K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 17: Woche vom

Größe: px
Ab Seite anzeigen:

Download "K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 17: Woche vom"

Transkript

1 Übungsaufgaben 8. Übung SS 17: Woche vom Heft Ü 2: f; b, f; 26.1.a, b, c; + 1 Zusatzaufgabe zur Reduktion bei DGLn

2 Krümmungsvektor, Krümmung im R 3 (R n ) Def. 5.17: Der Grenzwert lim t 1 t t s = lim t 1 t t(t 1 ) t(t) t 1 t s(t 1 ) s(t) t 1 t = ṫ(t) ṡ(t) heißt Krümmungsvektor. Die Länge des Krümmungsvektors ergibt sich zu κ(t) := 1 ṫ(t) ṫ(t) = ṡ(t) γ(t) und bezeichnet die Krümmung der Kurve an der Stelle t.

3 Kurven im R 3 II Abbildung 5.10: Begleitendes Dreibein und Schmiegebene

4 Kurven im R 3 III Abbildung 5.11: Normalen der Kurve γ im Punkt γ(t)

5 Kurven im R 3 IV γ(t).. s. 2 s χ.. γ n t γ Abbildung 5.13: Beschleunigungsvektor γ(t) mit seinen Komponenten in der Schmiegebene

6 Torsion und Torsionsvektor Def. 5.18: Man nennt 1 = lim ṡ(t)ḃ(t) t 1 t b s den Torsionsvektor der dreimal stetig differenzierbaren Kurve γ an der Stelle t ]t a, t e [. Es gilt: 1 = τ(t)n(t) ṡ(t)ḃ(t) Def. 5.19: Man nennt τ(t) die Torsion der dreimal stetig differenzierbaren Kurve γ an der Stelle t ]t a, t e [.

7 Eine dreimal stetig differenzierbare reguläre Kurve γ : [t a, t e ] R 3 besitzt an jeder Parameterstelle t mit γ(t) γ(t) 0 die Bogenlänge s(t) = t den Tangentenvektor t(t) = γ(t) γ(t), den Binormalenvektor b(t) = t a γ(u) du, ṡ(t) = γ(t) γ(t) γ(t) γ(t) γ(t), den Hauptnormalenvektor n(t) = b(t) t(t), die Krümmung κ(t) = die Torsion τ(t) = γ(t) γ(t) γ(t) 3,... det( γ(t), γ(t), γ (t)) γ(t) γ(t) 2. n > 3 : n -stetig diffbare reguläre Kurven (Frenet-Kurven mit begleit. n-bein) besitzen n 1 Krümmungen (κ n 1 ˆ= τ).

8 Kurven im R 3 V Abbildung 5.14: Schraubenlinie γ(t)

9 Die Erkennungsdaten der Schraubenlinie I (i) Parametrisierung: γ s (t) = (cos t, sin t, at) T, a R fixiert. Genau eine Windung: t [0, 2π], n Windungen: t [0, 2nπ], usw. (ii) Tangentenvektor und (lokale) Bogenlänge: sin t cos t γ s (t) = cos t, γ s(t) = sin t,... γ s (t) = a 0 sin t cos t 0 ṡ(t) = γ s (t) = 1 + a 2 s(t) = 1 + a 2 (t t a ). Die Kurve ist regulär in jedem Punkt, da 1 + a 2 > 0. (iii) Begleitendes Dreibein: Es gilt γ s (t) γ s (t) 2 = 1 + a 2 > 0.

10 Die Erkennungsdaten der Schraubenlinie II Folglich existieren Haupt- und Binormalenvektor in jedem Punkt der Schraubenlinie. sin t cos t a sin t 1 t s (t)= 1 + a 2 cos t n s(t)= sin t b 1 s(t)= 1 + a 2 a cos t a 0 1 (iv) Krümmung und Torsion: Beide Größen sind konstant κ s (t) a 2, τ s(t) a 1 + a 2.

11 4. Mehrdimensionale Integralrechnung 4.1 Elemente der Kurventheorie Ebene Kurven - Darstellungsmöglichkeiten Def. 4.1: Eine ebene Kurve läßt sich (u.a.) wie folgt definieren a) explizit: y = f(x), y = sin x, b) implizit: F (x, y) = 0, x 3 + y 3 3axy = 0, c) parametr.: x = x(t), y = y(t), x = t 3, y = t 2 d) Polarkoord.: ρ = ρ(φ), ρ(φ) = ae kφ, a, k > 0 ( R). a) c): alle Darstellungen in kartesischen Koordinaten(!), d) x = x(φ) = (x(φ), y(φ)) T = (ρ(φ) cos φ, ρ(φ) sin(φ)) T

12 Lokale Elemente ebener glatter Kurven Tangente und Normale: Tangente in P 0 ist die Grenzlage der Sekante durch P 0 = (x(t 0 ), y(t 0 )) T und P 1 = (x(t 1 ), y(t 1 )) T für t 1 t 0. Tangentengleichung: x(s) = P 0 + sτ 0, s R. Tangenten- und Normaleneinheitsvektor τ, n: f a): τ 0 = 1 + f (x 0 ) 2 f, n 0 = 0 (x 0 ) 1 + (f 0 ) Fy (x b): τ 0 = 0, y 0 ) 1 Fx, n 0 = Fx 2 + Fy 2 F x (x 0, y 0 ) Fx 2 + Fy 2 F y (ẋ(t0 ) 1 ) 1 ẏ c): τ 0 = ẋ2, n 0 = + ẏ 2 ẋ2 ẏ(t 0 ) + ẏ 2 ẋ ( 1 ρ ) cos φ ρ sin φ d): τ 0 = ρ2 + ρ 2 ρ, P 0 = (x(φ 0 ), y(φ 0 )) T sin φ + ρ cos φ

13 Die Krümmung ebener (glatter) Kurven Krümmungskreis an die Kurve: Grenzlage des Kreises durch P 0 = (x(t 0 ), y(t 0 )) T und P 1 = (x(t 1 ), y(t 1 )) T P 2 = (x(t 2 ), y(t 2 )) T für t 1, t 2 t 0 dessen Radius: Krümmungsradius R Krümmung κ := 1/R (Gerade: R κ 0) f (x 0 ) a): κ 0 = (1 + f (x 0 ) 2 ), P x0 3/2 0 = f(x 0 ) b): κ 0 = F y 2 F xx + 2F x F y F xy Fx 2 F yy x0, P (Fx 2 + Fy 2 ) 3/2 0 = c): κ 0 = ẋÿ ẏẍ (ẋ 2 + ẏ 2 ) 3/2, P 0 = x(t0 ) y(t 0 ) d): κ 0 = ρ2 + 2(ρ ) 2 ρρ (ρ 2 + ρ 2 ) 3/2, P 0 = ( x(φ0 ) y(φ 0 ) ) y 0

14 Singuläre Kurvenpunkte Def. 4.2: Ein Kurvenpunkt heißt singulär, falls gilt (i) F (x 0, y 0 ) = 0 (Fall b), (ii) ẋ(t 0 ) = 0 (Fall c), (iii) ρ (φ 0 ) = ρ(φ 0 ) = 0 (Fall d). Lokales Bogenelement und Kurvenlänge Wir betrachten eine reguläre Kurve in Darstellung c) (damit auch: Fall a), d)), einem (festen) Punkt P 0 = ( x(t 0 ) y(t 0 )) und einen weiteren Punkt P 1 = ( x(t 1 ) y(t 1 )). Dann setzen wir t0 := t 1 t 0 > 0, s(t 1, t 0 ) := P 0 P 1 E = (x(t 1 ) x(t 0 )) 2 + (y(t 1 ) y(t 0 )) 2, und betrachten ṡ(t 0 ) = ds(t 0) dt := lim t 1 t 0 s(t 1, t 0 ) t 0 = ẋ(t 0 ) 2 + ẏ(t 0 ) 2 ṡ(t 0 ) heißt lokale Längenänderung, ds(t 0 ) := ẋ ẏ2 0 dt das (lokale) Bogenelement.

15 Damit ergibt sich die Bogenlänge eines Kurvenstücks über dem Bereich [t a, t], t 0 < t t e, zu s(t) = t t ẋ(τ)2 ds(τ) = + ẏ(τ) 2 dτ, t (t 0, t e ], t a t a bzw. für die Gesamtlänge einer Kurve (über [t 0, t e ]) L = s(t e ) = te t a ẋ(t)2 + ẏ(t) 2 dt Die analogen Formeln im Fall a) und d) lauten a): ds = 1 + f (x) 2 dx, L = s(x e ) = xe x a 1 + f (x) 2 dx d): ds = ρ 2 + ρ 2 dφ, L = s(φ e ) = φe φ a ρ2 (φ) + ρ 2 (φ)dφ Im Fall b) muß eine Parametrisierung vorgenommen werden.

16 Beispiel: Die logarithmische Spirale ρ = ρ(φ) = ae kφ x(φ) = dabei x(φ) y(φ) = ( ae kφ ) cos φ ae kφ, φ R (!) sin φ lim φ x(φ) = 0, x(φ) = x 2 (φ) + y 2 (φ) für φ, auch: ρ (φ) 0 für φ - 0 ist asymptodisch singulärer Punkt. Tangente und Normale: (z.b. für φ 1 = 0, φ 2 = 3π/4) ( a x(φ 1 ) = x 1 = ), x(φ 2 ) = x 2 = aek3π/4 1, ( ae und ρ (φ) = ake kφ x kφ ) [k cos φ sin φ] (φ) = ae kφ t(φ) := [k sin φ + cos φ] x (φ) x (φ) =...= 1 k cos φ sin φ 1 k t(φ 1 )=t 1 =, k2 + 1 k sin φ + cos φ k k k 1 t(φ 2 )=t 2 =, n 2 t 2, n 2 = 2k k 2k2 + 2 k + 1

17 Tangenten- und Normalengleichung: (in x 1, x 2, s R) a 1 k Tangente in x 1 : x = x(s) = + s 0 k ( Tangente in x 2 : x = x(s) = aek3π/4 1 1 k + 1 +s 2 1 2k k ( Normale in x 2 : x = x(s) = aek3π/4 1 1 k 1 +s 2 1 2k k Krümmung: (ρ = ak 2 e kφ (ρ ) 2 = ρρ, φ R) ), ). κ = κ(φ) = ρ2 + 2(ρ ) 2 ρρ (ρ 2 + ρ 2 ) 3/2 = 1 ρ2 + ρ = 1 2 a k e kφ lim κ(φ) = 0, lim φ κ(φ) =, (κ(φ) > 0, φ R). φ

18 Kurvenlänge der log.-spirale Längenänderung und Bogenelement (lokal): s (φ 0 ) = ρ 2 (φ 0 )+ρ 2 (φ 0 ) = a k 2 +1e kφ 0, ds 0 = a k 2 +1e kφ 0 dφ Die Länge eines Spiralenstücks: (über [φ a, φ e ]) φe L= ρ 2 +ρ 2 dφ=a φe k 2 +1 e kφ k2 +1 dφ= k/a [ekφ e e kφ a ] φ a Speziell für das Stück zw. x 1, x 2 (s.o.): L = a 1 + k 2 [e k3π/4 1] Die Gesamtlänge der logarithmischen Spirale von x(φ 0 ) bis x( ) = 0 (über (, φ 0 ] - uneigentliches Integral) L ges (φ 0 ) = φ0 φ a a k 2 +1e kφ dφ = a 1 + k 2 e kφ 0 <, φ 0 R. Die Gesamtlänge der logar. Spirale ist für jedes φ 0 R endlich.

19 Stetigkeit von Abbildungen Def. 5.20/21: Sei D R n. Eine Abbildung f : D R m heißt stetig in x 0 D, wenn für alle Folgen (x k ) D aus die Beziehung folgt. lim k x k = x 0 lim f(x k) = f(x 0 ) k f heißt stetig auf A D, wenn f für alle x A stetig ist. f heißt stetig, wenn f auf dem Definitionsbereich D stetig ist.

20 Vererbung der Stetigkeit Sind f : D R und g : D R stetig im Punkt x 0 D, so sind f + g, f g, f g und auch stetig in x 0. f g (falls g(x 0 ) 0) Seien f : A B und g : B C gegeben und A R n, B R p, C R m. Wenn f in x 0 A und g in f(x 0 ) B stetig sind, dann ist die verkettete Funktion g f : A C stetig in x 0 (dabei möglich: n p m). Bemerkung: Die Begriffe monotone, gerade/ungerade, periodische Fkt. und Umkehrfkt. lassen sich nicht (direkt) auf mehrdimensionale Funktionen übertragen!

21 2 Beispiele zu GW/Stetigkeit von Abb. I 2): f 2 (x, y)= xy x 2 + y 2, 3): f 3(x, y)= x 2 + y x2 + y 2 1, DB(f 2/3 ) = R 2 \ {0} In jedem Punkt ihres (natürlichen) DB sind die beiden Funktionen ) stetig. Kritisch ist das Grenzwertverhalten in x = 0. Dazu ( 0 0 r > 0, ϕ [0, 2π) : R2 x = x y = r cos ϕ r sin ϕ 0 : x 0 r 0 (!) Dann gilt: f 2/3 (x) = f 2/3 (r, ϕ) und lim x 0 f 2/3 (x) = c = lim r 0 f2/3 (r, ϕ) f 2 (r, ϕ) = sin ϕ cos ϕ = 1 2 sin 2ϕ, f3 (r, ϕ) = r r2 1

22 2 Beispiele zu GW/Stetigkeit von Abb. II Das Grenzwertverhalten von f 3 (bzw. f 3 ) für x 0: lim r 0 r f 2 3 (r, ϕ) = lim r r2 1 =... = 2 (l Hospital) Für f 3 existiert der GW lim x 0 f 3 (x) = 2 stetige Fortsetzbarkeit Für f 2 (bzw. f 2 ) existieren nur Richtungs-GW mit festem d1 d = R 2 lim f 2 (0 + td) = lim f2 (r, ϕ 0 ) = 1 t 0 r 0 2 sin 2ϕ 0, d 2 ϕ 0 = arctan(d 2 /d 1 ), aber dabei gilt i.a. Ungleichheit, z.b sin(2 0) = lim 2 f 2(0 + t ) lim f 2 (0 + t ) = 1 t 0 0 t sin(2 π 4 )

23 Differentialrechnung: Partielle Ableitungen Abbildung 5.16: Graph von f(x 1, x 2 ) := 1 x 1 x 2

24 Partielle Ableitung einer Funktion Abbildung 5.17: Graph von f (x 1 ) = 1 3x 1 an f einschließlich Tangente

25 Partielle Ableitungen Def. 5.23/5.24: Sei D R n, x ein innerer Punkt von D und f : D R. Existiert der Grenzwert f xi (x) := f(x) x i f(x + he i ) f(x) := lim, h 0 h dann heißt er partielle Ableitung von f nach x i an der Stelle x und man sagt, f ist in x partiell differenzierbar nach x i. Eine Funktion f : D R heißt partiell differenzierbar in x, falls in x die partiellen Ableitungen von f nach x 1,..., x n existieren. Ist D offen und ist f für jedes x D partiell differenzierbar, so heißt f partiell differenzierbar.

Mathematik II für Chemie und LA Chemie. Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik

Mathematik II für Chemie und LA Chemie. Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik Mathematik II für Chemie und LA Chemie Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik karsten.eppler@tu-dresden.de www.math.tu-dresden.de/ eppler Vorlesungsassistent:

Mehr

6.2 Geometrische Eigenschaften von Kurven. Eine Eigenschaft (eine Größe) einer Kurve heißt geometrisch, wenn sie unabhängig ist von der PD und vom KS.

6.2 Geometrische Eigenschaften von Kurven. Eine Eigenschaft (eine Größe) einer Kurve heißt geometrisch, wenn sie unabhängig ist von der PD und vom KS. 6.2 Geometrische Eigenschaften von Kurven Eine Eigenschaft (eine Größe) einer Kurve heißt geometrisch, wenn sie unabhängig ist von der PD und vom KS. Um zu zeigen, dass eine Eigenschaft geometrisch ist,

Mehr

Wir wollen längs der Kurve in jedem Punkt sinnvoll eine Basis anheften.

Wir wollen längs der Kurve in jedem Punkt sinnvoll eine Basis anheften. 3.8 Begleitendes Dreibein Wir wollen längs der Kurve in jedem Punkt sinnvoll eine Basis anheften. 3.8.1 W-Punkte Geg.: regul. C 2 -Kurve c : x(s), s I x(s) heißt W-Punkt von c : x (s) = o. 3.8.2 Begleitendes

Mehr

Kurven. injektiv, dann heißt K eine Jordan-Kurve.

Kurven. injektiv, dann heißt K eine Jordan-Kurve. Kurven Der Begriff der Kurve, zunächst etwa im R 2 oder R 3, kann auf zwei Arten gebildet werden. Der geometrische Zugang definiert eine Kurve als den geometrischen Ort von Punkten in der Ebene bzw. im

Mehr

Mathematik II: Übungsblatt 01: Lösungen

Mathematik II: Übungsblatt 01: Lösungen N.Mahnke Mathematik II: Übungsblatt 01: Lösungen Verständnisfragen: 1. Was versteht man unter einer parametrisierten ebenen Kurve? Eine parametrisierte ebene Kurve ist eine auf dem offenen Intervall ]t

Mehr

INGENIEURMATHEMATIK. 11. Differentialgeometrie. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 11. Differentialgeometrie. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 11. Differentialgeometrie Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik

Mehr

γ(t k ) γ(t k 1 ) (2) t cos Peano-Kurve ).

γ(t k ) γ(t k 1 ) (2) t cos Peano-Kurve ). 49 Bogenlänge und Krümmung 49 Bogenlänge und Krümmung 211 49.1 Weglängen. a) Es seien E ein Banachraum und γ : [a,b] E ein Weg. Für eine Zerlegung Z = {a = t < t 1

Mehr

Analysis II für Studierende der Ingenieurwissenschaften

Analysis II für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 017 Dr. K. Rothe Analysis II für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt 1 Aufgabe 1: Aus einem kreisförmigen

Mehr

5 Kurven und Flächen in der Ebene und im Raum

5 Kurven und Flächen in der Ebene und im Raum 0 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE 5 Kurven und Flächen in der Ebene und im Raum 5.1 Parameterdarstellung für Kurven Für Kurven oder Flächen gibt es unterschiedliche Definitionsgleichungen:

Mehr

Musterlösungen Aufgabenblatt 1

Musterlösungen Aufgabenblatt 1 Jonas Kindervater Ferienkurs - Höhere Mathematik III für Phsiker Musterlösungen Aufgabenblatt Montag 6. Februar 9 Aufgabe (Vivianische Kurve) x = (sin t cos t, sin t, cos t), t π, ist wegen x + + z = eine

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

10.5 Differentialgeometrie ebener Kurven Tangente, Normale

10.5 Differentialgeometrie ebener Kurven Tangente, Normale 1.5 1.5 Differentialgeometrie ebener Kurven 1.5.1 Tangente, Normale Gegeben: Kurve C C := C := { (x { (x y) } y = f(x), a x b y ) x = ϕ(t) y = ψ(t), t 1 t t } oder C heißt glatte Kurve, wenn f stetig differenzierbar

Mehr

Differentialgeometrische Eigenschaften von Kurven und Flächen

Differentialgeometrische Eigenschaften von Kurven und Flächen Kapitel 5 Differentialgeometrische Eigenschaften von Kurven und Flächen Ziel dieses Abschnittes ist es, eine kurze Einführung in die Anfangsgründe der mathematischen Theorie der Raumkurven und Flächen

Mehr

5 5 5 Abbildung : Raumkurve Abbildung 5: Tangente t existiert nur dann, wenn _ ~x(t ) = ist. Ein Punkt mit f _x; _y; _zg = f; ; g heißt ein regulärer

5 5 5 Abbildung : Raumkurve Abbildung 5: Tangente t existiert nur dann, wenn _ ~x(t ) = ist. Ein Punkt mit f _x; _y; _zg = f; ; g heißt ein regulärer 3 Differentialgeometrische Eigenschaften von Kurven und Flächen Ziel dieses Abschnittes ist es, eine kurze Einführung in die Anfangsgründe der mathematischen Theorie der Raumkurven und Flächen zu geben.

Mehr

Musterlösung Basisprüfung, Gruppe A Analysis I/II ) = 28π 6

Musterlösung Basisprüfung, Gruppe A Analysis I/II ) = 28π 6 Winter 8. Single Choice: 6J (a) Der Flächeninhalt einer Kreisscheibe mit Radius R ist gegeben durch πr. Aus Symmetriegründen ist der Flächeninhalt eines Kreisssektors mit 6 gegeben durch πr 6. Folglich

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung WS 17/18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung WS 17/18: Woche vom Übungsaufgaben 8. Übung WS 17/18: Woche vom 27. 11. - 1. 12. 2017 Vektoranalysis: Differentialausdrücke in anderen Koordinaten 17.39, 17.43, 17.45 Skalare und Vektorfelder, grad, div, rot 19.1, 19.2 (a-d),

Mehr

16. Differentialquotient, Mittelwertsatz

16. Differentialquotient, Mittelwertsatz 16. Differentialquotient, Mittelwertsatz Gegeben sei eine stetige Funktion f : R R. Wir suchen die Gleichung der Tangente t an die Kurve y = f(x) im Punkt (x, f(x ), x R. Das Problem dabei ist, dass vorderhand

Mehr

KAPITEL 5. Kurven im R 2. Definition 5.1. Kurve im R 2. Sei G R 2 und [a, b] R ein abgeschlossenes Intervall. Jede Abbildung

KAPITEL 5. Kurven im R 2. Definition 5.1. Kurve im R 2. Sei G R 2 und [a, b] R ein abgeschlossenes Intervall. Jede Abbildung KAPITEL 5 Kurven im R 2 1. Kurven In der Physik und in den Ingenieurwissenschaften besteht oft das Problem die Bewegungskurve\ von Objekten zu beschreiben. Der Einfachheit halber betrachten " wir Kurven

Mehr

Kurventheorie. 1.1 Parameterdarstellung. 1.2 Reguläre Kurven

Kurventheorie. 1.1 Parameterdarstellung. 1.2 Reguläre Kurven Diese kleine Formelsammlung ist ein Hilfsmittel für die studienbegleitende Prüfung am 30. August 2012. Sie ist kein Ersatz für eine Vorlesungsmitschrift. Die Formelsammlung wird einseitig im Format DIN

Mehr

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve. 1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)

Mehr

Tutorium zur Vorlesung Differential und Integralrechnung II Bearbeitungsvorschlag

Tutorium zur Vorlesung Differential und Integralrechnung II Bearbeitungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 4 Blatt 5.6.4 Tutorium zur Vorlesung Differential und Integralrechnung II Bearbeitungsvorschlag 37. Wir bestimmen zunächst die Schnittpunkte

Mehr

Angewandte Geometrie

Angewandte Geometrie Technische Universität München SS 215 Zentrum Mathematik Blatt 4 Prof. Dr. J. Hartl Angewandte Geometrie 1. Ein Kind läuft einen geradlinigen Weg entlang und zieht an einer Schnur ein (seitlich des Weges

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 6. Übung: Woche vom bis

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 6. Übung: Woche vom bis Übungsaufgaben 6. Übung: Woche vom 17. 11. bis 21. 11. 2014 Heft Ü1: 9.1 (d,n,t); 9.2 (b,h,i); 9.3 (b,e); 9.4 (b,e,f) Übungsverlegung (einmalig!): Gruppe VIW 02 nach Mo., 5. DS; WIL C 204 (für Mittwoch,

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2014): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 204): Differential und Integralrechnung 6 6. (Herbst 200, Thema 2, Aufgabe 4) Suchen Sie für alle c R einen Punkt auf der Parabel P := { (x,y) : y

Mehr

Grundbegriffe aus der Vorlesung Elementare Differentialgeometrie

Grundbegriffe aus der Vorlesung Elementare Differentialgeometrie Grundbegriffe aus der Vorlesung Elementare Differentialgeometrie July 5, 2012 1 Kurventheorie Eine parametrisierte Kurve ist eine unendlich oft differenzierbare (= glatte) Abbildung c : I R n, wobei I

Mehr

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel 103 Differenzialrechnung 553 1035 Kettenregeln Die Kettenregel bei Funktionen einer Variablen erlaubt die Berechnung der Ableitung von verketteten Funktionen Je nach Verkettung gibt es bei Funktionen von

Mehr

Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare Felder Kurvenintegrale. Aufgabe 9.2 Aufgabe 9.

Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare Felder Kurvenintegrale. Aufgabe 9.2 Aufgabe 9. 9. Mehrdimensionale Analysis 1/42 9. Mehrdimensionale Analysis Differentialrechnung für skalare Felder 2/42 Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare

Mehr

Ordnen Sie die Bilder den zugehörigen Funktionen z = f(x, y) zu:

Ordnen Sie die Bilder den zugehörigen Funktionen z = f(x, y) zu: 6. Februar 2012 Lösungshinweise Theorieteil Aufgabe 1: Die folgenden Bilder zeigen drei Niveaumengen N 0 {(x, y) R 2 : f(x, y) 0}: Ordnen Sie die Bilder den zugehörigen Funktionen z f(x, y) zu: (a) z (x

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Höhere Mathematik für Ingenieure 2 Prof. Dr. Swanhild Bernstein Sommersemester 218 Institut für Angewandte Analysis Kurven- und Parameterintegrale Parameterintegrale Typische Beispiele für Parameterintegrale

Mehr

Kurven. Darstellungsweisen. Steigung von Kurven. Implizite Funktionen. Bogenlänge. Felder. Kurvenintegrale. Wegunabhängigkeit

Kurven. Darstellungsweisen. Steigung von Kurven. Implizite Funktionen. Bogenlänge. Felder. Kurvenintegrale. Wegunabhängigkeit Ergänzung Kurven Darstellungsweisen Steigung von Kurven Implizite Funktionen Bogenlänge Felder Kurvenintegrale Wegunabhängigkeit Kurven Darstellungsweisen Funktionen und Kurven Wir haben schon zahlreiche

Mehr

Block I: Integration und Taylorentwicklung in 1D

Block I: Integration und Taylorentwicklung in 1D Wiederholungsübungen zur Ingenieur-Mathematik III WS 5/6 Blatt 3..6 Block I: Integration und Taylorentwicklung in D Aufgabe : Berechnen Sie die Integrale: a) π sin x cos x dx b) ( x) +x dx c) x e x dx

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Angewandte Geometrie Semestralprüfung am 5. Juli 2005, Uhr

Angewandte Geometrie Semestralprüfung am 5. Juli 2005, Uhr Technische Universität München SS 2005 Zentrum Mathematik Blatt 7 apl. Prof. Dr. J. Hartl Angewandte Geometrie Semestralprüfung am 5. Juli 2005, 12.00-1.0 Uhr 1. In einem dreidimensionalen euklidischen

Mehr

Höhere Mathematik III für Physiker Analysis 2

Höhere Mathematik III für Physiker Analysis 2 Ralitsa Bozhanova Jonas Kindervater Ferienkurs im Anschluss an das Wintersemester 2008 Höhere Mathematik III für Physiker Analysis 2 16. bis 20. Februar 2009 1 Inhaltsverzeichnis Inhaltsverzeichnis 1 Der

Mehr

Nach Bogenlänge parametrisierte Kurven

Nach Bogenlänge parametrisierte Kurven Nach Bogenlänge parametrisierte Kurven Eine orientierte Kurve ist eine Äquivalenzklasse von regulären parametrisierten Kurven bzgl. der orientierungserhaltenden Umparametrisierung als Äquivalenzrelation.

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE Integralrechnung für Funktionen mehrerer Variablen

Mehr

Topologie metrischer Räume

Topologie metrischer Räume Technische Universität München Christoph Niehoff Ferienkurs Analysis für Physiker Vorlesung Montag SS 11 In diesem Teil des Ferienkurses beschäftigen wir uns mit drei Themengebieten. Zuerst wird die Topologie

Mehr

Höhere Mathematik II. Variante B

Höhere Mathematik II. Variante B Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik II SoSe 202 Variante B Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche Aufzeichnungen von maximal 0 DinA4-Blättern.

Mehr

Übung 11: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner

Übung 11: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner Technische Universität München SS 4 Zentrum Mathematik 5.7.4 Prof. Dr. K. Buchner Dr. W. Aschbacher Analysis II Übung : Lösungen Aufgabe T 3 (Mehrdimensionale Integrale, (a Wir benutzen die verallgemeinerten

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Prüfung Modul A, Teil 2 (Mathematik 2) (Fernstudium Bauingenieurwesen)

Prüfung Modul A, Teil 2 (Mathematik 2) (Fernstudium Bauingenieurwesen) Name: Vorname: Matrikelnummer: TU Dresden, Fachrichtung Mathematik, Dr. N. Koksch 6. Februar 8 Prüfung Modul A, Teil (Mathematik ) (Fernstudium auingenieurwesen) ewertet werden nur solche Lösungsschritte,

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

Zwischenprüfung, Gruppe B Analysis I/II

Zwischenprüfung, Gruppe B Analysis I/II 1.3.217 Die folgenden 8 Aufgaben sind Multiple Choice Aufgaben. Zur Erinnerung: Jede MC- Aufgabe besteht aus drei Teilen, die jeweils mit richtig oder falsch beantwortet werden können. Eine richtige Antwort

Mehr

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη.

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη. Übungen (Aufg und Lösungen zu Mathem u Lin Alg II SS 6 Blatt 9 66 Aufgabe 43: Sei f : R R eine stetige Funktion Formen Sie das Integral f(x + y dx dy in ein einfaches Integral um Lösung: Führe neue Koordinaten

Mehr

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem Implizite Funktionen Ist für eine stetig differenzierbare Funktion f : R n R m R n f (x, y ) = (0,..., 0) t, det f x (x, y ) 0, so lässt sich das Gleichungssystem f k (x 1,..., x n, y 1,..., y m ) = 0,

Mehr

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge

Mehr

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man:

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man: AM3: Differenzial- und Integralrechnung im R n 1 Begriffe f : x 1 f 1 (x 1, x 2,..., x n ) x 2... f 2 (x 1, x 2,..., x n )... x n f m (x 1, x 2,..., x n ) }{{}}{{} R n R m aus Platzgründen schreibt man:

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik II SoSe 01 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA-Blätter Vorder- und Rückseite

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

Lösungsvorschlag Klausur MA9802

Lösungsvorschlag Klausur MA9802 Lehrstuhl für Numerische Mathematik Garching, den 3.8.22 Prof. Dr. Herbert Egger Dr. Matthias Schlottbom Lösungsvorschlag Klausur MA982 Aufgabe [3 + 3 Punkte] Berechnen Sie, falls existent, die folgenden

Mehr

Analysis im IR 2. Fakultät Grundlagen. Juli Parameterdarstellung von Kurven Integrationsaufgaben Vektoranalysis

Analysis im IR 2. Fakultät Grundlagen. Juli Parameterdarstellung von Kurven Integrationsaufgaben Vektoranalysis Analsis im IR 2 Fakultät Grundlagen Juli 25 Fakultät Grundlagen Analsis im IR 2 Übersicht Parameterdarstellung von Kurven Parameterdarstellung von Kurven Ebene Kurven Tangentenvektor 2 Kurvenlänge Sektorfläche

Mehr

Kinematik des Massenpunktes

Kinematik des Massenpunktes Technische Mechanik II Kinematik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes Eindimensionale

Mehr

Analysis II. 8. Klausur mit Lösungen

Analysis II. 8. Klausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis II 8. Klausur mit en 1 2 Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Eine Metrik auf einer Menge M. 2) Die Kurvenlänge

Mehr

Übungen zum Ferienkurs Analysis II 2014

Übungen zum Ferienkurs Analysis II 2014 Übungen zum Ferienkurs Analysis II 4 Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar zu begründen. Schreiben

Mehr

Linien- und Oberflächenintegrale

Linien- und Oberflächenintegrale Linien- und berflächenintegrale Bei den früheren eindimensionalen Integralen wurde in der Regel entlang eines Intervalls einer Koordinatenachse integriert. Bei einem Linienintegral wird der Integrationsweg

Mehr

Prüfungsklausur Höhere Mathematik II (20. Juli 2005) - Lösungen zum Theorieteil - für MB, EC, TeM, FWK, KGB, BGi, WiW, GtB, Ma, WWT, ESM

Prüfungsklausur Höhere Mathematik II (20. Juli 2005) - Lösungen zum Theorieteil - für MB, EC, TeM, FWK, KGB, BGi, WiW, GtB, Ma, WWT, ESM Prüfungsklausur Höhere Mathematik II (2. Juli 25) für MB, EC, TeM, FWK, KGB, BGi, WiW, GtB, Ma, WWT, ESM - Lösungen zum Theorieteil - Aufgabe : Sei f(x, y) eine in einem Gebiet zweimal stetig differenzierbare

Mehr

Klausur zur Geometrie

Klausur zur Geometrie PD Dr. A. Kollross Dr. J. Becker-Bender Klausur zur Geometrie Universität Stuttgart SoSe 213 2. Juli 213 Lösungen Aufgabe 1 Sei eine ebene Kurve c: (, ) R 2 durch ( ) 3 t c(t) = 2 t 3/2 definiert. a) Begründen

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

Lokale Extrema von Funktionen mehrerer Variabler

Lokale Extrema von Funktionen mehrerer Variabler Kapitel 11 Lokale Extrema von Funktionen mehrerer Variabler Bemerkung 11.1 Motivation. Bei skalarwertigen Funktionen einer Variablen gibt es notwendige und hinreichende Bedingungen für das Vorliegen von

Mehr

Mathematik für Ingenieure II

Mathematik für Ingenieure II Mathematik für Ingenieure II Sommersemester 214 W. Ebeling 2 c Wolfgang Ebeling Institut für Algebraische Geometrie Leibniz Universität Hannover Postfach 69 36 Hannover E-mail: ebeling@math.uni-hannover.de

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R,

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R, B en Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R Berechnen Sie zur Abbildung f : R R, f(x, y) : x sin(xy) das totale Differenzial f df, die Jacobi-Matrix J f (x, y) und den Gradienten ( f)(x,

Mehr

Basisprüfung, Gruppe A Analysis I/II

Basisprüfung, Gruppe A Analysis I/II Offene Aufgaben. Jeder der folgenden sieben offenen Aufgaben ist eine einzelne thematisch verwandte Single Choice-Aufgabe vorangestellt. Beantworten Sie die Single Choice Aufgabe auf dem Antwortzettel.

Mehr

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................

Mehr

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2.

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2. 1. Aufgabe 8 Punkte Geben Sie die Bereiche, auf denen die Funktion f : R R mit f (x) = (x + 1) e x monoton wachsend oder fallend ist, an, und untersuchen Sie die Funktion auf lokale und globale Extrema.

Mehr

1 Kurven und Kurvenintegrale

1 Kurven und Kurvenintegrale Fabian Kohler Karolina Stoiber Ferienkurs Analysis für Physiker SS 14 A 1 Kurven und Kurvenintegrale 1.1 Einschub: Koordinatentransformation Gegeben sei eine Funktion f : R n R. Dann ist die totale Ableitung

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr M Keyl M Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis 2) MA923 http://wwwm5matumde/allgemeines/ma923_26s Sommersem 26 Probeklausur (4726) Krümmung

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

y f(t)dt in eine Taylorreihe um (0,0). Für welche (x,y) konvergiert diese Reihe gegen F(x,y)? x 5! x7 7! +... = 2 3! x ! x !

y f(t)dt in eine Taylorreihe um (0,0). Für welche (x,y) konvergiert diese Reihe gegen F(x,y)? x 5! x7 7! +... = 2 3! x ! x ! Wolfgang Erben (1. Januar 016) WS 01 Analysis Aufgabe 1. (6 Punkte) Gegeben sei die Funktion f () sinh sin a) Zeigen Sie, dass f () für alle 0 durch eine Potenzreihe um 0 dargestellt werden kann. Geben

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS 7/8 W. Stannat, A. Gündel-vom ofe..8 Februar Klausur Analysis II für Ingenieurwissenschaften Lösungsskizze Analysis II für Ingenieurwissenschaften

Mehr

2 Kinematik eines Massenpunkts in 2D und 3D

2 Kinematik eines Massenpunkts in 2D und 3D 2 Kinematik eines Massenpunkts in 2D und 3D Wir wollen die räumliche Bewegung eines Massenpunkts (Fliege im Zimmer, geworfener Stein, Planet im Sonnensystem, Stern in einem dichten Sternhaufen, etc.) mathematisch

Mehr

Flächen und ihre Krümmungen

Flächen und ihre Krümmungen Flächen und ihre Krümmungen Teilnehmer: Levi Borodenko Anna Heinrich Jochen Jacobs Robert Jendersie Tanja Lappe Manuel Radatz Maximilian Rogge Käthe-Kollwitz-Oberschule, Berlin Käthe-Kollwitz-Oberschule,

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Inhaltsverzeichnis 8 Funktionen mehrerer Variabler 8. Einführende Definitionen und Bemerkungen....................... 8. Graphische Darstellungsmöglichkeiten.......................... 8. Grenzwert und

Mehr

3 Funktionen in mehreren Variablen

3 Funktionen in mehreren Variablen 3 Funktionen in mehreren Variablen Funktionen in mehreren Variablen Wir betrachten nun Abbildungen / Funktionen in mehreren Variablen. Dies sind Funktionen von einer Teilmenge des R d nach R. f : D f R,

Mehr

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf Karolina Stoiber Aileen Wolf Ferienkurs Analysis 2 für Physiker SS 26 A Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar

Mehr

ANALYSIS 3. Carsten Schütt WS 2008/9

ANALYSIS 3. Carsten Schütt WS 2008/9 1. Es sei f : R 3 R 3 durch f 1 (r, φ 1,φ 2 ) = r cos φ 1 f 2 (r, φ 1,φ 2 ) = r sin φ 1 cos φ 2 f 3 (r, φ 1,φ 2 ) = r sin φ 1 sin φ 2 gegeben. Für welche (r, φ 1,φ 2 ) ist f lokal invertierbar? Ist f global

Mehr

PROBEPRÜFUNG MATHEMATIK I UND II

PROBEPRÜFUNG MATHEMATIK I UND II PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant

Mehr

Zwischenprüfung, Gruppe B Analysis I/II

Zwischenprüfung, Gruppe B Analysis I/II .3.27 Die folgenden 8 Aufgaben sind Multiple Choice Aufgaben. Zur Erinnerung: Jede MC- Aufgabe besteht aus drei Teilen, die jeweils mit richtig oder falsch beantwortet werden können. Eine richtige Antwort

Mehr

6.4 Oberflächenintegrale 1. und 2. Art

6.4 Oberflächenintegrale 1. und 2. Art 6.4 Oberflächenintegrale. und. Art 6.4. Integration über Flächen im Raum Es gibt verschiedene Möglichkeiten der arstellung von Flächen im Raum:. explizite arstellung als Graph z = f(x, y), was aber eigentlich

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang ETH Zürich Musterlösungen asisprüfung Sommer 14 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang 1. a I. I n 1 1 e r dr e r 1 e 1. 1 r n e r dr r n e r 1 n r n 1 e r dr e ni n 1, für n 1. b Wegen der

Mehr

Eine Funktion f(x) lasse sich in einem Intervall in eine Potenzreihe a n x n entwickeln. Geben Sie eine Potenzreihendarstellung für f (x) an.

Eine Funktion f(x) lasse sich in einem Intervall in eine Potenzreihe a n x n entwickeln. Geben Sie eine Potenzreihendarstellung für f (x) an. Prüfungsklausur Höhere Mathematik II 5. Juli 7) für MB, EC, TeM, FWK, VT, KGB, BGi, WiW, GtB, Ma, WWT, ESM - Lösungen zum Theorieteil - Aufgabe : Eine Funktion fx) lasse sich in einem Intervall in eine

Mehr

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle.

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle. 10 Funktionen mit mehreren Variablen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung

Mehr

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx.

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx. HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik II Mathematik II für Bauingenieure Wiederholungsaufgaben zur Prüfungsklausur im Juli 2007 1 Integralrechnung Aufgabe 1 : Berechnen Sie die folgenden

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (

Mehr

Wichtige Klassen reeller Funktionen

Wichtige Klassen reeller Funktionen 0 Wichtige Klassen reeller Funktionen Monotone Funktionen sind i.a. unstetig, aber man kann etwas über das Grenzwertverhalten aussagen, wenn man nur einseitige Grenzwerte betrachtet. Definition 0. : Sei

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

Mehrdimensionale Differentialrechnung Übersicht

Mehrdimensionale Differentialrechnung Übersicht Mehrdimensionale Differentialrechnung Übersicht Partielle und Totale Differenzierbarkeit Man kann sich mehrdimensionale Funktionen am Besten für den Fall f : R 2 M R vorstellen Dann lässt sich der Graph

Mehr

10.3. Krümmung ebener Kurven

10.3. Krümmung ebener Kurven 0.3. Krümmung ebener Kurven Jeder der einmal beim Durchfahren einer Kurve bremsen oder beschleunigen mußte hat im wahrsten Sinne des Wortes erfahren daß die lokale Krümmung einen ganz wesentlichen Einfluß

Mehr

einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt also den kinematischen Kurvendurchlauf (κ ι ν ε µ α = Bewegung).

einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt also den kinematischen Kurvendurchlauf (κ ι ν ε µ α = Bewegung). 10.4. Raumkurven Kinematik Wir betrachten eine zweimal differenzierbare Parameterdarstellung w( t) x( t ) y( t ) z( t ) einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt

Mehr

Formelsammlung Analysis I & II

Formelsammlung Analysis I & II Formelsammlung Analysis I & II Wichtige eindimensionale Integrale: { x s dx = s+ xs+ + C falls s log x + C falls s = exp(x dx = exp(x + C cos(x dx = sin(x + C sin(x dx = cos(x + C sinh(x dx = cosh(x +

Mehr

Serie 8 - Parametrisierte Kurven

Serie 8 - Parametrisierte Kurven Analysis D-BAUG Dr Meike Akveld HS 05 Serie 8 - Parametrisierte Kurven Geben Sie für die folgenden Bewegungen eines Punktes jeweils eine parametrisierte Darstellung I [0, ] R xt, t yt an Lösung a Geradlinige

Mehr

8 Differential- und Integralrechnung für Funktionen von mehreren Variablen

8 Differential- und Integralrechnung für Funktionen von mehreren Variablen Höhere Mathematik 284 8 Differential- und Integralrechnung für Funktionen von mehreren Variablen 8.1 Darstellungen Wir betrachten Funktionen f, die jedem Vektor x = [x 1, x 2,..., x n ] T einer Teilmenge

Mehr

ist ein Eigenvektor der Matrix A = Ist λ der Eigenwert zum Eigenvektor x der Matrix A, so gilt dafür A x = λ x, also

ist ein Eigenvektor der Matrix A = Ist λ der Eigenwert zum Eigenvektor x der Matrix A, so gilt dafür A x = λ x, also 5. Juli Lösungshinweise Theorieteil Aufgabe : Der Vektor x = ist ein Eigenvektor der Matrix A = Bestimmen Sie den zum Eigenvektor x zugehörigen Eigenwert. 3 3 3 3 (Hinweis: Es ist nicht erforderlich, das

Mehr

10 Untermannigfaltigkeiten

10 Untermannigfaltigkeiten 10. Untermannigfaltigkeiten 1 10 Untermannigfaltigkeiten Definition. Eine Menge M R n heißt k-dimensionale Untermannigfaltigkeit des R n, 1 k n, falls es zu jedem a M eine offene Umgebung U R n von a und

Mehr

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 4. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 4. Bestimmen Sie den Flächeninhalt der dreiblättrigen Kleeblattkurve γ für ein Kleeblatt. Die Polarkoordinaten-

Mehr