Vorlesung 4 Differentialgeometrie: Grundlagen 19

Größe: px
Ab Seite anzeigen:

Download "Vorlesung 4 Differentialgeometrie: Grundlagen 19"

Transkript

1 Vorlesung 4 Differentialgeometrie: Grundlagen 19 Beweis. Sei κ : I R gegeben, I. Existenz: Definiere θ : I R durch θ(s) = κ(t) dt und setze T (s) = e iθ(s). Offenbat hat T (s) Länge 1 und es gilt T (s) = κ(s)it (s) also ist it (s), T (s) = κ(s). Nun kann man γ(s) als Integral über T (s) erklären: ( T (t) dt = cos(θ(t)) dt, ) sin(θ(t)) dt. Eindeutigkeit: Sei nun δ : I R 2 eine weitere bogenlängenparametrisierte Kurve, deren Krümmung ebenfalls κ sei. Wir zeigen, das sich δ von γ nur um eine euklidische Bewegung unterscheidet. Sei d = γ( ) δ( ) und A = SO(2) die orthogonale Abbildung, die die ON Basis (δ, Jδ ) auf (γ, Jγ ) abbildet. Setze M(x) = Ax + d und γ = Mδ. Betrachte nun f(s) = 1 2 ( γ (s) γ (s) 2 + J γ (s) Jγ (s) 2 ). Dann ist d f(s) = κj γ(s) κjγ(s), ds γ (s) γ (s) κ γ(s) κγ(s), J γ (s) Jγ (s) = 0 und f( ) = 0. Also f = 0 und γ γ = 0. Weiter ist aber γ( ) γ( ) = 0 und wegen d γ(s) ds γ(s) 2 = 2 γ (s) γ (s), γ(s) γ(s) = 0 folgt γ = γ. Bemerkung. Es genügt C k für die Krümmungsfunktion zu fordern. Das folgende Beispiel zeigt, das auch einfache Vorgaben zu Ergebnissen führen können, die nicht mehr durch elementare Funktionen darstellbar sind. Beispiel 2.5 (Klothoide) Gesucht ist eine bogenlängenparametrisierte Kurve γ : R R 2 mit linearer Krümmung κ(s) = as, a 0. Dem Hauptsatz folgend setzt man an: e aiσ2 /2 dσ und erhält im wesentlichen die imaginäre Errorfunktion: 1 i 2 ( π Erfi 1+i ) 2 a s a 19

2 20 Differentialgeometrie: Grundlagen Vorlesung Neue Kurven aus alten I: Evolvente und Evolute Definition 2.14 Sei γ : I R 2 bogenlängenparametrisierte Kurve und I. δ : I R 2, δ(s) = γ(s) + (s o s)γ (s) heißt Evolvente von γ. Bemerkung. δ entsteht durch Abwickeln von γ. δ ist nicht eindeutig. Die Wahl von gibt eine ein-parameter-familie von Evolventen. Es gilt δ, γ = γ γ + ( s)γ, γ = 0. δ schneidet also die Tangen von γ senkrecht. 20

3 Vorlesung 4 Differentialgeometrie: Grundlagen 21 Beispiel 2.6 Kreisevolvente (Übung). Definition 2.15 Sei γ : I R 2 bogenlängenparametrisierte Kurve mit Krümmung κ 0. Die Spur der Krümmungskreismittelpunkte η : I R 2, heißt Evolute von γ. η(t) = γ(t) + 1 κ(t) Jγ (t) Bemerkung. η ist tangential an die Normalen von γ. Beispiel 2.7 Die Evolute der Zykloide. Die Zykloide ist gegeben durch: γ(t) = (t sin(t), 1 cos(t)) (vergl. Beispiel 2.2). Für die Ableitungen gilt: γ(t) = (1 cos(t), sin(t)) γ(t) = (sin(t), cos(t)) det( γ(t), γ(t)) = cos(t) 1. Benutzt man die Formel für die Krümmung in allgemeiner Parametrisierung erhält man für η: γ(t) 2 η(t) = γ(t) + i γ(t) = (t sin(t + π), 1 cos(t + π)) det( γ(t), γ(t)) Die Evolute der Zykloide ist also wieder eine (translatierte) Zykloide. Man beachte jedoch, das wir hier eine stetige Fortsetzung der Kurve genommen haben, da die Zykloide ja nicht regulär, ihre Evolute also nicht überall erklärt ist. 21

4 22 Differentialgeometrie: Grundlagen Vorlesung 4 Satz 2.16 Die Evolute einer Evolvente einer Kurve γ ist wieder die ursprüngliche Kurve γ. Beweis. Sei γ : I R 2 bogenlängenparametrisierte Kurve, I. Setze δ(t) = γ(t) + ( s)γ (t) und η(t) = δ(t) + 1 κ δ (t) Jδ (t). Für δ gilt: δ = γ γ + ( s)jκγ und δ = ( s)κ 2 γ + (( s)κ κ) Iγ Weiter ist det( δ, δ) = κ 3 ( s) 2, also κ δ = sign κ/( s). Damit folgt η = γ(s) + ( s)γ + s (s sign κ i2 0 s)κγ s κ = γ 2.6 Neue Kurven aus alten II: Traktrix und Darboux- Transformation Definition 2.17 Sei γ : I R 2 reguläre Kurve, t 0 I, p R 2. Die Kurve τ : I R 2, die gegeben ist durch 1. τ(t 0 ) = p 2. τ γ = const 3. τ (τ γ) heißt (allgemeine) Traktrix zur Leitkurve γ. 22

5 Vorlesung 4 Differentialgeometrie: Grundlagen 23 Man kann sich die Traktrix wie folgt vorstellen: Bewegt man das Vorderrad eines Fahrrades auf der Kurve γ, so bewegt sich das Hinterrad auf einer Traktrix von γ. Bemerkung. Die Parallelität bedeutet τ = λ(τ γ). Wir berechnen λ. Es gilt d dt τ γ 2 = 0 τ γ, τ γ = 0. Damit erhält man λ(τ γ) γ, τ γ = 0 λ τ γ, τ γ = γ, τ γ. Das ergibt für λ γ, τ γ λ = τ γ 2 und man erhält als Differentialgleichung für τ τ = γ, τ γ (τ γ). τ γ 2 Als die Traktrix bezeichnet man meist die Traktrix einer Geraden (siehe Übung). Bemerkung. Die Traktrix einer Kurve ist i. a. nicht regulär. Definition 2.18 Sei γ : I R 2 reguläre Kurve τ : I R 2 Traktrix von γ. Dann heißt γ : U R 2 mit Darboux-Transformierte von γ. γ := γ + 2(τ γ) = 2τ γ Lemma 2.19 Ist γ nach Bogenlänge parametrisiert, so ist jede Darboux- Transformierte γ wieder nach Bogenlänge parametrisiert (also insbesondere regulär). Beweis. Sie γ : I R 2 bogenlängenparametrisierte Kurve und γ : I R 2 Darboux-Transformierte von γ. Es gilt dann für v = 1/2( γ γ), v = const, v d (γ + v) und v v. Nun ist dt γ 2 = γ, γ = γ + 2v, γ + 2v = = γ, γ + 4 γ, v + 4 v, v = γ + v, v = 1 23

Differentialgeometrie: Grundlagen Miniskript Sommer Tim Hoffmann

Differentialgeometrie: Grundlagen Miniskript Sommer Tim Hoffmann Differentialgeometrie: Grundlagen Miniskript Sommer 2011 Tim Hoffmann Inhaltsverzeichnis 1 Einleitung 6 1.1 Motivation............................. 6 1.1.1 Name of the game.................... 6 1.1.2

Mehr

Differentialgeometrie I (Kurventheorie) SS 2013

Differentialgeometrie I (Kurventheorie) SS 2013 Differentialgeometrie I (Kurventheorie) SS 2013 Lektion 6 5. Juni 2013 c Daria Apushkinskaya 2013 () Kurventheorie: Lektion 6 5. Juni 2013 1 / 23 8. Fundamentalsatz der lokalen Kurventheorie (Fortsetzung)

Mehr

INGENIEURMATHEMATIK. 11. Differentialgeometrie. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 11. Differentialgeometrie. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 11. Differentialgeometrie Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik

Mehr

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve. 1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)

Mehr

Angewandte Geometrie

Angewandte Geometrie Technische Universität München SS 215 Zentrum Mathematik Blatt 4 Prof. Dr. J. Hartl Angewandte Geometrie 1. Ein Kind läuft einen geradlinigen Weg entlang und zieht an einer Schnur ein (seitlich des Weges

Mehr

Miniskript Differentialgeometrie I WS 2006

Miniskript Differentialgeometrie I WS 2006 Tim Hoffmann Miniskript Differentialgeometrie I WS 2006 Tim Hoffmann 23. Januar 2007 Inhaltsverzeichnis 1 Einleitung 3 1.1 Motivation............................ 3 1.1.1 Name of the game....................

Mehr

Krümmungskreise. Dazu brauchen wir selbstverständlich einige Vorarbeit.

Krümmungskreise. Dazu brauchen wir selbstverständlich einige Vorarbeit. Krümmungskreise Postulat 2. Eine allgemeine Kurve c soll als Krümmung κ(t) die Krümmung desjenigen Kreises haben, der die Kurve im Punkt c(t) am besten (wird erklärt) approximiert. Erstes Ziel für heute:

Mehr

Kurven in R 3 : Frenet-Kurven

Kurven in R 3 : Frenet-Kurven Kurven in R 3 : Frenet-Kurven Wir betrachten mind. C 2 -reguläre Raumkurven (in Sätzen sind die Kurven meistens noch glatter ), also den Fall c C 2 (I;R 3 ). Def. Eine Frenet-Kurve ist eine parametrisierte

Mehr

Differentialgeometrie I (Kurventheorie) SS 2013

Differentialgeometrie I (Kurventheorie) SS 2013 Differentialgeometrie I (Kurventheorie) SS 2013 Lektion 4 15. Mai 2013 c Daria Apushkinskaya 2013 () Kurventheorie: Lektion 4 15. Mai 2013 1 / 21 5. Ebene Kurven und orientierte Krümmung 5. Ebene Kurven

Mehr

Klausur zur Geometrie

Klausur zur Geometrie PD Dr. A. Kollross Dr. J. Becker-Bender Klausur zur Geometrie Universität Stuttgart SoSe 213 2. Juli 213 Lösungen Aufgabe 1 Sei eine ebene Kurve c: (, ) R 2 durch ( ) 3 t c(t) = 2 t 3/2 definiert. a) Begründen

Mehr

Differentialgeometrie I (Kurventheorie) SS 2013

Differentialgeometrie I (Kurventheorie) SS 2013 Differentialgeometrie I (Kurventheorie) SS 2013 Lektion 7 19. Juni 2013 c Daria Apushkinskaya 2013 () Kurventheorie: Lektion 7 19. Juni 2013 1 / 17 9. Globale Eigenschaften ebener Kurven (Fortsetzung)

Mehr

γ(t k ) γ(t k 1 ) (2) t cos Peano-Kurve ).

γ(t k ) γ(t k 1 ) (2) t cos Peano-Kurve ). 49 Bogenlänge und Krümmung 49 Bogenlänge und Krümmung 211 49.1 Weglängen. a) Es seien E ein Banachraum und γ : [a,b] E ein Weg. Für eine Zerlegung Z = {a = t < t 1

Mehr

6.2 Geometrische Eigenschaften von Kurven. Eine Eigenschaft (eine Größe) einer Kurve heißt geometrisch, wenn sie unabhängig ist von der PD und vom KS.

6.2 Geometrische Eigenschaften von Kurven. Eine Eigenschaft (eine Größe) einer Kurve heißt geometrisch, wenn sie unabhängig ist von der PD und vom KS. 6.2 Geometrische Eigenschaften von Kurven Eine Eigenschaft (eine Größe) einer Kurve heißt geometrisch, wenn sie unabhängig ist von der PD und vom KS. Um zu zeigen, dass eine Eigenschaft geometrisch ist,

Mehr

Musterlösung zur Klausur Differentialgeometrie für die Fachrichtung Geodäsie

Musterlösung zur Klausur Differentialgeometrie für die Fachrichtung Geodäsie Karlsruher Institut für Technologie KIT) 4. März 20 Institut für Algebra und Geometrie PD Dr. Gabriele Link Musterlösung zur Klausur Differentialgeometrie für die Fachrichtung Geodäsie Aufgabe. Kurventheorie.

Mehr

Differentialgeometrie von Kurven und Flächen

Differentialgeometrie von Kurven und Flächen Differentialgeometrie von Kurven und Flächen Prof. Dr. Alexander Bobenko Stand: 18. Oktober 2006 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis Kurven in R n 3 1 Parametrisierte Kurven 3 1.1 Drehung und Streckung

Mehr

Wir wollen längs der Kurve in jedem Punkt sinnvoll eine Basis anheften.

Wir wollen längs der Kurve in jedem Punkt sinnvoll eine Basis anheften. 3.8 Begleitendes Dreibein Wir wollen längs der Kurve in jedem Punkt sinnvoll eine Basis anheften. 3.8.1 W-Punkte Geg.: regul. C 2 -Kurve c : x(s), s I x(s) heißt W-Punkt von c : x (s) = o. 3.8.2 Begleitendes

Mehr

4. Geodätische Linien

4. Geodätische Linien Gegeben ist eine Riemann sche Mannigfaltigkeit (M,, ) mit Levi-Civita-Zusammenhang D. Das Ziel ist es, ein Analogon für Geraden zu finden. Mögliche Charakterisierung von Geraden in der Euklidischen Geometrie

Mehr

Lösungsvorschläge zum 8. Übungsblatt.

Lösungsvorschläge zum 8. Übungsblatt. Übung zur Analysis I WS / Lösungsvorschläge zum 8 Übungsblatt Aufgabe 9 a) : [, ] R definiert durch t) := t, t 3 ) b) : [, π] R mit t) := cost), sint)), : [π, π] R mit t) := cost), sint)) und f : R R mit

Mehr

Mustermann, Erika. Aufgabe 1. Zeichnen Sie die Spur des Weges c : [ 3. 3cos(t) 1

Mustermann, Erika. Aufgabe 1. Zeichnen Sie die Spur des Weges c : [ 3. 3cos(t) 1 Aufgabe. Zeichnen Sie die Spur des Weges c : [ 4 π,π] R, der durch ct := + sint cost definiert ist, in das Koordinatensystem unten auf dieser Seite ein. Für die volle Punktzahl ist nur die korrekte Zeichnung

Mehr

Nach Bogenlänge parametrisierte Kurven

Nach Bogenlänge parametrisierte Kurven Nach Bogenlänge parametrisierte Kurven Eine orientierte Kurve ist eine Äquivalenzklasse von regulären parametrisierten Kurven bzgl. der orientierungserhaltenden Umparametrisierung als Äquivalenzrelation.

Mehr

1. Zykloide. 2. Rollkurven. 3. Tangenten der Zykloide. 4. Bogenlänge der Zykloide. 5. Bogenelement. 6. Zykloidenbogen

1. Zykloide. 2. Rollkurven. 3. Tangenten der Zykloide. 4. Bogenlänge der Zykloide. 5. Bogenelement. 6. Zykloidenbogen . Zykloide. Rollkurven 3. Tangenten der Zykloide 4. Bogenlänge der Zykloide 5. Bogenelement 6. Zykloidenbogen 7. Krümmungskreisradius der Zykloide 8. Natürliche Gleichung der Zykloide 9. Die natürliche

Mehr

Der Vierscheitelsatz und Eigenschaften einfach geschlossener ebener konvexer Kurven

Der Vierscheitelsatz und Eigenschaften einfach geschlossener ebener konvexer Kurven Der Vierscheitelsatz und Eigenschaften einfach geschlossener ebener konvexer Kurven im Rahmen des Proseminars Kurven WS 212/ 213 Prof. Dr. Franz Pedit Dr. Allison Tanguay Universität Tübingen Ayhan Kayabasi

Mehr

A1: Diplomvorprüfung HM II/III WS 2007/

A1: Diplomvorprüfung HM II/III WS 2007/ A: Diplomvorprüfung HM II/III WS 7/8 6..8 Aufgabe. (+68 Punkte) a) Ist die Reihe k+ k k 5k konvergent oder divergent? Begründen Sie ihre Aussage! b) Führen Sie eine Partialbruchzerlegung für n+ durch und

Mehr

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Themen des Tutoriums am 03.06.2015: Wiederholung: Ein glattes Flächenstück ist eine Menge M R 3, die eine reguläre Parametrisierung

Mehr

Flächen und ihre Krümmungen

Flächen und ihre Krümmungen Flächen und ihre Krümmungen Teilnehmer: Levi Borodenko Anna Heinrich Jochen Jacobs Robert Jendersie Tanja Lappe Manuel Radatz Maximilian Rogge Käthe-Kollwitz-Oberschule, Berlin Käthe-Kollwitz-Oberschule,

Mehr

Mathematik II: Übungsblatt 01: Lösungen

Mathematik II: Übungsblatt 01: Lösungen N.Mahnke Mathematik II: Übungsblatt 01: Lösungen Verständnisfragen: 1. Was versteht man unter einer parametrisierten ebenen Kurve? Eine parametrisierte ebene Kurve ist eine auf dem offenen Intervall ]t

Mehr

Übungen zur Vorlesung Differentialgeometrie I

Übungen zur Vorlesung Differentialgeometrie I Sommersemester 2005 Blatt 12 1) Liouvillesche Flächen sind per definitionem solche, deren erste Fundamentalform sich in der Form E = G = U + V, F = 0, schreiben lassen, wobei U = U (u) bzw. V = V (v) in

Mehr

Inhaltsverzeichnis Differentialgeometrie 2 Kurventheorie Jürgen Roth Differentialgeometrie 2.1

Inhaltsverzeichnis Differentialgeometrie 2 Kurventheorie Jürgen Roth Differentialgeometrie 2.1 Differentialgeometrie 2.1 Inhaltsverzeichnis Differentialgeometrie 1 Euklidische Geometrie 2 Kurventheorie 3 Klassische Flächentheorie 4 Innere Geometrie von Flächen 5 Geometrie und Topologie Differentialgeometrie

Mehr

Zwischenprüfung, Gruppe A Analysis I/II. Bestimmen Sie bei jeder der folgenden Aussagen, ob sie wahr oder falsch ist. ist eine Nullfolge.

Zwischenprüfung, Gruppe A Analysis I/II. Bestimmen Sie bei jeder der folgenden Aussagen, ob sie wahr oder falsch ist. ist eine Nullfolge. Multiple Choice. Die folgenden acht Aufgaben sind Multiple Choice-Aufgaben. Bei jeder Aufgabe gibt es 4 Aussagen, die wahr oder falsch sind. Für 4 korrekte Antworten gibt es 4 Punkte, für 3 korrekte Antworten

Mehr

Differenzialgeometrie

Differenzialgeometrie Skript zur Vorlesung Differenzialgeometrie gelesen von Dr. M. Geißert Martin Gubisch Konstanz, Sommersemester 2009 Inhaltsverzeichnis Kurventheorie 3. Regulär parametrisierte Kurven.................................

Mehr

Mathematik für Sicherheitsingenieure I B

Mathematik für Sicherheitsingenieure I B Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 3.3.8 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I B Aufgabe. (5+8+7 Punkte a Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH ist.

Mehr

4 Kurven im R n. Sei I R ein beliebiges Intervall (offen, halboffen, abgeschlossen, beschränkt oder unbeschränkt), das mindestens einen Punkt enthält.

4 Kurven im R n. Sei I R ein beliebiges Intervall (offen, halboffen, abgeschlossen, beschränkt oder unbeschränkt), das mindestens einen Punkt enthält. 4 Kurven im R n Sei I R ein beliebiges Intervall (offen, halboffen, abgeschlossen, beschränkt oder unbeschränkt), das mindestens einen Punkt enthält. Definition 4.1. (a) Unter einer Kurve im R n versteht

Mehr

Klausur zur Geometrie für Bachelor und Lehramt

Klausur zur Geometrie für Bachelor und Lehramt Klausur zur Geometrie für Bachelor und Lehramt Aufgabe ( Punkt) Lösung Aufgabe Kurzfragen (jeweils Punkte) (a) Skizzieren Sie qualitativ eine ebene Kurve c : R R mit Krümmung κ(t) = t (b) Ist die ebene

Mehr

Übungen zum Ferienkurs Analysis II 2014

Übungen zum Ferienkurs Analysis II 2014 Übungen zum Ferienkurs Analysis II 4 Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar zu begründen. Schreiben

Mehr

Mathematik für Sicherheitsingenieure I B (BScS 2011)

Mathematik für Sicherheitsingenieure I B (BScS 2011) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 5.9.7 Mathematik für Sicherheitsingenieure I B (BScS Aufgabe. (5+8+7 Punkte a eben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH ist. Eine Begründung

Mehr

1 Einleitung. 1.1 Motivation. 6 Differentialgeometrie: Grundlagen Vorlesung 1

1 Einleitung. 1.1 Motivation. 6 Differentialgeometrie: Grundlagen Vorlesung 1 6 Differentialgeometrie: Grundlagen Vorlesung Einleitung. Motivation.. Name of the game Geometer bezeichnet klassisch einen Landvermesser (heute ist eher Geodät gebräuchlich. Die klassische Differentialgeometrie

Mehr

Grundlagen der Mathematik (BSc Maschinenbau)

Grundlagen der Mathematik (BSc Maschinenbau) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 5.9.7 Grundlagen der Mathematik (BSc Maschinenbau) Aufgabe. (6+8+6 Punkte) a) Zeigen Sie durch Induktion nach n N: n (k ) = n k= b) Stellen Sie die folgenden Mengen

Mehr

Kapitel 2. Raumkurven. 2.1 Allgemeine Kurventheorie Die Weglänge

Kapitel 2. Raumkurven. 2.1 Allgemeine Kurventheorie Die Weglänge Kapitel 2 Raumkurven 2. Allgemeine Kurventheorie 2.. Die Weglänge Definition. Unter einer Raumkurve im IR n verstehen wir eine stetige Abbildung :[a, b] IR n. Weiter sprehen wir von einem C k -Weg, wenn

Mehr

Grundbegriffe aus der Vorlesung Elementare Differentialgeometrie

Grundbegriffe aus der Vorlesung Elementare Differentialgeometrie Grundbegriffe aus der Vorlesung Elementare Differentialgeometrie July 5, 2012 1 Kurventheorie Eine parametrisierte Kurve ist eine unendlich oft differenzierbare (= glatte) Abbildung c : I R n, wobei I

Mehr

Block I: Integration und Taylorentwicklung in 1D

Block I: Integration und Taylorentwicklung in 1D Wiederholungsübungen zur Ingenieur-Mathematik III WS 5/6 Blatt 3..6 Block I: Integration und Taylorentwicklung in D Aufgabe : Berechnen Sie die Integrale: a) π sin x cos x dx b) ( x) +x dx c) x e x dx

Mehr

Vorlesung 12 Differentialgeometrie: Grundlagen 49. Definition 4.25 Die Zweite Fundamentalform ordnet jedem Punkt die Bilinearform

Vorlesung 12 Differentialgeometrie: Grundlagen 49. Definition 4.25 Die Zweite Fundamentalform ordnet jedem Punkt die Bilinearform Vorlesung 2 Differentialgeometrie: Grundlagen 49 Wir werden jetzt κ(v) durch Untersuchung von d p N bestimmen. Dazu beobachten wir zunächst, das aus dn(v) N folgt, dass es zu jedem v T p U ein w T p U

Mehr

Geschlossene Kurven. c(a )=c(b ) c(a)=c(b)

Geschlossene Kurven. c(a )=c(b ) c(a)=c(b) Geschlossene Kurven Def. Eine parametrisierte Kurve c C 0 ([a,b];r n ) heißt geschlossen, wenn c(a) = c(b). Sie heißt k- Glatt (Bezeih. C k ), wenn außerdem c (a) = c (b),...,c (k) (a) = c (k) (b), d.h.

Mehr

Prüfer: Dr. M. Lenz, Prof. Dr. M. Rumpf. Klausurdauer: 180 Minuten. Bitte Namen, Vornamen und Matrikel-Nr. einsetzen. Name:... Vorname:...

Prüfer: Dr. M. Lenz, Prof. Dr. M. Rumpf. Klausurdauer: 180 Minuten. Bitte Namen, Vornamen und Matrikel-Nr. einsetzen. Name:... Vorname:... Klausur zum Modul Ingenieurmathematik II (B22) 20. März 2014 für den Bachelorstudiengang Geodäsie und Geoinformation In der Klausur können 10 Punkte pro Aufgabe, also insgesamt 100 Punkte erreicht werden.

Mehr

Musterlösungen zu Serie 6

Musterlösungen zu Serie 6 D-ERDW, D-HEST, D-USYS Mathematik II FS 3 Dr. Ana Cannas da Silva Musterlösungen zu Serie 6. Die Bogenlänge des Graphen einer differenzierbaren Funktion b f : [a, b] R ist durch + (f (x)) dx gegeben. Insbesondere

Mehr

Proseminar zu Differentialgeometrie I

Proseminar zu Differentialgeometrie I Proseminar zu Differentialgeometrie I Andreas Čap Sommersemester 2011 Kapitel 1. Kurven (1) Seien a, b R 2 Punkte und v, w R 2 Einheitsvektoren. Zeige: Es gibt eine eindeutige orientierungserhaltende Bewegung

Mehr

D-BAUG Analysis I HS 2014 Dr. Meike Akveld. Serie

D-BAUG Analysis I HS 2014 Dr. Meike Akveld. Serie D-BAUG Analysis I HS 2014 Dr. Meike Akveld Serie 12 1. Für die Hyperbel mit der Gleichung x 2 y 2 = 1 (siehe Abbildung 1) betrachten wir die Parametrisierung ( ) ( ) x(t) cosh t r : R R 2, r(t) = =. y(t)

Mehr

Mustermann, Erika. Aufgabe 1. Zeichnen Sie die Spur des Weges c : [ π 2, π] R 2, der durch. 2cos(t) 2

Mustermann, Erika. Aufgabe 1. Zeichnen Sie die Spur des Weges c : [ π 2, π] R 2, der durch. 2cos(t) 2 Aufgabe. Zeichnen Sie die Spur des Weges c : [ π, π] R, der durch ct := cost sint + definiert ist, in das Koordinatensystem unten auf dieser Seite ein. Für die volle Punktzahl ist nur die korrekte Zeichnung

Mehr

1 Kurven und Kurvenintegrale

1 Kurven und Kurvenintegrale Fabian Kohler Karolina Stoiber Ferienkurs Analysis für Physiker SS 14 A 1 Kurven und Kurvenintegrale 1.1 Einschub: Koordinatentransformation Gegeben sei eine Funktion f : R n R. Dann ist die totale Ableitung

Mehr

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016 Mathematik II FS 6. März 6 Lösung zu Serie Bemerkung: Die Aufgaben der Serie sind der Fokus der Übungsstunden vom./3. März.. a y = x und es wird die ganze Parabel einmal durchlaufen, denn x nimmt alle

Mehr

Lösungen zu Übungsblatt 1

Lösungen zu Übungsblatt 1 Vorlesung Geometrie für Lehramt Gymnasium, Wintersemester 4/5 Lösungen zu Übungsblatt Aufgabe. ( Punkte Beweisen Sie: Jeder reguläre Weg besitzt eine orientierungsumkehrende Parametrisierung nach der Bogenlänge.

Mehr

Musterlösung Basisprüfung, Gruppe A Analysis I/II ) = 28π 6

Musterlösung Basisprüfung, Gruppe A Analysis I/II ) = 28π 6 Winter 8. Single Choice: 6J (a) Der Flächeninhalt einer Kreisscheibe mit Radius R ist gegeben durch πr. Aus Symmetriegründen ist der Flächeninhalt eines Kreisssektors mit 6 gegeben durch πr 6. Folglich

Mehr

Beispiele für Klausurfragen zur Vorlesung Vektoranalysis (xx.xx.xxxx)

Beispiele für Klausurfragen zur Vorlesung Vektoranalysis (xx.xx.xxxx) Beispiele für Klausurfragen zur orlesung ektoranalysis (xx.xx.xxxx) Im folgenden finden Sie eine Liste von Fragen, die bei vergangenen Prüfungsterminen zur orlesung ektoranalysis gestellt wurden (Prof.

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

Jacobifelder und konjugierte Punkte

Jacobifelder und konjugierte Punkte Jacobifelder und konjugierte Punkte Vortrag Seminar ierentialgeometrie TU ortmund eingereicht bei Prof. r. L. Schwachhöfer vorgelegt von Melanie Voss Sommersemester 211 Vortrag 7, am 17.5.211 1 Einleitung/Wiederholung

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Höhere Mathematik für Ingenieure 2 Prof. Dr. Swanhild Bernstein Sommersemester 218 Institut für Angewandte Analysis Kurven- und Parameterintegrale Parameterintegrale Typische Beispiele für Parameterintegrale

Mehr

10.3. Krümmung ebener Kurven

10.3. Krümmung ebener Kurven 0.3. Krümmung ebener Kurven Jeder der einmal beim Durchfahren einer Kurve bremsen oder beschleunigen mußte hat im wahrsten Sinne des Wortes erfahren daß die lokale Krümmung einen ganz wesentlichen Einfluß

Mehr

Neilsche Parabel. Wieso ist die Neilsche Parabel N = { (x,y) R 2 x 3 = y 2} keine UMF von R 2?

Neilsche Parabel. Wieso ist die Neilsche Parabel N = { (x,y) R 2 x 3 = y 2} keine UMF von R 2? Inhalt vom 23.6. In dieser Übung soll zum einen die Parametrisierung von Flächen als auch die Berechnung von Flächeninhalten im Mittelpunkt stehen. Bevor wir jedoch damit anfangen, wollen wir noch beantworten,

Mehr

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2014): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 204): Differential und Integralrechnung 6 6. (Herbst 200, Thema 2, Aufgabe 4) Suchen Sie für alle c R einen Punkt auf der Parabel P := { (x,y) : y

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 17: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 17: Woche vom Übungsaufgaben 8. Übung SS 17: Woche vom 22.5. - 26. 5. 2017 Heft Ü 2: 24.15.f; 25.11.b, f; 26.1.a, b, c; + 1 Zusatzaufgabe zur Reduktion bei DGLn Krümmungsvektor, Krümmung im R 3 (R n ) Def. 5.17: Der

Mehr

A1: Diplomvorprüfung HM II/III SS

A1: Diplomvorprüfung HM II/III SS A: Diplomvorprüfung HM II/III SS 8 378 Aufgabe 5 + 7 + 6 8 Punkte a Führen Sie für den Bruch x+x x+3 b Berechnen Sie den Wert der Reihe k3 eine Partialbruchzerlegung durch k+k k+3 c Untersuchen Sie die

Mehr

Erste und zweite Variation der Bogenlänge; Satz von Bonnet 1.Teil: Einleitung und Vorbereitung

Erste und zweite Variation der Bogenlänge; Satz von Bonnet 1.Teil: Einleitung und Vorbereitung echnische Universität Dortmund Fakultät für Mathematik Lehrstuhl VII: Differentialgeometrie Erste und zweite Variation der Bogenlänge; Satz von Bonnet.eil: Einleitung und Vorbereitung Seminar zur Vorlesung

Mehr

7. Die Funktionalgleichung der Zetafunktion

7. Die Funktionalgleichung der Zetafunktion 7. Die Funktionalgleichung der Zetafunktion 7.. Satz (Poissonsche Summenformel. Sei f : R C eine stetig differenzierbare Funktion mit und sei f(x = O( x und f (x = O( x für x ˆf(t := f(xe πixt dx. die

Mehr

Transformation mehrdimensionaler Integrale

Transformation mehrdimensionaler Integrale Transformation mehrdimensionaler Integrale Für eine bijektive, stetig differenzierbare Transformation g eines regulären Bereiches U R n mit det g (x), x U, gilt für stetige Funktionen f : f g det g du

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

Das heißt, Γ ist der Graph einer Funktion von d 1 Veränderlichen.

Das heißt, Γ ist der Graph einer Funktion von d 1 Veränderlichen. Kapitel 2 Der Gaußsche Satz Partielle Differentialgleichung sind typischerweise auf beschränkten Gebieten des R d, d 1, zu lösen. Dabei sind die Eigenschaften dieser Gebiete von Bedeutung, insbesondere

Mehr

Wiederholungsklausur zur Analysis II

Wiederholungsklausur zur Analysis II Wiederholungsklausur zur Analysis II Prof. Dr. C. Löh/M. Blank 11. April 2012 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional Christina Schindler Karolina Stoiber Ferienkurs Analysis für Physiker SS 13 A 1 Variationsrechnung 1.1 Lagrange. Art Wir führen die Überlegungen von gestern fort und wollen nun die Lagrangegleichungen.

Mehr

FESTSTELLUNGSPRÜFUNG in HM2

FESTSTELLUNGSPRÜFUNG in HM2 FESTSTELLUNGSPRÜFUNG in HM2 FDIBA - TU, WS 27/8 INFORMATIK Name: Immatrikulationsnummer: Aufgabe : Zu lösen sei, durch Anwendung der Transformation von Laplace, das Anfangswertproblem 9P. u () (t) u(t)

Mehr

Übungen zur Analysis 2

Übungen zur Analysis 2 Mathematisches Institut der Universität München Prof. Dr. Franz Merkl Sommersemester 2013 Blatt 10 21.06.2013 Übungen zur Analysis 2 10.1 Betrachten Sie die Funktion f : R 2 R, f(x, y) =x 2 + y 2, den

Mehr

Differentialgeometrie II (Flächentheorie) WS

Differentialgeometrie II (Flächentheorie) WS Differentialgeometrie II (Flächentheorie) WS 2013-2014 Lektion 4 6. November 2013 c Daria Apushkinskaya 2013 () Flächentheorie: Lektion 4 6. November 2013 1 / 17 4. Zweite Fundamentalform parametrisierten

Mehr

Randwertprobleme. Kapitel 7. Randwertprobleme für lineare Differentialgleichungen 2. Ordnung

Randwertprobleme. Kapitel 7. Randwertprobleme für lineare Differentialgleichungen 2. Ordnung Kapitel 7 Randwertprobleme Anwendungsbeispiel: Temperaturverteilung in einem dünnen Stab mit isolierter Oberfläche. u(x) : Temperatur im Stab an der Stelle x, x ; L. Im Gleichgewichtszustand genügt u der

Mehr

Vorlesungsskript Geometrie für Geodäten WS 2014/15. Tillmann Jentsch

Vorlesungsskript Geometrie für Geodäten WS 2014/15. Tillmann Jentsch Vorlesungsskript Geometrie für Geodäten WS 2014/15 Tillmann Jentsch Die Vorlesung basiert auf dem Skriptum zur Vorlesung Geometrie im SS 2012 von Prof. Uwe Semmelmann. KAPITEL 1 Kurventheorie 1. Kurven

Mehr

9. Die Laplace Transformation

9. Die Laplace Transformation H.J. Oberle Differentialgleichungen I WiSe 212/13 9. Die Laplace Transformation Die Laplace Transformation gehört zur Klasse der so genannten Integraltransformationen. Diese ordnen einer vorgegebenen Funktion

Mehr

A. Die Laplace-Transformation

A. Die Laplace-Transformation A. Die Laplace-Transformation Die Laplace-Transformation ist eine im Wesentlichen eineindeutige Zuordnung von Funktionen der Zeit t zu Funktionen einer komplexen Variablen s. Im Rahmen der einseitigen)

Mehr

Differentialgeometrie I (Kurventheorie) SS 2013

Differentialgeometrie I (Kurventheorie) SS 2013 Differentialgeometrie I (Kurventheorie) SS 2013 Lektion 3 8. Mai 2013 c Daria Apushkinskaya 2013 () Kurventheorie: Lektion 3 8. Mai 2013 1 / 17 4. Lokale Kurventheorie im R 3 4. Lokale Kurventheorie im

Mehr

Differentialgeometrie II (Flächentheorie) WS

Differentialgeometrie II (Flächentheorie) WS Differentialgeometrie II (Flächentheorie) WS 2013-2014 Lektion 10 8. Januar 2014 c Daria Apushkinskaya 2014 () Flächentheorie: Lektion 10 8. Januar 2014 1 / 21 10. Konforme Abbildungen 10. Konforme Abbildungen

Mehr

Klausur HM II/III F 2003 HM II/III : 1

Klausur HM II/III F 2003 HM II/III : 1 Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.

Mehr

= r ). Beispiele. 1) Kreis. Skizze mit Tangentialvektoren ( x. 2) Zykloide. Skizze für a = r = 1:

= r ). Beispiele. 1) Kreis. Skizze mit Tangentialvektoren ( x. 2) Zykloide. Skizze für a = r = 1: VEKTORANALYSIS Inhalt: 1) Parametrisierte Kurven 2) Vektorfelder 3) Das Linienintegral 4) Potentialfelder 1 Parametrisierte Kurven Definitionen xt () Kurve: x = x() t = y() t, t zt () xt () dxt () Tangentialvektor:

Mehr

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss.

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss. 1. Konvexität in der absoluten Ebene In einem Dreieck in der Euklidischen Ebene hat die Strecke zwischen zwei Seitenmittelpunkten die halbe Länge der dritten Seite. In der absoluten Ebene hat man eine

Mehr

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη.

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη. Übungen (Aufg und Lösungen zu Mathem u Lin Alg II SS 6 Blatt 9 66 Aufgabe 43: Sei f : R R eine stetige Funktion Formen Sie das Integral f(x + y dx dy in ein einfaches Integral um Lösung: Führe neue Koordinaten

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H 34.

Mehr

Holonomiegruppen Riemannscher Mannigfaltigkeiten

Holonomiegruppen Riemannscher Mannigfaltigkeiten Holonomiegruppen Riemannscher Mannigfaltigkeiten Skript zum Seminarthema Holonomiegruppen von Überlagerungen und Riemannschen Produkten Sommersemester 2009 an der Humbol Universität zu Berlin. Daniel Schliebner

Mehr

31. Kurven in Ebene und Raum

31. Kurven in Ebene und Raum 31. Kurven in Ebene und Raum Für ebene Kurven (also Kurven im R gibt es mehrere Darstellungsmöglichkeiten: implizite Darstellung : F (x, y = explizite Darstellung : y = f(x oder x = g(y Parameterdarstellung

Mehr

Hamilton-Jacobi-Formalismus I

Hamilton-Jacobi-Formalismus I Hamilton-Jacobi-Formalismus I 1 Hamilton-Jacobi-Formalismus I Johannes Berger Leonard Stimpfle 05.06.2013 Die Hauptschwierigkeit bei der Integration gegebener Differentialgleichungen scheint in der Einführung

Mehr

12 Der Gaußsche Integralsatz

12 Der Gaußsche Integralsatz 12. Der Gaußsche Integralsatz 1 12 Der Gaußsche Integralsatz Das Ziel dieses Abschnitts ist die folgende zentrale Aussage der mehrdimensionalen Analysis und der Theorie der partiellen Differentialgleichungen:

Mehr

Kreistreue der Möbius-Transformationen

Kreistreue der Möbius-Transformationen Kreistreue der Möbiustransformationen Satz Möbius Transformationen sind kreistreu. Beweis Verwende eine geeignete Zerlegung für c 0: a az + b cz + d = c (cz + d) ad c + b cz + d = a c ad bc c cz + d. Wir

Mehr

Spline-Interpolation

Spline-Interpolation Spline-Interpolation Tim Schmölzer 20 November 2009 Tim Schmölzer Spline-Interpolation 20 November 2009 1 / 38 Übersicht 1 Vorbemerkungen 2 Lösbarkeit des Interpolationsproblems 3 Stabilität der Interpolation

Mehr

Vorlesung zur Geometrie

Vorlesung zur Geometrie PD Dr A Kollross Dr J Becker-Bender Vorlesung zur Geometrie Universität Stuttgart SoSe 3 Auswahl an Hausaufgaben mit Lösungshinweisen Version, 9 Juli 3, :45 Aufgabe (Aufgabe 3 von Blatt In der xy-ebene

Mehr

5. Funktional-Gleichung der Zetafunktion

5. Funktional-Gleichung der Zetafunktion 5. Funktional-Gleichung der Zetafunktion 5.. Satz (Poissonsche Summenformel. Sei f : R C eine stetig differenzierbare Funktion mit und sei f(x O( x und f (x O( x für x ˆf(t : f(xe πixt dx. die Fourier-Transformierte

Mehr

Thema 11 Vektorwertige Funktionen, Kurven

Thema 11 Vektorwertige Funktionen, Kurven Them 11 Vektorwertige Funktionen, Kurven Definition 1 Eine Kurve in R n ist eine stetige Abbildung uf einem Intervll I mit Werten in R n. Wir verwenden den Buchstben c für Kurven und schreiben c = (c 1,...,c

Mehr

Konvexe Kurven und das isoperimetrische Problem

Konvexe Kurven und das isoperimetrische Problem Vorlesung 3 Konvexe Kurven und das isoperimetrische Problem 3.1 Einführung Der Kreis läßt sich rch folgende Minimumeigenschaft charakterisieren: Unter allen ebenen Figuren gleichen Flächeninhalts hat die

Mehr

1. und 2. Fundamentalform

1. und 2. Fundamentalform 1. und 2. Fundamentalform regulärer Flächen Proseminar Differentialgeometrie Von Daniel Schliebner Herausgabe: 05. Dezember 2007 Daniel Schliebner 1. und 2. Fundamentalform regulärer Flächen Seite 1 6.1

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf Karolina Stoiber Aileen Wolf Ferienkurs Analysis 2 für Physiker SS 26 A Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar

Mehr

Angewandte Geometrie Semestralprüfung am 5. Juli 2005, Uhr

Angewandte Geometrie Semestralprüfung am 5. Juli 2005, Uhr Technische Universität München SS 2005 Zentrum Mathematik Blatt 7 apl. Prof. Dr. J. Hartl Angewandte Geometrie Semestralprüfung am 5. Juli 2005, 12.00-1.0 Uhr 1. In einem dreidimensionalen euklidischen

Mehr