Grundlagen der Informationsverarbeitung:

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Informationsverarbeitung:"

Transkript

1 Grundlagen der Informationsverarbeitung: Leistungsbewertung Prof. Dr.-Ing. habil. Ulrike Lucke Durchgeführt von Prof. Dr. rer. nat. habil. Mario Schölzel Maximaler Raum für Titelbild (wenn kleiner dann linksbündig an Rand angesetzt) 2017 UNIVERSITÄT POTSDAM Institut für Informatik & Computational Science Komplexe Multimediale Anwendungsarchitekturen 1

2 Inhalt der Vorlesung Binäre Modellierung Codierung von Zahlen und Zeichen Boolesche Funktionen Schaltnetze Schaltungsentwurf Schaltwerke Minimierungsverfahren Grundbausteine der Computertechnik Befehlsverarbeitung in einem Prozessor Rechenwerke Assembler-Ebene Steuerwerke Parallelität auf Instruktionsebene Speicherhierarchie Leistungsbewertung 2017 UNIVERSITÄT POTSDAM Institut für Informatik & Computational Science Komplexe Multimediale Anwendungsarchitekturen 2

3 Leistungsbewertung? 1. Definitionen und Einflussfaktoren für Leistung 2. Mechanismen zur Messung von Leistung 3. Ansatzpunkte zur Leistungsverbesserung 2017 UNIVERSITÄT POTSDAM Institut für Informatik & Computational Science Komplexe Multimediale Anwendungsarchitekturen 3

4 Aspekte von Leistung Kosten Energieverbrauch Ausführungszeit von Programmen Reaktionszeit auf Unterbrechungen Verfügbarkeit von Systemsoftware Anwendersoftware Zusatzhardware 4

5 Leistung (Performance) Mögliche Metriken Ausführungszeit, Antwortzeit (Execution Time) [s] Wie viel Zeit benötigt ein Computer, um ein gegebenes Programm auszuführen? Durchsatz (Throughput) [s -1 ] Wie viele Programme (Jobs, Tasks, Transaktionen, etc.) kann ein Computer pro Zeiteinheit abarbeiten? Desktopnutzer eher an Ausführungszeit interessiert Betreiber einer Serverfarm eher an Durchsatz interessiert 5

6 Prozessorleistung geeignete Metrik: Ausführungszeit 1 Leistung X AusführungszeitX relative Leistungsfähigkeit: Leistung A > Leistung B Ausführungszeit A < Ausführungszeit B Computer A ist n-mal schneller als Computer B Leistung A Leistung B Ausführungszeit B Ausführungszeit A n Alle diese Aussagen gelten für konkret gemessene Programme! 6

7 Zeitmessung Elapsed time (wall-clock time, verstrichene Zeit) per Stoppuhr gemessene Gesamtzeit der Programmausführung (beinhaltet Zeiten für Speicher- und Festplattenzugriffe, Ein-/Ausgabe und Betriebssystemaktivitäten) verstrichene Zeit wird in der Regel durch weitere, ebenfalls auf dem Rechner ausgeführte Programme beeinflusst (Ausführungszeit des eigentlichen Programms muss neu definiert werden) CPU time (Prozessor-Ausführungszeit) Ein-/Ausgabe und Aktivitäten anderer Programme nicht eingerechnet kann weiter unterteilt werden: User CPU Time Prozessorzeit für Anwendungsprogramm System CPU Time Prozessorzeit für Betriebssystemaufrufe 7

8 Abschätzung der Prozessorleistung T A exe A T exe Prozessorausführungszeit für ein Programm auf Computer A Prozessortaktzyklen Taktzyklenzeit Prozessortaktzyklen / Taktfrequenz Beispiel Ein Computer mit 4GHz hat eine Taktzyklenzeit von 1/(4*10 9 ) sec 0,25 ns 250 ps Die Abarbeitung eines Programms mit Takten dauert 1/40 Sekunde 0,025 Sekunden Wie können die Prozessortaktzyklen C A exe zur Ausführung eines Programms auf Rechner A abgeschätzt werden? 8

9 Prozessorleistung (Fortsetzung) Prozessortaktzyklen bei Ausführung eines Programms P: A C exe I CPI Zusammenhang Prozessorausführungszeit und C A exe : A T exe I CPI T dabei sind: T A exe I c CPI T c c Prozessorausführungszeit für ein Programm auf Computer A Zahl der Maschineninstruktionen zur Programmausführung durchschnittliche Zahl der Taktzyklen pro Instruktion Taktperiode T bzw. Taktfrequenz f 1/T Beispiel I c 2 * 10 6, CPI 2, f 4GHz: T exe 2 * 10 6 * 2 * 250 * ms 2017 UNIVERSITÄT POTSDAM Institut für Informatik & Computational Science Komplexe Multimediale Anwendungsarchitekturen 9

10 Beispiel Computer A und B verfügen über die gleiche Implementierung derselben Befehlssatzarchitektur. Für ein Programm P gilt: A hat einen Taktzyklus von 250 ps und einen CPI-Wert von 2,0 B hat einen Taktzyklus von 500 ps und einen CPI-Wert von 1,2 Welcher Computer ist bei P schneller und um welchen Faktor? Prozessortaktzyklen Prozessortaktzyklen A B I I C C 2,0 1,2 T A exe I C 2,0 250 ps 500 I C ps T B exe I C 1,2 500 ps 600 I C ps Prozessorleistung Prozessorleistung A B Ausführungszeit Ausführungszeit B A 600 I 500 I C C ps ps 1,2 A ist bei der Ausführung von P um den Faktor 1,2 schneller als B. 10

11 Leistungsfaktoren von Prozessoren Bestimmung: T A exe I c CPI T Prozessorausführungszeit messen Programmausführung und Zählen der Instruktionen (durch Profiling, Hardwarezähler oder Simulation) detaillierte Simulation der Prozessorimplementierung, Hardware-Zähler, exakte Bestimmung ist schwierig Datenblatt des Prozessors nicht immer am realen Prozessor bestimmbar (bspw. nur Simulation bei der Entwicklung eines Prozessors) nur reine Prozessorleistung betrachtet (Erweiterung der Leistungsgleichung um Cache- und Speicherzugriffe) 11

12 Cycles per Instruction (CPI) Verschiedene Instruktionsklassen haben i.d.r. unterschiedliche CPI-Werte bzw. eine unterschiedliche Verteilung der Befehle in einem Programm. CPI i C i F i CPI-Wert der Instruktionsklasse i Anzahl von Befehlen der Klasse i relative Häufigkeit der Instruktionsklasse i im ausgeführten Programm Prozessortaktzyklen CPI n ( CPI i C i ) i 1 n ( CPI i F i ) i 1 Beispiel: CPI 1,5 Instruktionsklasse i F i [%] CPI i Arithmetic, Logic 50 1 Load 20 2 Store 10 2 Branch, Jump

13 Beispiel: Automatengraph Instruktion #Zyklen lw 5 sw 4 R-type 4 beq 3 j 3 13

14 Beispiel: CPI-Berechnung Beispielhafter Instruktionsmix einer Mehrzyklen-Implementierung Instruktion(sklasse) relative Häufigkeit Load-Instruktionen 25% Store-Instruktionen 10% ALU-Instruktionen 45% Branch-Instruktionen 15% Jump-Instruktionen 5% CPI 0.25* * * * *

15 CPI und Compiler Beispiel: Compiler-Entwickler muss sich zwischen Codesequenzen entscheiden. Die CPI-Werte der Befehlsklassen sind in folgender Tabelle angegeben A B C CPI-Wert Für das Programm kommen 2 Codesequenzen in Frage, für die folgende Befehlszahlen gelten Codesequenz A B C Welche Codesequenz führt die meisten Befehle aus? Welche ist schneller? Wie lautet der CPI-Wert für die einzelnen Sequenzen? 15

16 Einflussfaktoren auf die Leistung Einflussfaktor I c CPI T Algorithmus X X Programmiersprache X X Compiler X X Instruktionssatz X X X Rechnerarchitektur X X Technologie X 16

17 Weitere Metriken für die Leistung nützliche CPU-Leistungsmetriken: proportional zu T A exe MIPS-Rate (Million Instructions per Second) (leider) oft verwendete Metrik zur Bewertung der Prozessorleistung MIPS Rate T A exe Ic 10 6 Probleme: berücksichtigt nicht alle drei Faktoren I c, CPI und T variiert für verschiedene Programme auf demselben Computer Argumentation trifft auch auf verwandte Metriken zu: MOPS: Million Operations per Second MFLOPS: Million Floating-Point Operations per Second 17

18 Leistungsbewertung Bestes Vorgehen zur Bestimmung der CPU-Performance: geforderte Anwendungsprogramme (Workload) ausführen und die Ausführungszeiten messen Problem: oft zu zeitaufwendig nicht immer sind alle geforderten Anwendungen im Voraus bekannt Einsatz von Benchmarks Benchmark: Programm (Menge von Programmen), das für die Bewertung verwendet wird sowie Vorschrift, wie die Bewertung durchgeführt und das Endergebnis ermittelt wird (Reproduzierbarkeit) 18

19 Benchmarktypen reale Anwendungen beste Möglichkeit, um Performance zu bewerten sehr aufwendig; unmöglich wenn der Prozessor noch nicht verfügbar ist abhängig von Eingabedaten (Datenset muss vorgegeben werden!) Bsp.: SPEC Benchmarks Kernel-Benchmarks Fragmente von Anwendungen (meist innere Schleifen) betonen bestimmte Aspekte der Performance, z.b. Arithmetik, Prozeduraufrufe, geben kein Gesamtbild der Performance Bsp.: Linpack Benchmark (Top500) synthetische Benchmarks konstruierte Programme, die einen bestimmten Instruktionsmix abbilden einfach zu messen, aber nicht repräsentativ für reale Anwendungen 19

20 Zusammenfassen von Performancewerten Warum? Auf einem Computer A werden für alle n Programme eines Benchmark-Sets die Ausführungszeiten gemessen: T 1,A, T 2,A,...,T n,a Vergleicht man Computer A mit einem anderen Computer B, erhält man n einzelne Performancewerte: T T T 1, A 2, A,, 1, B T2, B T, T n, A n, B Oft braucht man einen Gesamtperformancewert (z.b. im Marketing). Zusammenfassen von Performancewerte (Informationsverlust! ) 21

21 Möglichkeiten der Zusammenfassung Gesamtausführungszeit (relative Performance als Verhältnis der Gesamtausführungszeiten) n i 1 n i 1 arithmetisches Mittel (relative Performance als Verhältnis der arithmetischen Mittel) n 1 T i, A n i 1 gewichtetes, arithmetisches Mittel (Gewichtungsfaktoren bilden den realen Workload nach) 1 n T T n i 1 i, A i, B ( w T n i w i, A) i i 1 22

22 Beispiel: SPEC Standard Performance Evaluation Corporation ( verschiedene Benchmarks: CPU, Graphik, Fileserver, Mailserver, Webserver, etc. Beispiel: SPEC CPU integer (CINT2000) und 14 floating-point Programme (CFP2000) gemessen wird die wall-clock time Ausführungszeit T exe eines jeden Programms wird normalisiert auf die Ausführungszeit T ref einer Referenzmaschine (Sun Ultra 5_10/300). Der resultierende Wert wird SPEC ratio genannt: SPEC ratio T T ref exe CINT2000, CFP2000 Performancemetriken werden durch das geometrische Mittel der einzelnen SPEC ratio -Werte gebildet 23

23 Beispiel: SPEC CPU2000 gemessen auf Dell Precision Desktop Systemen 2017 UNIVERSITÄT POTSDAM Institut für Informatik & Computational Science Komplexe Multimediale Anwendungsarchitekturen 24

24 Leistungsverbesserungen Wenn Algorithmus, Programmiersprache und Instruktionssatz gegeben sind, woher kommen Verbesserungen in der Prozessorleistung? modernere Technologie: kleinere Taktperiode T verbesserte Rechnerarchitektur: kleinerer CPI Wert, kleineres T verbesserter Compiler: kleineres I c und vermehrte Nutzung von Befehlen mit kleinerem CPI -Wert Die Performanceverbesserung wird durch den Speedup gemessen: Speedup T exe ohne Verbesserung T exe mit Verbesserung 25

25 Leistungsgewinn Amdahls Gesetz: ohne Verbesserung mit Verbesserung Verbesserungsfaktor F T exe F' T exe S F F' mit F in % von T exe : Speedup 1 ( 1 ) F + F S 26

26 Beispiel Prozessor führt Programm aus und benötigt 20% der Zeit für Speicheroperationen Durch einen Cache beträgt die neue Speicherzugriffszeit nur noch 30% der ursprünglichen Zeit Verbesserung für das Gesamtsystem: F 0,2 S 0,2/(0,2*0,3) 3,333 Speedup 1 1 1,16 F 0, 2 ( 1 F ) + 0,8 + S 3, UNIVERSITÄT POTSDAM Institut für Informatik & Computational Science Komplexe Multimediale Anwendungsarchitekturen 27

27 Tipp Ein Programm hat eine Ausführungszeit von T exe 100s, davon 80s für Multiplikationen. Um welchen Faktor S müssen die Multiplikationen verbessert werden, wenn das Programm insgesamt um den Faktor 5 beschleunigt werden soll? 2017 UNIVERSITÄT POTSDAM Institut für Informatik & Computational Science Komplexe Multimediale Anwendungsarchitekturen 28

28 Klausurzulassung Gesamtpunktzahl in den Blätter 1 bis 12: 199 Sie benötigen 145 Punkte aus den abgegebenen Übungsblättern 1 bis 12, um zur Klausur zugelassen zu werden. Übungsblatt 13 enthält Bonusaufgaben, mit denen Sie Ihren Punktestand aufbessern können: 23 Bonuspunkte 2017 UNIVERSITÄT POTSDAM Institut für Informatik & Computational Science Komplexe Multimediale Anwendungsarchitekturen 29

29 Und danach? Lehrangebot der Technischen Informatik in Potsdam: Grundlagen der Informationsverarbeitung Hardware- und Systembeschreibungssprache Prozessorarchitektur Zuverlässigkeit und Fehlertoleranz Codierungstheorie Chipentwurf HW/SW Co-Design Entwurf eingebetteter Systeme... sowie wechselnde aktuelle Angebote 2017 UNIVERSITÄT POTSDAM Institut für Informatik & Computational Science Komplexe Multimediale Anwendungsarchitekturen 30

Grundlagen der Informationsverarbeitung:

Grundlagen der Informationsverarbeitung: Grundlagen der Informationsverarbeitung: Einleitung Prof. Dr.-Ing. habil. Ulrike Lucke Durchgeführt von Prof. Dr. rer. nat. habil. Mario Schölzel Maximaler Raum für Titelbild (wenn kleiner dann linksbündig

Mehr

N Bit Binärzahlen. Stelle: Binär-Digit:

N Bit Binärzahlen. Stelle: Binär-Digit: N Bit Binärzahlen N Bit Binärzahlen, Beispiel 16 Bit: Stelle: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Binär-Digit: 0 0 1 0 1 0 0 1 1 1 0 0 1 0 0 0 Least Significant Bit (LSB) und Most Significant Bit (MSB)

Mehr

Grundlagen der Informationsverarbeitung:

Grundlagen der Informationsverarbeitung: Grundlagen der Informationsverarbeitung: Parallelität auf Instruktionsebene Prof. Dr.-Ing. habil. Ulrike Lucke Durchgeführt von Prof. Dr. rer. nat. habil. Mario Schölzel Maximaler Raum für Titelbild (wenn

Mehr

Grundlagen der Informationsverarbeitung:

Grundlagen der Informationsverarbeitung: Grundlagen der Informationsverarbeitung: Boolesche Funktionen, Schaltnetze und Schaltwerke Prof. Dr.-Ing. habil. Ulrike Lucke Durchgeführt von Prof. Dr. rer. nat. habil. Mario Schölzel Maximaler Raum für

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Rechnerarchitektur Aufgabe

Mehr

Grundlagen der Informationsverarbeitung:

Grundlagen der Informationsverarbeitung: Grundlagen der Informationsverarbeitung: Schaltungsentwurf und Minimierungsverfahren Prof. Dr.-Ing. habil. Ulrike Lucke Durchgeführt von Prof. Dr. rer. nat. habil. Mario Schölzel Maximaler Raum für Titelbild

Mehr

Grundlagen der Informatik III

Grundlagen der Informatik III Grundlagen der Informatik III WS 2008 / 2009 [Folien basierend auf VL von Prof. Dr. Claudia Eckert, WS 07/08] Prof. Dr. rer. nat. Frederik Armknecht Sascha Müller Daniel Mäurer Fachbereich Informatik /

Mehr

Die Bedeutung von Performance

Die Bedeutung von Performance Die Bedeutung von Performance Martin Gaitzsch, Mirek Hancl, Davood Kheiri 8.11.2000 $(LQOHLWXQJµUHODWLYHµ3HUIRUPDQFH Performance interessiert sowohl den Systementwickler als auch den Kunden. Auf der Entwicklungsseite

Mehr

Einleitung Performance Netzwerk Leistungsaufnahme Skalierbarkeit Sicherheit Zuverlässigkeit Kompatibilität. Ziele und Maße. Dr.-Ing.

Einleitung Performance Netzwerk Leistungsaufnahme Skalierbarkeit Sicherheit Zuverlässigkeit Kompatibilität. Ziele und Maße. Dr.-Ing. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2005/2006 Übersicht 1 Einleitung 2 Performance 3 Netzwerk 4 Leistungsaufnahme 5 Skalierbarkeit 6 Sicherheit

Mehr

Übersicht. Ziele und Maße. Leistungsgrößen. Übersicht. Dr.-Ing. Volkmar Sieh WS 2008/2009. Leistungsgrößen wichtig für

Übersicht. Ziele und Maße. Leistungsgrößen. Übersicht. Dr.-Ing. Volkmar Sieh WS 2008/2009. Leistungsgrößen wichtig für Ziele und Maße Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2008/2009 Ziele und Maße 1/52 2008-10-13 Ziele und Maße 2/52 2008-10-13

Mehr

Grundlagen der Informationsverarbeitung:

Grundlagen der Informationsverarbeitung: Grundlagen der Informationsverarbeitung: Speicherhierarchie Prof. Dr.-Ing. habil. Ulrike Lucke Durchgeführt von Prof. Dr. rer. nat. habil. Mario Schölzel Maximaler Raum für Titelbild (wenn kleiner dann

Mehr

Digitaltechnik und Rechnerstrukturen Lothar Thiele Institut für Technische Informatik und Kommunikationsnetze ETH Zürich 1.

Digitaltechnik und Rechnerstrukturen Lothar Thiele Institut für Technische Informatik und Kommunikationsnetze ETH Zürich 1. Materialien Digitaltechnik und Rechnerstrukturen Lothar Thiele Institut für Technische Informatik und Kommunikationsnetze ETH Zürich 1. Einleitung 1 Digitaltechnik und Rechnerstrukturen Vorlesungs- und

Mehr

Beispiele von Branch Delay Slot Schedules

Beispiele von Branch Delay Slot Schedules Beispiele von Branch Delay Slot Schedules Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 97 Weniger

Mehr

Inhalt. Prozessoren. Curriculum Manfred Wilfling. 28. November HTBLA Kaindorf. M. Wilfling (HTBLA Kaindorf) CPUs 28. November / 9

Inhalt. Prozessoren. Curriculum Manfred Wilfling. 28. November HTBLA Kaindorf. M. Wilfling (HTBLA Kaindorf) CPUs 28. November / 9 Inhalt Curriculum 1.4.2 Manfred Wilfling HTBLA Kaindorf 28. November 2011 M. Wilfling (HTBLA Kaindorf) CPUs 28. November 2011 1 / 9 Begriffe CPU Zentraleinheit (Central Processing Unit) bestehend aus Rechenwerk,

Mehr

Datenpfaderweiterung Der Single Cycle Datenpfad des MIPS Prozessors soll um die Instruktion min $t0, $t1, $t2 erweitert werden, welche den kleineren

Datenpfaderweiterung Der Single Cycle Datenpfad des MIPS Prozessors soll um die Instruktion min $t0, $t1, $t2 erweitert werden, welche den kleineren Datenpfaderweiterung Der Single Cycle Datenpfad des MIPS Prozessors soll um die Instruktion min $t0, $t1, $t2 erweitert werden, welche den kleineren der beiden Registerwerte $t1 und $t2 in einem Zielregister

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Pipelining. Die Pipelining Idee. Grundlagen der Rechnerarchitektur Prozessor 45

Pipelining. Die Pipelining Idee. Grundlagen der Rechnerarchitektur Prozessor 45 Pipelining Die Pipelining Idee Grundlagen der Rechnerarchitektur Prozessor 45 Single Cycle Performance Annahme die einzelnen Abschnitte des MIPS Instruktionszyklus benötigen folgende Ausführungszeiten:

Mehr

Grundlagen der Rechnerarchitektur. Einführung

Grundlagen der Rechnerarchitektur. Einführung Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

Quantitative Prinzipien im Hardwareentwurf. 1. Small is fast

Quantitative Prinzipien im Hardwareentwurf. 1. Small is fast Quantitative Prinzipien im Hardwareentwurf 1. Small is fast Kleine Hardwareeinheiten schalten in der Regel schneller als größere. Kleine Transistoren bilden an ihren Gates kleinere Kapazitäten die Source-Drain

Mehr

Was ist die Performance Ratio?

Was ist die Performance Ratio? Was ist die Performance Ratio? Wie eben gezeigt wäre für k Pipeline Stufen und eine große Zahl an ausgeführten Instruktionen die Performance Ratio gleich k, wenn jede Pipeline Stufe dieselbe Zeit beanspruchen

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Lösungsvorschlag zur 4. Übung

Lösungsvorschlag zur 4. Übung Prof. Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik 3 Wintersemester 09/10 Lösungsvorschlag zur 4. Übung 1 Präsenzübungen 1.1 Schnelltest a) Welche Aussagen zu Bewertungskriterien

Mehr

Allgemeine Lösung mittels Hazard Detection Unit

Allgemeine Lösung mittels Hazard Detection Unit Allgemeine Lösung mittels Hazard Detection Unit Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 83

Mehr

Übung 5. Letzte Änderung: 24. Juni 2016

Übung 5. Letzte Änderung: 24. Juni 2016 Übung 5 Letzte Änderung: 24 Juni 2016 Parallele Systeme Hardware- Architektur Vektorrechner Rechenfelder Synthese Op mierung Systemon-Chip Netzwerke sta sch dynamisch mehrstufig einstufig Theorie Workloadbalancing

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

Grundlagen der Informationsverarbeitung:

Grundlagen der Informationsverarbeitung: Grundlagen der Informationsverarbeitung: Befehlsverarbeitung in einem Prozessor Prof. Dr.-Ing. habil. Ulrike Lucke Durchgeführt von Prof. Dr. rer. nat. habil. Mario Schölzel Instruktionsformate in 07 Maximaler

Mehr

Optimierungen der Lattice Boltzmann Methode auf x86-64 basierten Architekturen

Optimierungen der Lattice Boltzmann Methode auf x86-64 basierten Architekturen Optimierungen der Lattice Boltzmann Methode auf x86-64 basierten Architekturen J. Treibig, S. Hausmann, U. Ruede 15.09.05 / ASIM 2005 - Erlangen Gliederung 1 Einleitung Motivation Grundlagen 2 Optimierungen

Mehr

Einführung in die Systemprogrammierung

Einführung in die Systemprogrammierung Einführung in die Systemprogrammierung Speedup: Grundlagen der Performanz Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 30. April 2015 Eine Aufgabe aus der Praxis Gegeben ein

Mehr

2. Computer (Hardware) K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16

2. Computer (Hardware) K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 2. Computer (Hardware) K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 Version: 14. Okt. 2015 Computeraufbau: nur ein Überblick Genauer: Modul Digitale Systeme (2. Semester) Jetzt: Grundverständnis

Mehr

Klausur zur Vorlesung Grundlagen der Rechnerarchitektur SS 2013

Klausur zur Vorlesung Grundlagen der Rechnerarchitektur SS 2013 Name: Matrikelnummer: Studiengang: INF CV IM Lehramt BSc MSc BEd MEd Diplom Klausur zur Vorlesung Grundlagen der Rechnerarchitektur SS 2013 Donnerstag, den 18. Juli 2013, Prof. Dr. Hannes Frey Die Bearbeitungszeit

Mehr

2.1 Rechnersichten 2.2 Rechnerorganisation: Aufbau und Funktionsweise

2.1 Rechnersichten 2.2 Rechnerorganisation: Aufbau und Funktionsweise Teil 1 Kapitel 2 Rechner im Überblick 2.1 Rechnersichten 2.2 Rechnerorganisation: Aufbau und Funktionsweise Frank Schmiedle Technische Informatik I 2.1 Rechnersichten Modellierung eines Rechners Zusammenspiel

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

Technische Informatik I - HS 18

Technische Informatik I - HS 18 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik I - HS 18 Übung 7 Datum : 22.-23. November 2018 Pipelining Aufgabe 1: Taktrate / Latenz In dieser Aufgabe

Mehr

Grundlagen der Informationsverarbeitung:

Grundlagen der Informationsverarbeitung: Grundlagen der Informationsverarbeitung: Grundbausteine der Computertechnik Prof. Dr.-Ing. habil. Ulrike Lucke Durchgeführt von Prof. Dr. rer. nat. habil. Mario Schölzel Maximaler Raum für Titelbild (wenn

Mehr

Grundlagen der Informationsverarbeitung:

Grundlagen der Informationsverarbeitung: Grundlagen der Informationsverarbeitung: Codierung von Zahlen und Zeichen Prof. Dr.-Ing. habil. Ulrike Lucke Durchgeführt von Prof. Dr. rer. nat. habil. Mario Schölzel Maximaler Raum für Titelbild (wenn

Mehr

Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember Bitte immer eine Reihe freilassen

Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember Bitte immer eine Reihe freilassen Technische Informatik 1 Übung 8 Instruktionsparallelität (Rechenübung) Andreas Tretter 8./9. Dezember 2016 Bitte immer eine Reihe freilassen Ziele der Übung Verschiedene Arten von Instruktionsparallelität

Mehr

Hochschule Düsseldorf University of Applied Sciences HSD RISC &CISC

Hochschule Düsseldorf University of Applied Sciences HSD RISC &CISC HSD RISC &CISC CISC - Complex Instruction Set Computer - Annahme: größerer Befehlssatz und komplexere Befehlen höhere Leistungsfähigkeit - Möglichst wenige Zeilen verwendet, um Aufgaben auszuführen - Großer

Mehr

Vorlesung Rechnerarchitektur. Einführung

Vorlesung Rechnerarchitektur. Einführung Vorlesung Rechnerarchitektur Einführung Themen der Vorlesung Die Vorlesung entwickelt an Hand von zwei Beispielen wichtige Prinzipien der Prozessorarchitektur und der Speicherarchitektur: MU0 Arm Speicher

Mehr

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion)

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion) Auch hier wieder Aus voriger Wahrheitstabelle lässt sich mechanisch eine kombinatorische Schaltung generieren, die wir im Folgenden mit dem Control Symbol abstrakt darstellen. Instruction[31 26] (also:

Mehr

Technische Informatik 1 - HS 2016

Technische Informatik 1 - HS 2016 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2016 Lösungsvorschläge für Übung 6 Datum: 24. 25. 11. 2016 Pipelining 1 Taktrate / Latenz In dieser

Mehr

Was ist Rechnerleistung

Was ist Rechnerleistung Was ist Rechnerleistung Leistung im engeren Sinne: Leistung gemessen in seltsamen Einheiten, bestimmt vorwiegend von der Zentraleinheit: MIPS (Millionen Instruktionen pro Sekunde) FLOPS (Floating Point

Mehr

Grundlagen der Rechnerarchitektur. MIPS Assembler

Grundlagen der Rechnerarchitektur. MIPS Assembler Grundlagen der Rechnerarchitektur MIPS Assembler Übersicht Arithmetik, Register und Speicherzugriff Darstellung von Instruktionen Logische Operationen Weitere Arithmetik Branches und Jumps Prozeduren 32

Mehr

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU 1/62 2012-02-29 CPU Übersicht: Pipeline-Aufbau Pipeline- Hazards CPU

Mehr

Technische Informatik 1 - HS 2017

Technische Informatik 1 - HS 2017 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2017 Übung 8 Datum: 30. 11. 1. 12. 2017 In dieser Übung soll mit Hilfe des Simulators WinMIPS64 die

Mehr

Computerarithmetik (15b)

Computerarithmetik (15b) Computerarithmetik (15b) Dazugehöriges Beispiel: Schleife Schritt Multiplikator Multiplikand Produkt 0 Anfangswerte 0011 0000 0010 0000 0000 1 1a: 1 -> Prod. = Prod. + Mcand 0011 0000 0010 0000 0010 2:

Mehr

Zwischenklausur Informatik, WS 2016/17. Lösungen zu den Aufgaben

Zwischenklausur Informatik, WS 2016/17. Lösungen zu den Aufgaben Zwischenklausur Informatik, WS 206/7 4.2.206 Lösungen zu den Aufgaben. Gegeben sind folgende Dualzahlen in Zweierkomplementdarstellung. Geben Sie den jeweils zugehörigen Dezimalwert an! a) entspricht der

Mehr

Aufbau und Funktionsweise eines Computers

Aufbau und Funktionsweise eines Computers Aufbau und Funktionsweise eines Computers Thomas Röfer Hardware und Software von Neumann Architektur Schichtenmodell der Software Zahlsysteme Repräsentation von Daten im Computer Praktische Informatik

Mehr

Computer-Architektur Ein Überblick

Computer-Architektur Ein Überblick Computer-Architektur Ein Überblick Johann Blieberger Institut für Rechnergestützte Automation Computer-Architektur Ein Überblick p.1/27 Computer-Aufbau: Motherboard Computer-Architektur Ein Überblick p.2/27

Mehr

Leistung und Pipelining. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Leistung und Pipelining. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Leistung und Pipelining Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Leistung Leistungsmessung Leistungssteigerung Pipelining Einführung in die

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

Technische Informatik 1 Übung 6 Pipelining (Rechenübung) Andreas Tretter 24./25. November 2016

Technische Informatik 1 Übung 6 Pipelining (Rechenübung) Andreas Tretter 24./25. November 2016 Technische Informatik 1 Übung 6 Pipelining (Rechenübung) Andreas Tretter 24./25. November 2016 Aufgabe 1: Taktrate / Latenz TI1 - Übung 6: Pipelining Einzeltakt-Architektur TI1 - Übung 6: Pipelining Pipelining-Architektur

Mehr

Grundlagen der Rechnerarchitektur. Speicher

Grundlagen der Rechnerarchitektur. Speicher Grundlagen der Rechnerarchitektur Speicher Übersicht Speicherhierarchie Cache Grundlagen Verbessern der Cache Performance Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 2 Speicherhierarchie

Mehr

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Steuerwerk einer CPU Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Implementierung des Datenpfads Direkte Implementierung Mikroprogrammierung

Mehr

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset.

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset. Quiz Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset 32 Bit Adresse 31 3 29... 2 1 SS 212 Grundlagen der Rechnerarchitektur

Mehr

Arithmetik, Register und Speicherzugriff. Grundlagen der Rechnerarchitektur Assembler 9

Arithmetik, Register und Speicherzugriff. Grundlagen der Rechnerarchitektur Assembler 9 Arithmetik, Register und Speicherzugriff Grundlagen der Rechnerarchitektur Assembler 9 Arithmetik und Zuweisungen Einfache Arithmetik mit Zuweisung C Programm: a = b + c; d = a e; MIPS Instruktionen: Komplexere

Mehr

Übung 1. Letzte Änderung: 5. Mai 2017

Übung 1. Letzte Änderung: 5. Mai 2017 Übung 1 Letzte Änderung: 5. Mai 2017 Abhängigkeitsanalyse Synthese Mul prozessor Mul computer Compiler Parallelismustest Vektorrechner Rechenfelder Op mierung Flynns Schema Modelle Theorie Parallele Systeme

Mehr

Besprechung des 5. Übungsblattes Parallelität innerhalb der CPU Pipelining

Besprechung des 5. Übungsblattes Parallelität innerhalb der CPU Pipelining Themen heute Besprechung des 5. Übungsblattes Parallelität innerhalb der CPU Pipelining Organisatorisches Wie schon in den vorhergehenden Tutorien erwähnt, ist Mehrfachabgabe, außer bei Programmieraufgaben,

Mehr

Technische Informatik 1 Übung 7 Pipelining (Rechenübung) Balz Maag 22./23. November 2018

Technische Informatik 1 Übung 7 Pipelining (Rechenübung) Balz Maag 22./23. November 2018 Technische Informatik 1 Übung 7 Pipelining (Rechenübung) Balz Maag 22./23. November 2018 Aufgabe 1: Taktrate / Latenz Einzeltakt-Architektur Pipelining-Architektur Pipelining-Architektur 15 15 120 ps 15

Mehr

Technische Informatik 2

Technische Informatik 2 W. Schiffmann R. Schmitz Technische Informatik 2 Grundlagen der Computertechnik 3., überarbeitete Auflage mit 146 Abbildungen Ä} Springer Inhaltsverzeichnis 1. Komplexe Schaltwerke 1 1.1 Aufbau eines Schaltwerks

Mehr

Prozessorarchitektur. Kapitel 1 - Wiederholung. M. Schölzel

Prozessorarchitektur. Kapitel 1 - Wiederholung. M. Schölzel Prozessorarchitektur Kapitel - Wiederholung M. Schölzel Wiederholung Kombinatorische Logik: Ausgaben hängen funktional von den Eingaben ab. x x 2 x 3 z z = f (x,,x n ) z 2 z m = f m (x,,x n ) Sequentielle

Mehr

Technische Grundlagen der Informatik 2 SS Einleitung. R. Hoffmann FG Rechnerarchitektur Technische Universität Darmstadt E-1

Technische Grundlagen der Informatik 2 SS Einleitung. R. Hoffmann FG Rechnerarchitektur Technische Universität Darmstadt E-1 E-1 Technische Grundlagen der Informatik 2 SS 2009 Einleitung R. Hoffmann FG Rechnerarchitektur Technische Universität Darmstadt Lernziel E-2 Verstehen lernen, wie ein Rechner auf der Mikroarchitektur-Ebene

Mehr

Rechnerarchitektur (RA)

Rechnerarchitektur (RA) 2 Rechnerarchitektur (RA) Sommersemester 27 Pipelines Jian-Jia Chen Informatik 2 http://ls2-www.cs.tu.de/daes/ 27/5/3 Diese Folien enthalten Graphiken mit Nutzungseinschränkungen. Das Kopieren der Graphiken

Mehr

Rechnerarchitektur (RA)

Rechnerarchitektur (RA) 2 Rechnerarchitektur (RA) Sommersemester 26 Pipelines Jian-Jia Chen Informatik 2 http://ls2-www.cs.tu.de/daes/ 26/5/25 Diese Folien enthalten Graphiken mit Nutzungseinschränkungen. Das Kopieren der Graphiken

Mehr

Mikroprozessoren. Aufbau und Funktionsweise. Christian Richter. Ausgewählte Themen der Multimediakommunikation SS 2005

Mikroprozessoren. Aufbau und Funktionsweise. Christian Richter. Ausgewählte Themen der Multimediakommunikation SS 2005 Mikroprozessoren Aufbau und Funktionsweise Christian Richter Ausgewählte Themen der Multimediakommunikation SS 2005 Christian Richter (TU-Berlin) Mikroprozessoren AT MMK 2005 1 / 22 Gliederung Was ist

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 7 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Technische Informatik 1 - HS 2016

Technische Informatik 1 - HS 2016 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2016 Lösungsvorschläge für Übung 8 Datum: 8. 9. 12. 2016 1 Instruktionsparallelität VLIW Gegeben

Mehr

Rechnergrundlagen. Vom Rechenwerk zum Universalrechner. von Prof. Dr. Rainer Kelch. Fachbuchverlag Leipzig im Carl Hanser Verlag

Rechnergrundlagen. Vom Rechenwerk zum Universalrechner. von Prof. Dr. Rainer Kelch. Fachbuchverlag Leipzig im Carl Hanser Verlag Rechnergrundlagen Vom Rechenwerk zum Universalrechner von Prof. Dr. Rainer Kelch mit 118 Bildern, 44 Tabellen, 11 Beispielen, 15 Aufgaben und einer CD-ROM ГЯ Fachbuchverlag Leipzig im Carl Hanser Verlag

Mehr

4. Mikroprogrammierung (Firmware)

4. Mikroprogrammierung (Firmware) 4. Mikroprogrammierung (Firmware) 4. Ein Mikroprogramm-gesteuerter Computer 4.2 Mikroprogramm-Beispiel: Multiplikation 4.3 Interpretation von Maschinenbefehlen durch ein Mikroprogramm 4. Mikroprogrammierung

Mehr

Fachbereich Medienproduktion

Fachbereich Medienproduktion Fachbereich Medienproduktion Herzlich willkommen zur Vorlesung im Studienfach: Grundlagen der Informatik Themenübersicht Rechnertechnik und IT Sicherheit Grundlagen der Rechnertechnik Prozessorarchitekturen

Mehr

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl

Mehr

Assembler am Beispiel der MIPS Architektur

Assembler am Beispiel der MIPS Architektur Assembler am Beispiel der MIPS Architektur Frühere Einsatzgebiete MIPS Silicon Graphics Unix Workstations (z. B. SGI Indigo2) Silicon Graphics Unix Server (z. B. SGI Origin2000) DEC Workstations (z.b.

Mehr

Grundbegriffe. Verarbeiten von Daten. Grundlagen der Rechnerarchitektur Einführung 19

Grundbegriffe. Verarbeiten von Daten. Grundlagen der Rechnerarchitektur Einführung 19 Grundbegriffe Verarbeiten von Daten Grundlagen der Rechnerarchitektur Einführung 19 Maschinensprache Was macht dieses Programm? Berechne 0^2 + 1^2 + 2^2 + 3^2 +... + 100^2 Bildquelle: David A. Patterson

Mehr

Einführung (1) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München

Einführung (1) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München Einführung (1) Erster funktionsfähiger programmgesteuerter Rechenautomat Z3, fertiggestellt 1941 Bild: Nachbau im Deutschen Museum München Einführung (2) Architektur des Haswell- Prozessors (aus c t) Einführung

Mehr

Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Befehl holen. Vorlesung Rechnerarchitektur und Rechnertechnik SS Memory Adress Register

Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Befehl holen. Vorlesung Rechnerarchitektur und Rechnertechnik SS Memory Adress Register Struktur der CPU (1) Die Adress- und Datenpfad der CPU: Prog. Counter Memory Adress Register Befehl holen Incrementer Main store Instruction register Op-code Address Memory Buffer Register CU Clock Control

Mehr

Rechnergrundlagen. Vom Rechenwerk zum Universalrechner

Rechnergrundlagen. Vom Rechenwerk zum Universalrechner Rechnergrundlagen. Vom Rechenwerk zum Universalrechner von Rainer Kelch 1. Auflage Hanser München 2003 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 22113 0 Zu Leseprobe schnell und portofrei

Mehr

32 Bit Konstanten und Adressierung. Grundlagen der Rechnerarchitektur Assembler 78

32 Bit Konstanten und Adressierung. Grundlagen der Rechnerarchitektur Assembler 78 32 Bit Konstanten und Adressierung Grundlagen der Rechnerarchitektur Assembler 78 Immediate kann nur 16 Bit lang sein Erinnerung: Laden einer Konstante in ein Register addi $t0, $zero, 200 Als Maschinen

Mehr

Abschlussklausur Informatik, SS 2012

Abschlussklausur Informatik, SS 2012 Abschlussklausur Informatik, SS 202 09.07.202 Name, Vorname: Matr.-Nr.: Unterschrift: Zugelassene Hilfsmittel: außer Stift und Papier keine Hinweis: Geben Sie bei allen Berechnungen den vollständigen Rechenweg

Mehr

Echtzeit-Multitasking

Echtzeit-Multitasking Technische Informatik Klaus-Dieter Thies Echtzeit-Multitasking Memory Management und System Design im Protected Mode der x86/pentium-architektur. Shaker Verlag Aachen 2002 Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Mehr

Echtzeit-Multitasking

Echtzeit-Multitasking Technische Informatik Klaus-Dieter Thies Echtzeit-Multitasking Memory Management und System Design im Protected Mode der x86/pentium-architektur. Shaker Verlag Aachen 2002 Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Mehr

Lehrveranstaltung: PR Rechnerorganisation Blatt 8. Thomas Aichholzer

Lehrveranstaltung: PR Rechnerorganisation Blatt 8. Thomas Aichholzer Aufgabe 8.1 Ausnahmen (Exceptions) a. Erklären Sie den Begriff Exception. b. Welche Arten von Exceptions kennen Sie? Wie werden sie ausgelöst und welche Auswirkungen auf den ablaufenden Code ergeben sich

Mehr

Generation 5: Invisible Computers (ab 1993)

Generation 5: Invisible Computers (ab 1993) Generation 5: Invisible Computers (ab 1993) Jahr Name Gebaut von Kommentar 1993 PIC Microchip Technology Erster Mikrocontroller auf Basis von EEPROMs. Diese erlauben das Flashen ohne zusätzliche. Bemerkung:

Mehr

Cache Blöcke und Offsets

Cache Blöcke und Offsets Cache Blöcke und Offsets Ein Cache Eintrag speichert in der Regel gleich mehrere im Speicher aufeinander folgende Bytes. Grund: räumliche Lokalität wird wie folgt besser ausgenutzt: Bei Cache Miss gleich

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 3 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Ein kleiner Einblick in die Welt der Supercomputer. Christian Krohn 07.12.2010 1

Ein kleiner Einblick in die Welt der Supercomputer. Christian Krohn 07.12.2010 1 Ein kleiner Einblick in die Welt der Supercomputer Christian Krohn 07.12.2010 1 Vorschub: FLOPS Entwicklung der Supercomputer Funktionsweisen von Supercomputern Zukunftsvisionen 2 Ein Top10 Supercomputer

Mehr

2. Der ParaNut-Prozessor "Parallel and more than just another CPU core"

2. Der ParaNut-Prozessor Parallel and more than just another CPU core 2. Der ParaNut-Prozessor "Parallel and more than just another CPU core" Neuer, konfigurierbarer Prozessor Parallelität auf Daten- (SIMD) und Thread-Ebene Hohe Skalierbarkeit mit einer Architektur neues

Mehr

Beispielhafte Prüfungsaufgaben zur Vorlesung TI I, gestellt im Frühjahr 2009

Beispielhafte Prüfungsaufgaben zur Vorlesung TI I, gestellt im Frühjahr 2009 Beispielhafte Prüfungsaufgaben zur Vorlesung TI I, gestellt im Frühjahr 2009 Die beigefügte Lösung ist ein Vorschlag. Für Korrektheit, Vollständigkeit und Verständlichkeit wird keine Verantwortung übernommen.

Mehr

Arbeitsfolien - Teil 4 CISC und RISC

Arbeitsfolien - Teil 4 CISC und RISC Vorlesung Informationstechnische Systeme zur Signal- und Wissensverarbeitung PD Dr.-Ing. Gerhard Staude Arbeitsfolien - Teil 4 CISC und RISC Institut für Informationstechnik Fakultät für Elektrotechnik

Mehr

HW/SW Codesign 5 - Performance

HW/SW Codesign 5 - Performance HW/SW Codesign 5 - Performance Martin Lechner e1026059 Computer Technology /29 Inhalt Was bedeutet Performance? Methoden zur Steigerung der Performance Einfluss der Kommunikation Hardware vs. Software

Mehr

Zusammenhang Interrupt, Befehlszyklus, indirekte Adressierung und Mikroprogramm [Stallings, Kap. 15, S ]

Zusammenhang Interrupt, Befehlszyklus, indirekte Adressierung und Mikroprogramm [Stallings, Kap. 15, S ] 2.1.2 Behandlung von Unterbrechungen (Interrupts) Zusammenhang Interrupt, Befehlszyklus, indirekte Adressierung und Mikroprogramm [Stallings, Kap. 15, S. 582-585] t 1 : MAR (PC) t 2 : MBR Memory[MAR] PC

Mehr

4 Rechnerarchitektur RAM

4 Rechnerarchitektur RAM 4 Rechnerarchitektur 18.145 RAM Gliederung 1. Mikroelektronik 2. Mikrosysteme 3. VLSI- und Systementwurf 4. Rechnerarchitektur Einleitung Bewertung von Architekturen und Rechnersystemen Klassifikation

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 8. Vorlesung Inhalt Gleitkomma-Darstellung Normalisierte Darstellung Denormalisierte Darstellung Rechnerarchitekturen Von Neumann-Architektur Harvard-Architektur Rechenwerk (ALU)

Mehr

Cache Grundlagen. Schreibender Cache Zugriff. SS 2012 Grundlagen der Rechnerarchitektur Speicher 22

Cache Grundlagen. Schreibender Cache Zugriff. SS 2012 Grundlagen der Rechnerarchitektur Speicher 22 Cache Grundlagen Schreibender Cache Zugriff SS 212 Grundlagen der Rechnerarchitektur Speicher 22 Eine einfache Strategie Schreibt man nur in den Cache, werden Cache und darunter liegender Speicher inkonsistent.

Mehr