hartz-IV Empfänger die folgende Frühstücks- Nutzenfunktion besitzt: U = 2K 0,5 B 0,5 (1) wobei K die konsumierte Menge an Kaffee und B die konsumierte Menge an Brötchen symbolisieren. Die Variable U kennzeichnet das erreichte Nutzenniveau. Ein Nutzenniveau von U = 4 ist beispielsweise zu erreichen, wenn man vier Kaffee trinkt und ein Brötchen isst. Auf ein Nutzenniveau von U = 4 kommt man jedoch auch nach dem Genuss von zwei Brötchen und zwei Kaffee. Ein Kaffee kostet 5 Cent und ein Brötchen 20 Cent. Sie glauben, dass ein tägliches Nutzenniveau von U = 8 für das Frühstück ausreicht. Wie viel Geld benötigt der Hartz-IV Empfänger für sein tägliches Frühstück? Welche Mengen an Brötchen und Kaffee werden konsumiert? Ermitteln Sie das optimale Ergebnis entweder über einen geeigneten

2 2 Lagrangeansatz oder lösen Sie die Nebenbedingung nach einer Variable auf und setzen diese dann in die Kostenfunktion ein. Aufgabenteil c): Wie viel Geld würden Sie einem Hartz-IV Haushalt (Familie mit drei Kindern) insgesamt (incl. Kindergeld, Miete, Heizung, Ernährung, Kleidung, Bildung, etc.) pro Monat zugestehen, wenn Sie Finanzsenator wären? Beantworten Sie diese Frage bitte OHNE vorher im Internet nach einer Lösung zu suchen. (Diese Antwort wird nicht bewertet!) Aufgabenteil d): Versuchen Sie nun nachdem Sie die Frage c) beantwortet haben im Internet eine Lösung zu finden!

3 3 Musterlösung Aufgabenteil b: Lagrangeansatz Die Lagrange-Methode stellt eine Möglichkeit dar, Optimierungsaufgaben mit Nebenbedingungen (Restriktionen) zu lösen. Sie wird sehr häufig zur Lösung von ökonomischen Problemstellungen verwendet. Bei dem Lagrangeansatz wird zunächst entsprechend der Aufgabenstellung die Lagrange- Funktion (L) der folgenden Form aufgestellt: L = f(x 1, x 2 ) λ[g(x 1, x 2 ) c] max x 1,x 2,λ (2) Dabei ist f(x 1, x 2 ) die Zielfunktion, die maximiert bzw. minimiert werden soll, und g(x 1, x 2 ) = c stellt die Nebenbedingung dar. Diese muss nach Null umgestellt werden, damit man sie in die Lagrange-Funktion einbinden kann. λ ist der Lagrangeparameter (Lagrangemultiplikator). Die weitere Extremwertbestimmung erfolgt auf die übliche Weise: Die notwendigen Bedingungen werden abgeleitet (nach x 1, x 2 und λ) und das anschließende Gleichungssystem gelöst. Die Zielfunktion ist in diesem Fall die Kostenfunktion der Hartz-IV Empfänger muss seine Kosten minimieren: Kosten = 5 K + 20 B min K,B (3) Allerdings hat er dabei die ihm auferlegte Restriktion (Nebenbedingung) zu beachten, die besagt, dass sein tägliches Nutzenniveau U = 8 entsprechen soll. Also: 2K 0,5 B 0,5 = 8 (4) Um die Aufgabe zu mittels des Lagrangeansatzes zu lösen, stellt man diese Nebenbedingung nach Null um und stellt zusammen mit der Zielfunktion

4 4 die folgende Lagrange-Funktion auf: L = 5 K + 20 B λ [ 2K 0,5 B 0,5 8 ] min K,B,λ (5) Diese wird nun nach K, B und λ abgeleitet. Die notwendigen Bedingungen lauten: K = 5 λk 0,5 B 0,5 = 0 5 = λk 0,5 B 0,5 (6) B = 20 λk0,5 B 0,5 = 0 20 = λk 0,5 B 0,5 (7) λ = 2K0,5 B 0,5 8 = 0 (8) Dividiert man (7) durch (6), so erhält man: 4 = K B K = 4B. Wenn man nun dieses Ergebnis in (8) einsetzt, kann man die optimale Menge an Brötchen ermitteln: 2 (4B) 0,5 B 0,5 = 8 B = 2 (9) Die optimale Menge an Kaffee erhält man, wenn man dieses Ergebnis in die obige Beziehung einsetzt: K = 4 B = 4 2 = 8 Der Hartz-IV Empfänger konsumiert also 2 Brötchen und 8 Kaffee und er benötigt für dieses tägliche Frühstück: Kosten = = 80 Cent (10) Alternativer Ansatz Alternativ kann man diese Optimierungsaufgabe lösen, indem man die Nebenbedingung nach einer Variablen umstellt und dann in die Kostenfunktion einsetzt. Stellt man die Nebenbedingung (4) zum Beispiel nach B um, so ergibt sich: 2K 0,5 B 0,5 = 8 (2K 0,5 ) (11) B 0,5 = 4K 0,5 () 2 (12) B = 16 K (13)

5 5 Setzt man dies nun für B in die Kostenfunktion (3) ein, so erhält man: Kosten = 5 K K min K (14) Das Bilden der ersten und der zweiten Ableitung ergibt: Kosten = K 2 = 0 (15) Kosten = 640 K 3 Minimum (16) Die optimale Menge an Brötchen und Kaffee würde also tatsächlich die Kosten minimieren. Die optimale Menge an Kaffee ergibt sich aus der Bedingung erster Ordnung (15): K 2 = K 2 = 5 K 2 = 64 K = 8. Setzt man dieses Ergebnis in (13) ein, erhält man die optimale Menge an Brötchen: B = 16 8 = 2. Die Berechnung der benötigten Kosten ist identisch mit (10).

Substitutionsverfahren vs. Lagrange-Methode

Substitutionsverfahren vs. Lagrange-Methode Substitutionsverfahren vs. Lagrange-Methode 1 Motivation Substitutionsverfahren und Lagrange-Methode sind Verfahren, die es ermöglichen, Optimierungen unter Nebenbedingungen durchzuführen. Die folgende

Mehr

(3D-)Extrema unter Nebenbedingungen. Problemstellung (lokale Optimierung)

(3D-)Extrema unter Nebenbedingungen. Problemstellung (lokale Optimierung) (3D-)Extrema unter Nebenbedingungen Wir beschränken uns wieder (meistens) auf Funktionen von zwei Variablen x, y. Bei drei oder mehr Variablen x 1,..., x n sind die gleichen Techniken analog anwendbar,

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode

6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode 6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode In diesem Kapitel orientieren wir uns stark an den Büchern: 1. Knut Sydsæter, Peter Hammond, Mathematik für Wirtschaftswissenschaftler,

Mehr

Einführung in die Volkswirtschaftslehre

Einführung in die Volkswirtschaftslehre Einführung in die Volkswirtschaftslehre Übung 1: Mathematische Analyseinstrumente Dipl.-Volksw. J.-E.Wesselhöft/ Dipl.-Volksw. J.Freese Bachelor Modul Volkswirtschaftliche Analyse (WS-14-V-03) HT 2009

Mehr

Mikroökonomik Prof. Dr. Stefan Klonner SoSe Übungsblatt 1

Mikroökonomik Prof. Dr. Stefan Klonner SoSe Übungsblatt 1 1 Funktionen Definition 1 (Funktion). Übungsblatt 1 Eine Funktion f(x) einer reellen Variable x mit Definitionsbereich D ist eine Regel, die jeder Zahl x in D eine reelle Zahl f(x) eindeutig zuordnet.

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

Differentialrechnung bei Funktionen mehreren Variablen

Differentialrechnung bei Funktionen mehreren Variablen Kap. 6 Differentialrechnung bei Funktionen mehreren Variablen Im folgenden geht es um Funktionen des Typsf :R n R X... Y =f(x,...,x n ) X n Eine Weiterentwicklung der Differentialrechnung für solche Funktionen

Mehr

14.4 Warum die Methode der Lagrange-Multiplikatoren funktioniert

14.4 Warum die Methode der Lagrange-Multiplikatoren funktioniert 14 Optimierung unter Nebenbedingungen 14.4 Warum die Methode der Lagrange-Multiplikatoren funktioniert [1] Lösen sie die folgenden Probleme, indem Sie diese auf ein univariates Problem zurückführen. Zeigen

Mehr

Extrema mit Nebenbedingungen

Extrema mit Nebenbedingungen Extrema mit Nebenbedingungen Gesucht ist das Extremum der Funktion f(x,y) = 5 x y unter der Nebenbedingung g(x,y) = x+y =. 5 y x In diesem einfachen Fall kann die Nebenbedingung nach einer Variablen aufgelöst

Mehr

Übung 5, Analytische Optimierung

Übung 5, Analytische Optimierung Übung 5, 5.7.2011 Analytische Optimierung Aufgabe 5.1 Bei der Herstellung von Konserven werden für Boden und Deckel bzw. für den Konservenmantel verschiedene Materialien verwendet, die g 1 = bzw. g 2 =

Mehr

1 Envelope Theorem ohne Nebenbedingungen

1 Envelope Theorem ohne Nebenbedingungen Envelope Theorem ohne Nebenbedingungen Man betrachte das Maimierungsproblem V (α) = ma f (α,) Bedingung für ein Maimum ist f = 0 und die Lösung ist ein (α) Die Ableitung der Wertefunktion nach α i ist

Mehr

Musterlösung zu Blatt 1

Musterlösung zu Blatt 1 Musterlösung zu Blatt Analysis III für Lehramt Gymnasium Wintersemester 0/4 Überprüfe zunächst die notwendige Bedingung Dfx y z = 0 für die Existenz lokaler Extrema Mit x fx y z = 8x und y fx y z = + z

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

10 Extremwerte mit Nebenbedingungen

10 Extremwerte mit Nebenbedingungen 10 Extremwerte mit Nebenbedingungen 49 10 Extremwerte mit Nebenbedingungen Wir betrachten nun Extremwertaufgaben, bei denen nach dem Extremwert einer fx 1,, x n gesucht wird, aber die Menge der zulässigen

Mehr

Kapitel 2. Mathematik für Mikroökonomie

Kapitel 2. Mathematik für Mikroökonomie Kapitel Mathematik für Mikroökonomie 1 Mathematik der Optimierung Ökonomische Theorien basieren auf der Annahme, dass die Agenten versuchen, den optimalen Wert einer Funktion zu wählen. Konsumenten maximieren

Mehr

Substitutionsverfahren

Substitutionsverfahren Substitutionsverfahren 1 Motivation Wir stehen vor folgendem Problem: In unserem Betrieb kann unsere einzige Maschine Produkt A in zwei Stunden und Produkt B in einer Stunde produzieren. Die Maschine läuft

Mehr

2 Extrema unter Nebenbedingungen

2 Extrema unter Nebenbedingungen $Id: lagrange.tex,v 1.6 2012/11/06 14:26:21 hk Exp hk $ 2 Extrema unter Nebenbedingungen 2.1 Restringierte Optimierungsaufgaben Nachdem wir jetzt die bereits bekannten Techniken zur Bestimmung der lokalen

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1. Anwendungen des Satzes über implizite Funktionen 2. Stationäre Punkte implizit definierter Funktionen 3. Reguläre Punkte 4. Singuläre Punkte Ausblick auf die heutige

Mehr

Was versteht man unter Konsumenten- und Produzentenrente? Zeigen Sie diese Größen in einem Preis-Mengen-Diagramm.

Was versteht man unter Konsumenten- und Produzentenrente? Zeigen Sie diese Größen in einem Preis-Mengen-Diagramm. Klausuraufgaben für das Mikro 1 Tutorium Sitzung 1 WS 03/04 Aufgabe 1 Was versteht man unter Konsumenten- und Produzentenrente? Zeigen Sie diese Größen in einem Preis-Mengen-Diagramm. WS 04/05 Aufgabe

Mehr

Kapitel 12. Lagrange-Funktion. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28. f (x, y) g(x, y) = c. f (x, y) = x y 2

Kapitel 12. Lagrange-Funktion. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28. f (x, y) g(x, y) = c. f (x, y) = x y 2 Kapitel 12 Lagrange-Funktion Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28 Optimierung unter Nebenbedingungen Aufgabe: Berechne die Extrema der Funktion unter der Nebenbedingung

Mehr

118 Monotone Transformation der Zielfunktion

118 Monotone Transformation der Zielfunktion SoSe 16 (3D-)Extrema unter Nebenbedingungen Wir beschränken uns wieder (meistens) auf Funktionen von zwei Variablen x, y. Bei drei oder mehr Variablen x 1,..., x n sind die gleichen Techniken analog anwendbar,

Mehr

Aufgabe des Monats Januar 2012

Aufgabe des Monats Januar 2012 Aufgabe des Monats Januar 2012 Ein Unternehmen stellt Kaffeemaschinen her, für die es jeweils einen Preis von 100 Euro (p = 100) verlangt. Die damit verbundene Kostenfunktion ist gegeben durch: C = 5q

Mehr

Mathematische Methoden der VWL

Mathematische Methoden der VWL Mathematische Methoden der VWL Kapitel 2: Maximierung mit Nebenbedingungen Till Stowasser Klaus Schmidt, 2001 / Till Stowasser, 2014 LMU, Wintersemester 2014/2015 1 / 58 Syllabus Syllabus 2.1 Das Lagrange-Verfahren

Mehr

Prüfungsklausur Mathematik II für Wirtschaftsingenieure,

Prüfungsklausur Mathematik II für Wirtschaftsingenieure, HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Wirtschaftsingenieure, 06.07.2015 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 5 6 7 8 gesamt erreichbare

Mehr

1 Einstimmung 2. 2 Die Reduktionsmethode 5. 3 Die Methode der Lagrange-Multiplikatoren 6. 4 *Ergänzungen und Verallgemeinerungen* 10

1 Einstimmung 2. 2 Die Reduktionsmethode 5. 3 Die Methode der Lagrange-Multiplikatoren 6. 4 *Ergänzungen und Verallgemeinerungen* 10 Universität Basel 9 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Extremwertprobleme mit Nebenbedingung Inhaltsverzeichnis 1 Einstimmung 2 2 Die Reduktionsmethode

Mehr

Extrema von Funktionen mit Nebenbedingung

Extrema von Funktionen mit Nebenbedingung Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen mit Nebenbedingung Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Was versteht man unter Konsumenten- und Produzentenrente? Zeigen Sie diese Größen in einem Preis-Mengen-Diagramm.

Was versteht man unter Konsumenten- und Produzentenrente? Zeigen Sie diese Größen in einem Preis-Mengen-Diagramm. Klausuraufgaben für das Mikro 1 Tutorium Sitzung 1 WS 03/04 Aufgabe 1 Was versteht man unter Konsumenten- und Produzentenrente? Zeigen Sie diese Größen in einem Preis-Mengen-Diagramm. WS 04/05 Aufgabe

Mehr

Zusatzübungen. Berechne alle Produkte zweier oben genannten Matrizen, die möglich sind (also A B, B A, C B,..., usw., wenn möglich).

Zusatzübungen. Berechne alle Produkte zweier oben genannten Matrizen, die möglich sind (also A B, B A, C B,..., usw., wenn möglich). Zusatzübungen (Lösungen am Ende) Aufgabe 1: ( ) ( ) 1 1 2 3 1 3 A =, B =, C = 3 1 2 2 5 2 0 Berechne alle Produkte zweier oben genannten Matrizen, die möglich sind (also A B, B A, C B,..., usw., wenn möglich).

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Stützvektormethode Katharina Morik LS 8 Informatik 8.11.2011 1 von 38 Gliederung 1 2 Lagrange-Optimierung 2 von 38 Übersicht über die Stützvektormethode (SVM) Eigenschaften

Mehr

Gibt es ein Maxima des polaren Trägheitsmoments eines Kreisrings?

Gibt es ein Maxima des polaren Trägheitsmoments eines Kreisrings? Gibt es ein Maxima des polaren Trägheitsmoments eines Kreisrings? Dipl.- Ing. Björnstjerne Zindler, M.Sc. Erstellt: 12. Mai 2012 Letzte Revision: 4. April 2015 Inhaltsverzeichnis 1 Berechnung des polaren

Mehr

Klausur: Wirtschaftsmathematik (Lehrveranstaltung)

Klausur: Wirtschaftsmathematik (Lehrveranstaltung) Klausur: Wirtschaftsmathematik (Lehrveranstaltung) Fakultät für Wirtschaft Studiengang: Öffentliche Wirtschaft Matrikelnummer:... Kurs: WOW17A Semester: 1 Datum: 4.01.018 Dozent: Jürgen Meisel Hilfsmittel:

Mehr

Mietinteressent A B C D E F G H Vorbehaltspreis a) Im Wettbewerbsgleichgewicht beträgt der Preis 250.

Mietinteressent A B C D E F G H Vorbehaltspreis a) Im Wettbewerbsgleichgewicht beträgt der Preis 250. Aufgabe 1 Auf einem Wohnungsmarkt werden 5 Wohnungen angeboten. Die folgende Tabelle gibt die Vorbehaltspreise der Mietinteressenten wieder: Mietinteressent A B C D E F G H Vorbehaltspreis 250 320 190

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Optimierung: Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Optimierungsprobleme Optimierung Suche nach dem Maximum oder Minimum

Mehr

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Wintersemester 2007/08 27.2.2008 Dr. Sascha Kurz Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Bitte lesbar ausfüllen, Zutreffendes ankreuzen Herr Frau Name, Vorname: Anschrift:

Mehr

2 Maximierung mit Nebenbedingungen

2 Maximierung mit Nebenbedingungen VWL III 2-1 Prof. Ray Rees 2 Maximierung mit Nebenbedingungen Literatur: Hoy et.al. (2001), Chapter 13. Gravelle und Rees (1992), Chapter 2 F,G und 15 A,B. Chiang (1984), Chapter 12. Binmore (1983), Chapter

Mehr

Das Lagrange-duale Problem

Das Lagrange-duale Problem Das Lagrange-duale Problem Tobias Kulke 29. April 2010 1 Einführung Für jedes Paar (λ, ν) mit λ 0 liefert die Langrange-duale Funktion ( ) p g(λ, ν) = inf L(x, λ, ν) = inf f 0 (x) + λ i f i (x) + ν i h

Mehr

Klausur AVWL 1. Klausurtermin:

Klausur AVWL 1. Klausurtermin: Klausur AVWL 1 Klausurtermin: 25.02.2015 Dieses Deckblatt bitte vollständig und deutlich lesbar ausfüllen! Vom Prüfer Vom Prüfer Name: auszufüllen: auszufüllen: Aufg.1: / 25 Vorname: Punkte: Aufg.2: /

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

Mikroökonomik. Das Haushaltsoptimum. Harald Wiese. Universität Leipzig. Harald Wiese (Universität Leipzig) Das Haushaltsoptimum 1 / 37

Mikroökonomik. Das Haushaltsoptimum. Harald Wiese. Universität Leipzig. Harald Wiese (Universität Leipzig) Das Haushaltsoptimum 1 / 37 Mikroökonomik Das Haushaltsoptimum Harald Wiese Universität Leipzig Harald Wiese (Universität Leipzig) Das Haushaltsoptimum 1 / 37 Gliederung Einführung Haushaltstheorie Das Budget Präferenzen, Indi erenzkurven

Mehr

Klausurrepetitorium ABWL

Klausurrepetitorium ABWL Klausurrepetitorium ABWL Planungs- und Südwestfälische Industrie- und Handelskammer 9. August 5 Dr. Friedhelm Kulmann, Sandra Rudolph 9.8.5 Gliederung. Nichtlineare Optimierungsprobleme.. Quadratisches

Mehr

Optimierung unter Nebenbedingungen

Optimierung unter Nebenbedingungen Optimierung unter Nebenbedingungen Kapitel 7: Optimierung unter Nebenbedingungen Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 1. Juli 2009 1 / 18 7.1 Bemerkung

Mehr

Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen. Graphentheorie

Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen. Graphentheorie Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen Graphentheorie Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen Def.: eine Funktion n f :D mit D,x (x,...x

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 9 6. Semester ARBEITSBLATT 9. Extremwertaufgaben

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 9 6. Semester ARBEITSBLATT 9. Extremwertaufgaben ARBEITSBLATT 9 Extremwertaufgaben Gehen wir die Idee der Extremwertaufgaben gleich an einem Beispiel an: Rechtecke gleichen Umfangs haben den gleichen Flächeninhalt. Stimmt diese Aussage/ stimmt sie nicht?

Mehr

a n := 5n4 + 2n 2 2n n + 1. a n := n 5n 2 n 2 + 7n + 8 b n := ( 1) n c n := ( 1) n+1 6n2 + 13n 5n 3 + 7

a n := 5n4 + 2n 2 2n n + 1. a n := n 5n 2 n 2 + 7n + 8 b n := ( 1) n c n := ( 1) n+1 6n2 + 13n 5n 3 + 7 Folgen und Reihen. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 2. Untersuchen Sie folgende Folgen auf Monotonie, Beschränktheit, Häufungspunkte und Konvergenz,

Mehr

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8. Übungsblatt. ). 12x 3 Die Hessematrix von f ist gegeben durch H f (x, y) =

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8. Übungsblatt. ). 12x 3 Die Hessematrix von f ist gegeben durch H f (x, y) = Karlsruher Institut für Technologie (KIT Institut für Analysis Priv-Doz Dr P C Kunstmann Dipl-Math D Roth SS 0 7060 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8 Übungsblatt

Mehr

Mathematische Grundlagen für Wirtschaftswissenschaftler Leseprobe - Abschnitt 6.5 (das agraökonomische Schaf )

Mathematische Grundlagen für Wirtschaftswissenschaftler Leseprobe - Abschnitt 6.5 (das agraökonomische Schaf ) Mathematische Grundlagen für Wirtschaftswissenschaftler Leseprobe - Abschnitt 65 (das agraökonomische Schaf ) Sascha Kurz Jörg Rambau 25 November 2009 2 66 Die Karush-Kuhn-Tucker-Methode Die Erkenntnisse

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Fred Böker Mathematik für Wirtschaftswissenschaftler Das Übungsbuch 2., aktualisierte Auflage Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Meico City Sydney a part of

Mehr

Ein Buch. Für Anwendungen des Stoffs in den Wirtschaftswissenschaften: Knut Sydsæter, Peter Hemmond: Mathematik für Wirtschaftswissenschaftler

Ein Buch. Für Anwendungen des Stoffs in den Wirtschaftswissenschaften: Knut Sydsæter, Peter Hemmond: Mathematik für Wirtschaftswissenschaftler Ein Buch Für Anwendungen des Stoffs in den Wirtschaftswissenschaften: Knut Sydsæter, Peter Hemmond: Mathematik für Wirtschaftswissenschaftler (Aber bei der Mathematik ein bisschen aufpassen!) 4 Extremstellen

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2018 / 2019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen

Mathematische Werkzeuge R. Neubecker, WS 2018 / 2019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 018 / 019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen 1 Optimierung Optimierungsprobleme Suche nach dem Maximum oder Minimum

Mehr

1 Zielfunktionen und Restriktionen. Beispiel 1 Beispiel 2 Anna Berta Cäsar Dirk Zielfunktion U A Y A U B =X B Y B X B

1 Zielfunktionen und Restriktionen. Beispiel 1 Beispiel 2 Anna Berta Cäsar Dirk Zielfunktion U A Y A U B =X B Y B X B Seite 1 Ausführliche formal-analytische Herleitungen anhand von zwei Beispielen zum Kapitel 3.2 zum Kurs 42110 Preisbildung auf unvollkommenen Märkten und allgemeines Gleichgewicht Inhaltsverzeichnis 1

Mehr

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1 1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme Duales Problem Lemma 1.4. Das zum Transportproblem duale Problem lautet: max unter den Nebenbedingungen m a i u i + i=1

Mehr

FB II Wirtschafts- und Sozialwissenschaften Prof. Dr. Joachim Wagner Institut für Volkswirtschaftslehre Datum:

FB II Wirtschafts- und Sozialwissenschaften Prof. Dr. Joachim Wagner Institut für Volkswirtschaftslehre Datum: Universität Lüneburg rüfer: rof. Dr. Thomas Wein FB II Wirtschafts- und Sozialwissenschaften rof. Dr. Joachim Wagner Institut für Volkswirtschaftslehre Datum: 22.03.06 Wiederholungsklausur Mikroökonomie

Mehr

3 Komparative Statik. 3.1 Einführung. Literatur: Hoy et.al. (2001), Chapter 14. Chiang (1984), Chapter 6-8.

3 Komparative Statik. 3.1 Einführung. Literatur: Hoy et.al. (2001), Chapter 14. Chiang (1984), Chapter 6-8. VWL III 3-1 Prof. Ray Rees 3 Komparative Statik Literatur: Hoy et.al. (2001), Chapter 14. Chiang (1984), Chapter 6-8. 3.1 Einführung Ökonomen interessieren sich häufig dafür, welche Auswirkungen die Veränderung

Mehr

Musterlösung zur Einsendearbeit zum Kurs 00692, KE 1, Theorie der öffentlichen Konsumgüter, Sommersemester 2011

Musterlösung zur Einsendearbeit zum Kurs 00692, KE 1, Theorie der öffentlichen Konsumgüter, Sommersemester 2011 2011 1 Musterlösung zur Einsendearbeit zum Kurs 00692, KE 1, Theorie der öffentlichen Konsumgüter, Sommersemester 2011 Aufgabe 1 Öffentliche Konsumgüter a) Das allgemeine Maximierungsproblem im Zwei-Konsumenten-Fall

Mehr

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x.

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x. Technische Universität München WS 009/0 Fakultät für Mathematik Prof. Dr. J. Edenhofer Dipl.-Ing. W. Schultz Übung Lösungsvorschlag Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I Aufgabe

Mehr

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 }

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 } A Analsis, Woche Implizite Funktionen A Implizite Funktionen in D A3 Wenn man den Kreis mit Radius um, beschreiben möchte, dann ist { x, ; x + = } eine Möglichkeit Oft ist es bequemer, so eine Figur oder

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass

Mehr

Wirtschaftsmathematik 00054: Mathematik für Wirtschaftswissenschaftler II Kurseinheit 2: Lineare Algebra II

Wirtschaftsmathematik 00054: Mathematik für Wirtschaftswissenschaftler II Kurseinheit 2: Lineare Algebra II Wirtschaftsmathematik 00054: Mathematik für Wirtschaftswissenschaftler II Kurseinheit : Lineare Algebra II Leseprobe Autor: Univ.-Prof. Dr. Wilhelm Rödder Dr. Peter Zörnig 74 4 Extrema bei Funktionen mehrerer

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

KAPITEL 3. Konvexe Funktionen

KAPITEL 3. Konvexe Funktionen KAPITEL 3 Konvexe Funktionen Sei F R n ein Definitionsbereich und f : F R eine Funktion. Unter dem Epigraphen von f versteht man die Menge epif = {(x, z) R n+1 x F, z R, z f(x)}. Man nennt f konvex, wenn

Mehr

Outline. 1 Funktionen von mehreren Veränderlichen. 2 Grenzwert und Stetigkeit. 3 Partielle Ableitungen. 4 Die verallgemeinerte Kettenregel

Outline. 1 Funktionen von mehreren Veränderlichen. 2 Grenzwert und Stetigkeit. 3 Partielle Ableitungen. 4 Die verallgemeinerte Kettenregel Outline 1 Funktionen von mehreren Veränderlichen 2 Grenzwert und Stetigkeit 3 Partielle Ableitungen 4 Die verallgemeinerte Kettenregel 5 Das totale Differential 6 Extremstellen Roman Wienands (Universität

Mehr

1 Kurvenuntersuchung /40

1 Kurvenuntersuchung /40 00 Herbst, (Mathematik) Aufgabenvorschlag B Kurvenuntersuchung /40 Die Tragflächen des berühmten Flugzeuges Junkers Ju-5 können an der Nahtstelle zum Flugzeugrumpf mithilfe der Funktionen f und g mit 8

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Differentialrechnung für Funktionen mehrerer

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Hinreichende Bedingung für lokale Extrema Voraussetzungen Satz D R n konvex und offen Funktion f : D R zweimal stetig partiell differenzierbar

Mehr

Mathematik - Oberstufe

Mathematik - Oberstufe Mathematik - Oberstufe Aufgaben und Musterlösungen zu gebrochenrationalen Funktionen Zielgruppe: Oberstufe Gymnasium Schwerpunkt: Anwendung Alexander Schwarz www.mathe-aufgaben.com Letzte Aktualisierung:

Mehr

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe Lösungen zu den Übungsaufgaben im Kapitel 1 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier 1. Lösen Sie die folgende lineare Optimierungsaufgabe

Mehr

UNIVERSITÄT DORTMUND WIRTSCHAFTS- UND SOZIALWISSENSCHAFTLICHE FAKULTÄT

UNIVERSITÄT DORTMUND WIRTSCHAFTS- UND SOZIALWISSENSCHAFTLICHE FAKULTÄT UNIVERSITÄT DORTMUND WIRTSCHAFTS- UND SOZIALWISSENSCHAFTLICHE FAKULTÄT Prüfungsfach: Mikroökonomie Prüfungstermin: 15.02.2005 Zugelassene Hilfsmittel: Taschenrechner Prüfungskandidat/in (Bitte in Druckbuchstaben

Mehr

14. Das Minimumprinzip

14. Das Minimumprinzip H.J. Oberle Variationsrechnung u. Optimale Steuerung SoSe 2008 14. Das Minimumprinzip In diesem Abschnitt behandeln wir die Idee der dynamischen Programmierung, die auf Bellmann 31 (1957) zurückgeht und

Mehr

Analysis II 14. Übungsblatt

Analysis II 14. Übungsblatt Jun.-Prof. PD Dr. D. Mugnolo Wintersemester 01/13 F. Stoffers 04. Februar 013 Analysis II 14. Übungsblatt 1. Aufgabe (8 Punkte Man beweise: Die Gleichung z 3 + z + xy = 1 besitzt für jedes (x, y R genau

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften

BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften Musterl osung BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften Analysis II Klausur WS 211/212 Prof. Dr. Hartmut Pecher 3.2.212, 9:15 Uhr Name Matr.Nr. Studienfach Fachsemester

Mehr

Prüfungsklausur Mathematik II für Wirtschaftsingenieure am

Prüfungsklausur Mathematik II für Wirtschaftsingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Wirtschaftsingenieure am 17.07.2017 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 5 6 7 8 gesamt erreichbare

Mehr

Prüfungsklausur Mathematik II für Wirtschaftsingenieure am

Prüfungsklausur Mathematik II für Wirtschaftsingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Wirtschaftsingenieure am 17.07.2017 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 5 6 7 8 gesamt erreichbare

Mehr

K l a u s u r N r. 1 G K M 12

K l a u s u r N r. 1 G K M 12 K l a u s u r N r. G K M 2 Aufgabe Bestimmen Sie die Ableitungsfunktion zu den folgenden Funktionen! a) f (x) (sin x) 2 (cos x) 2 b) f (x) (6 x 2 5) sin (2 x 3 + 5 x) c) f (x) 2 x 6 4 2 x 3 d) f (x) 4

Mehr

Optimalitätsbedingungen

Optimalitätsbedingungen Optimalitätsbedingungen Nadja Irmscher 28. Mai 2010 1 Nachweis von Suboptimalität und Abbruchkriterien Über das gegebene Programm minimiere f 0 (x) über x D sodass f i (x) 0, i = 1,..., m h i (x) = 0,

Mehr

2.6 Theorie des Haushalts

2.6 Theorie des Haushalts .6 Theorie des Haushalts WS 007/08 Nutzenfunktionen und Indifferenzkurven Nutzenfunktion: Hilfsmittel, um Präferenzen zu beschreiben Eine Präferenzordnung lässt sich unter den obigen Annahmen über eine

Mehr

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum.

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum. Fabian Kohler Karolina Stoiber Ferienkurs Analsis für Phsiker SS 4 A Extrema In diesem Abschnitt sollen Extremwerte von Funktionen f : D R n R diskutiert werden. Auch hier gibt es viele Ähnlichkeiten mit

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Hinweise zur Mathematik

Hinweise zur Mathematik Hinweise zur Mathematik Max Albert, Henrik Egbert, Lothar Grall & Andreas Hildenbrand WS 14/15 1 Mikroökonomische Theorie II Vorlesung und Übung setzen den Stoff der Mathematikveranstaltung des ersten

Mehr

11 Optimierung von Funktionen einer Veränderlichen

11 Optimierung von Funktionen einer Veränderlichen 11 Optimierung von Funktionen einer Veränderlichen In diesem Kapitel werden die bis hier behandelten Grundlagen der Analysis genutzt, um Methoden aus der Optimierungstheorie für eindimensionale Entscheidungsmengen

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 11/12 Böse, Penn-Karras, Schneider

Technische Universität Berlin Fakultät II Institut für Mathematik WS 11/12 Böse, Penn-Karras, Schneider Technische Universität Berlin Fakultät II Institut für Mathematik WS / Böse, Penn-Karras, Schneider 5.4. Rechenteil April Klausur Analysis II für Ingenieure Musterlösung. Aufgabe 3 Punkte Wir haben g(x,

Mehr

a,b,c a,b,d a,d,e b,c,e c,d,e ( ) ( ) ( ) ( ) ( )

a,b,c a,b,d a,d,e b,c,e c,d,e ( ) ( ) ( ) ( ) ( ) Klausur, Mathematik, Juli 2012, A 1 [ 1 ] Bestimmen Sie Y und C in dem makroökonomischen Modell Y = C + Ī C = a + by mit a = 300, b = 0.7 und Ī = 600. Y = C = [ 2 ] Die folgenden Aussagen befassen sich

Mehr

Klausur Mathematik II

Klausur Mathematik II Technische Universität Dresden. Juli 8 Institut für Numerische Mathematik Prof. Dr. G. Matthies, Dr. M. Herrich Klausur Mathematik II Modul Dierentialgleichungen und Dierentialrechnung für Funktionen mehrerer

Mehr

Roy s Identity. Bisher haben wir uns die Effekte von Einkommensänderungen angesehen. Nun widmen wir uns den Preisänderungen.

Roy s Identity. Bisher haben wir uns die Effekte von Einkommensänderungen angesehen. Nun widmen wir uns den Preisänderungen. Roy s Identity Bisher haben wir uns die Effekte von Einkommensänderungen angesehen. Nun widmen wir uns den Preisänderungen. Es gilt: U(f (p, W ))/ p j = λx j Jörg Lingens (WWU Münster) VWL-Theorie im Masterstudiengang

Mehr

Klausur Mathematik, 1. Oktober 2012, A

Klausur Mathematik, 1. Oktober 2012, A Klausur, Mathematik, Oktober 2012, Lösungen, A 1 Klausur Mathematik, 1. Oktober 2012, A Die Klausureinsicht ist Do, 8.11.2012 um 18:00 in MZG 8.136. Die Klausur ist mit 30 Punkten bestanden. Falls Sie

Mehr

Schwerpunktaufgaben zur Vorbereitung auf die Leistungsfeststellung

Schwerpunktaufgaben zur Vorbereitung auf die Leistungsfeststellung Schwerpunktaufgaben zur Vorbereitung auf die Leistungsfeststellung 1. Lösen Sie folgendes Gleichungssystem mit Hilfe des Gauß-Verfahrens. Überprüfen Sie Ihr Ergebnis mit dem Taschenrechner. ganzzahlig

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

Abstand zweier zueinander windschiefen Geraden

Abstand zweier zueinander windschiefen Geraden Fachreferat aus dem Fach Mathematik Abstand zweier zueinander windschiefen Geraden Jakob Schöttl 2009-02-17 Inhaltsverzeichnis 1 Deklaration 1 2 Denition von windschief 2 3 Meine eigenen Versuche 2 3.1

Mehr

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Verbundstudiengang Wirtschaftsingenieurwesen Prof. Dr. rer. nat. habil. J. Resch Prüfung: Mathematik Termin: 1. September 2012 Bearbeitungszeit:

Mehr

Kapitel 5b. Einkommens- und Substitutionseffekte

Kapitel 5b. Einkommens- und Substitutionseffekte Kaitel 5b Einkommens- und Substitutionseffekte 1 Nochmals Ausgabenminimierung zur Bestimmung von Einkommens- und Substitutionseffekten. Die Nutzenmaimierung gibt uns mathematisch die Punkte A und C und

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim

Mehr

SYSTEMANALYSE 2 Kapitel 10: Einführung in die dynamische Optimierung gekoppelter Systeme

SYSTEMANALYSE 2 Kapitel 10: Einführung in die dynamische Optimierung gekoppelter Systeme Universität Koblenz-Landau Fachbereich 7: Natur-und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) SYSTEMANALYSE 2 Kapitel 10: Einführung in die dynamische Optimierung

Mehr

(Unvollständige) Zusammenfassung Analysis Grundkurs

(Unvollständige) Zusammenfassung Analysis Grundkurs (Unvollständige) Zusammenfassung Analysis Grundkurs. Ableitungs und Integrationsregeln (Folgende 0 Funktionen sind alles Funktionen aus dem Zentralabitur Grundkurs.) a) f(t) = 0,0t e 0,t b) f(t) = t 3

Mehr

Musterlösungen Aufgabenblatt 2

Musterlösungen Aufgabenblatt 2 Jonas Kindervater Ferienkurs - Höhere Mathematik III für Physiker Musterlösungen Aufgabenblatt Dienstag 17. Februar 009 Aufgabe 1 (Implizite Funktionen) f(x, y) = x 1 xy 1 y4 = 0 Man bestimme die lokale

Mehr

f(x, y) = x 2 4x + y 2 + 2y

f(x, y) = x 2 4x + y 2 + 2y 7. Februar Lösungshinweise Theorieteil Aufgabe : Bestimmen Sie die Niveaumengen (Höhenlinien) der Funktion f(x, y) = x 4x + y + y und skizzieren Sie das zugehörige Höhenlinienbild im kartesischen Koordinatensystem

Mehr

Flächenberechnung mit Integralen

Flächenberechnung mit Integralen Flächenberechnung mit Integralen W. Kippels 30. April 204 Inhaltsverzeichnis Übungsaufgaben 2. Aufgabe................................... 2.2 Aufgabe 2................................... 2.3 Aufgabe 3...................................

Mehr

KAUFM. BERUFSKOLLEGS II / FACHOBERSCH. - Hauptprüfung Aufgabe 7 - Aufgabe

KAUFM. BERUFSKOLLEGS II / FACHOBERSCH. - Hauptprüfung Aufgabe 7 - Aufgabe 90 KAUFM. BERUFSKOLLEGS II / FACHOBERSCH. - Hauptprüfung 000 - Aufgabe 7 - Aufgabe Punkte 7.1. Die Differentialkosten eines Unternehmens sind gegeben durch K (x) = 0,06x 3,8x+c, c IR. Bestimmen Sie die

Mehr