inoffizieller Lösungsvorschlag zu Übungsblatt 3 Markus Muhr 1

Größe: px
Ab Seite anzeigen:

Download "inoffizieller Lösungsvorschlag zu Übungsblatt 3 Markus Muhr 1"

Transkript

1 Vorlesung Differentialformen [MA506] Sommersemester 205 PD Dr. Peter Massopust Fakultät für Mathematik TU München 23. Mai 205 inoffizieller Lösungsvorschlag zu Übungsblatt 3 Markus Muhr Disclaimer Bei den folgenden Lösungen handelt es sich lediglich um inoffizielle Lösungsvorschläge von Studenten, welche die Vorlesung selbst zum ersten Mal hören. Sie können (evtl. auch schwerwiegende) Fehler enthalten und stellen demnach keine Musterlösung dar. Vielmehr sind sie als Denkanstöße oder mögliche Lösungsideen zu betrachten, welche jedoch stets kritisch zu hinterfragen sind. Aufgabe Es seien f A p (E; R), g A q (E; R) und h A r (E; R). Es bezeichne das äußere Produkt bezüglich der stetigen bilinearen Abbildung Φ : R R R, (x, y) xy. Man zeige die folgenden Eigenschaften: (a) Für p = q gilt: (f + g) h = f h + g h (b) Für p = q gilt: h (f + g) = h f + h g (c) f (g h) = (f g) h (d) α R : α(f g) = (αf) g = f (αg) Lösung (a) Für x,..., x p+r E beliebig gilt: ((f + g) h) (x,..., x p+r ) = markus.muhr@tum.de = + ε(σ)(f + g)(x σ(),..., x σ(p) ) h(x σ(p+),..., x σ(p+r) ) ε(σ)f(x σ(),..., x σ(p) ) h(x σ(p+),..., x σ(p+r) ) ε(σ)g(x σ(),..., x σ(p) ) h(x σ(p+),..., x σ(p+r) ) = ((f h) + (g h))(x,..., x p+r )

2 (b) Entweder man zeigt dies erneut direkt, wie in Aufgabenteil (a) bereits oder man nutzt Teil (a) und Proposition 7 aus der Vorlesung, welche besagt (f g) = ( ) pq (g f). Damit gilt nämlich: h (f+g) = ( ) rp (f+g) h (a) = ( ) rp [(f h) + (g h)] = ( ) rp [( ) rp (h f) + ( ) rp (h g)] = ( ) rp ( ) rp [(h f) + (h g)] = (h f) + (h g) (c) Der Einfachheit halber verwende man folgende alternative Darstellung des äußeren Produktes: Für f A p (E; R) und g A q (E; R) gilt (f g)(x,..., x p+q ) = ε(σ)f(x σ(),..., x σ(p) ) g(x σ(p+),..., x σ(p+q) ) Dies wurde in Aufgabe 3 von Blatt 2 nebenbei bzw. als Zwischenschritt bewiesen (siehe Anmerkung am Ende der Lösung zu jener Aufgabe). Damit beginnt man also mit x,..., x p+q+r E beliebig: [f (g h)](x,..., x p+q+r ) = ε(σ)f(x σ(),..., x σ(p) ) (g h)(x σ(p+),..., x σ(p+q+r) ) p!(q + r)! +r [ = ε(σ) f(x σ(),..., x σ(p) ) p!(q + r)! +r q!r! ε(τ)g(x τσ(p+),..., x τσ(p+q) ) h(x τσ(p+q+),..., x τσ(p+q+r) ) τ S q+r Erweitere nun τ S q+r zu einem τ S p+q+r indem man setzt τ(σ()) = σ(),..., τ(σ(p)) = σ(p). Das Vorzeichen von τ ändert sich dadurch nicht! Man kann jedoch anstatt f(x σ(),..., x σ(p) ) schreiben f(x τσ(),..., x τσ(p) ) (Das ist wichtig, nicht vergessen!). Natürlich lautet die τ-summe dann auch τ S p+q+r τ(σ())=σ(),...,τ(σ(p))=σ(p). Es wird also nur über die Teilmenge von S p+q+r summiert, die die zusätzliche Eigenschaft erfüllt σ(),..., σ(p) invariant zu lassen. Man überlegt sich an dieser Stelle auch gleich, wie viele (für ein festes σ, denn dieses wird ja in der äußeren Summe durchlaufen und ist für die innere Summe somit jeweils das gleiche) solcher Permutationen es gibt. Wenn p Indizes invariant bleiben sollen, so kann man noch q + r viele permutieren, man hat also (q + r)! viele Möglichkeiten. Des weiteren überlege man sich, dass jedes beliebige π S p+q+r geschrieben werden kann als π = τ σ mit σ S p+q+r beliebig und τ S p+q+r so, dass τ(σ()) = σ(),..., τ(σ(p)) = σ(p), indem man mit σ erstmal sie Werte π() = σ(),..., π(p) = σ(p) festlegt und τ die Wirkung von σ auf den restlichen Indizes kompensieren lässt. Im Umkehrschluss kann man σ auch schreiben als σ = τ π. Dies oben eingesetzt erhält man zusammen mit ε(π) = ε(τ σ) = ε(τ)ε(σ). ε(π)f(x π(),..., x π(p) ) p!(q + r)! q!r! π S p+q+r τ S p+q+r τ(σ())=σ(),...,τ(σ(p))=σ(p) g(x π(p+),..., x π(p+q) ) h(x π(p+q+),..., x π(p+q+r) ) 2

3 Innerhalb der Summe über τ ist keiner der Summanden mehr abhängig von τ, man kann also einfach mit der Kardinalität der Summe multiplizieren. Diese (die Anzahl der τ mit der geforderten Sonderbedingung) wurde oben bereits zu (q + r)! bestimmt. Man erhält also: r! π S p+q+r ε(π)f(x π(),..., x π(p) ) g(x π(p+),..., x π(p+q) ) h(x π(p+q+),..., x π(p+q+r) ) Ein vollkommen analoges Vorgehen, welches sich lediglich darin unterscheidet, dass bei der Erweiterung von τ S p+q zu τ S p+q+r Invarianz auf den hinteren r Indizes anstelle auf den ersten p wie eben, gefordert wird, führt auch bei (f g) h auf diesen Ausdruck. Da x,..., x p+q+r E beliebig waren, folgt die zu zeigende Gleichheit der Formen. (d) Erneut unter Verwendung der alternativen Darstellung von f g aus (c) und x,..., x p+q E beliebig.: Aufgabe 2 α(f g)(x,..., x p+q ) = α = = ε(σ)f(x σ(),..., x σ(p) ) g(x σ(p+),..., x σ(p+q) ) ε(σ)αf(x σ(),..., x σ(p) ) g(x σ(p+),..., x σ(p+q) ) ε(σ)(αf)(x σ(),..., x σ(p) ) g(x σ(p+),..., x σ(p+q) ) = [(αf) g] (x,..., x p+q ) = ε(σ)f(x σ(),..., x σ(p) ) αg(x σ(p+),..., x σ(p+q) ) = ε(σ)f(x σ(),..., x σ(p) ) (αg)(x σ(p+),..., x σ(p+q) ) = [f (αg)] (x,..., x p+q ) Es seien E := R 2n, n N, F := G := H := R und Φ : R R R, (x, y) xy. Betrachte die 2-Form f := (u u 2 ) + (u 3 u 4 ) (u 2n u 2n ) wobei u i : R 2n R, x x i, i =,..., 2n die i-te Koordinatenform ist. Man berechne das n-fache äußere Produkt n f von f mit sich selbst. Lösung Zu berechnen ist das Folgende: [(u u 2 ) + (u 3 u 4 ) (u 2n u 2n )]... [(u u 2 ) + (u 3 u 4 ) (u 2n u 2n )] Interpretiert man die (nur zur besseren Veranschaulichung) großen Wedge-Produkte als Produkte und nennt (u 2i u 2i ) =: x i für i =,..., n, so erinnert dies stark an (x + x x n ) n. Dies kann mittels des Multinomiallehrsatzes berechnet werden. Dabei muss lediglich jedes Mal -Zeichen 3

4 aus dem klassichen Multinomialsatz (der für Zahlen aus R formuliert ist) durch ein -Produkt ersetzt werden. Eine Potenz n folglich durch ein n faches -Produkt der Basis mit sich selbst. Es gilt also: (x + x x n ) n = k +...+kn=n k i 0 i=,...,n n! k!... k n! xk x k x kn n () Betrachte hier nun genauer was unter x k i i zu verstehen ist. Sei dazu i {,..., n} beliebig. Ist k i = 0 so ist x 0 i = (u 2i u 2i ) 0 =. Ist k i = so ist x i = (u 2i u 2i ) = (u 2i u 2i ). Interessant wird es erst ab hier. Sei also nun k i = 2, dann ist x 2 i = (u 2i u 2i ) 2 = (u 2i u 2i ) (u 2i u 2i ) Prop. 7 = ( ) (u 2i u 2i ) (u 2i u 2i ) Assoziativität nach Aufgabe = u 2i (u 2i u 2i ) u 2i Man stelle sich ganz allgemein die Frage, was das äußere Produkt einer Eins-Form (wie hier u 2i ) mit sich selbst ist. Dies ist schnell beantwortet, da es sich für beliebige x, y explizit angeben lässt. (u 2i u 2i )(x, y) = u 2i (x)u 2i (y) u 2i (y)u 2i (x) = 0 Es handelt sich also um die 0 -Zwei-Form. Ist diese Bestandteil eines weiteren äußeren Produktes (wie oben z.b. noch mit u 2i von rechts und links), so wird auch dieses Produkt 0 werden. Insbesondere ist also x 2 i = 0. Induktiv folgt sogar x k i i = 0 für k i 2, sodass in () letztendlich alle Terme, wo mindestens eines der k i 2 ist, 0 werden und keinen Beitrag zur Summe leisten. Gibt es denn auch Terme die nicht 0 werden? Ja, dazu darf keines der k i größer gleich 2 sein. Da die k i in Summe n ergeben müssen und alle nicht-negativ sind (Multinomiallehrsatz siehe Literatur) gibt es genau eine Möglichkeit, dass dies der Fall ist, nämlich wenn alle k i = sind. In dem Fall gilt nach () also: (x + x x n ) n = n! x x 2... x n Interpretiert man den Mal-Punkt nun wieder als -Produkt und resubstituiert, so gilt: n f = n! (u u 2 ) (u 3 u 4 )... (u 2n u 2n ) = n! 2n u k k= Das letzte Gleichheitszeichen ist erneut dank Assoziativität (Aufgabe ) gegeben. Aufgabe 3 Es sei wieder F := G := H := R und Φ : R R R, (x, y) xy. Für n N 0 und U E offen, sei Ω (n) (U, R) := p=0 Man zeige, dass sich die äußere Multiplikation : Ω (n) p Ω (n) p (U, R) (U, R) Ω (n) q (U, R) Ω (n) p+q(u, R) linear auf Ω (n) (U, R) fortsetzen lässt. Man benutze dann dieses Resultat um zu zeigen, dass der Vektorraum Ω (n) (U, R) mit der äußeren Multiplikation : Ω (n) (U, R) Ω (n) (U, R) Ω (n) (U, R) versehen zu einer assoziativen Algebra wird. 4

5 Lösung Die Idee hinter dieser Aufgabe ist es, das äußere Produkt für allgemeine p, q auf einen Schlag zu definieren, um in Zukunft nicht immer dazuschreiben zu müssen, welchen Wert p und q gerade haben. Dies gelingt mit der Notation der direkten Summe. Für eine Familie (V i ) i N0 von Vektorräumen ist i=0 V i definiert als {(v i ) i N0 i=0 V i v i 0 für höchstens endlich viele i N 0 }. Seien nun (ω i ) i N0 und (γ i ) i N0 Ω (n) (U, R), sprich (ω i ) i N0 = (ω 0, ω, ω 2,...) mit ω i Ω (n) i (U, R) und höchstens endlich vielen ω i 0 (für (γ i ) i N0 analog). Das äußere Produkt von (ω i ) i N0 und (γ i ) i N0 ist nun folgengliedweise definiert, sprich (ω γ) i N0 = (ω 0 γ 0, ω γ, ω 2 γ 2,...). Jede Komponente ist dabei definiert wie gewohnt. Mit dieser linearen Fortsetzung folgen die Eigenschaften einer assoziativen Algebra (Vektorraum- Struktur, Bilinearität und Assoziativität des Produktes) automatisch, da sie komponentenweise gelten und das Produkt komponentenweise definiert ist. Aufgabe 4 Es gelten die Voraussetzungen von Aufgabe 3. Ein Lie-Produkt in einem Vektorraum V ist eine antisymmetrische Abbildung (u, v) [u, v] von V in sich selbst, welche die sogenannte Jacobi-Identität erfüllt [[u, v], w] + [[v, w], u] + [[w, u], v] = 0 (2) Man zeige, dass im Falle V := Ω (n) (U, R) ein Lie-Produkt durch [f, g] := f g g f definiert wird. Lösung Zeige, dass [, ] anti-symmetrisch und (2) für beliebige f, g, h Ω (n) (U, R) erfüllt ist. Für Anti-Symmetrie sieht man leicht, dass gilt [f, g] = f g g f = g f + f g = (g f f g) = [g, f]. Für die Jacobi-Identität expandiere man (2): [[f, g], h] = [f g g f, h] = (f g g f) h h (f g g f) = f g h g f h h f g + h g f [[g, h], f] = [g h h g, f] = (g h h g) f f (g h h g) = g h f h g f f g h + f h g [[h, f], g] = [h f f h, g] = (h f f h) g g (h f f h) = h f g f h g g h f + g f h Insgesamt ergibt sich für die Jacobi-Identität also: (f g h) (g f h) (h f g) + (h g f) + (g h f) (h g f) (f g h) + (f h g) + (h f g) (f h g) (g h f) + (g f h) Von den 2 Termen gehen 6 mit positivem Vorzeichen, die anderen 6 mit negativem Vorzeichen ein und es heben sich jeweils immer zwei gegenseitig weg, sodass die Summe 0 ergibt, was zu zeigen war. 5

Multilineare Algebra

Multilineare Algebra Multilineare Algebra Handout zur Vorlesung Differentialgeometrie Dr. Bernd Ammann, Prof. Chr. Bär Literatur Frank Warner, Foundations of differentiable manifolds and Lie groups, Kapitel 2 1 Tensoren Motivation.

Mehr

Lineare Algebra I, Musterlösung zu Blatt 9

Lineare Algebra I, Musterlösung zu Blatt 9 Lineare Algebra I, Musterlösung zu Blatt 9 Wintersemester 2007/08 1. Untersuchen Sie, ob die folgenden Matrizen invertierbar sind und bestimmen Sie gegebenenfalls die Inverse. 8 1 3 1 a) A = 3 3 1 1 11

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Im Folgenden

Mehr

inoffizieller Lösungsvorschlag zu Übungsblatt 5 Markus Muhr 1

inoffizieller Lösungsvorschlag zu Übungsblatt 5 Markus Muhr 1 Vorlesung Differentialformen [MA5016] Sommersemester 2015 PD Dr Peter Massopust Fakultät für Mathematik TU München 24 Juni 2015 inoffizieller Lösungsvorschlag zu Übungsblatt 5 Markus Muhr 1 Disclaimer

Mehr

Lineare Algebra 6. Übungsblatt

Lineare Algebra 6. Übungsblatt Lineare Algebra 6. Übungsblatt Fachbereich Mathematik M. Schneider 16.05.01 Konstantin Pertschik, Daniel Körnlein Gruppenübung Aufgabe G19 Berechnen Sie das inverse Element bzgl. Multiplikation in der

Mehr

Sätze über ganzrationale Funktionen

Sätze über ganzrationale Funktionen Sätze über ganzrationale Funktionen 1. Sind alle Koeffizienten a i ganzzahlig und ist x 0 eine ganzzahlige Nullstelle, so ist x 0 ein Teiler von a 0. 2. Haben alle Koeffizienten dasselbe Vorzeichen, so

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Analysis III, WS 2011/2012 Montag $Id: masse.tex,v /10/31 15:48:07 hk Exp $

Analysis III, WS 2011/2012 Montag $Id: masse.tex,v /10/31 15:48:07 hk Exp $ $Id: masse.tex,v 1.8 2011/10/31 15:48:07 hk Exp $ 2 Maßräume 2.2 Meßbare Abbildungen Der nächste Grundbegriff sind die meßbaren Abbildungen. Erinnern Sie sich daran das wir eigentlich einen Integralbegriff

Mehr

4 Rein transzendente Körpererweiterungen

4 Rein transzendente Körpererweiterungen $Id: transzendent.tex,v 1.5 2009/05/04 14:59:47 hk Exp $ 4 Rein transzendente Körpererweiterungen Wie bereits angekündigt wollen wir nun einsehen, dass wir den rationalen Funktionenkörper K(t 1,..., t

Mehr

3. Untergruppen. 3. Untergruppen 23

3. Untergruppen. 3. Untergruppen 23 3. Untergruppen 23 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

17 Lineare Abbildungen

17 Lineare Abbildungen Chr.Nelius: Lineare Algebra II (SS2005) 1 17 Lineare Abbildungen Wir beginnen mit der Klärung des Abbildungsbegriffes. (17.1) DEF: M und N seien nichtleere Mengen. Eine Abbildung f von M nach N (in Zeichen:

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Musterlösung Serie 8

Musterlösung Serie 8 D-MATH Lineare Algebra I HS 018 Prof. Richard Pink Musterlösung Serie 8 Dimension, Direkte Summe & Komplemente 1. Zeige: Für jedes Erzeugendensystem E eines Vektorraums V und jede linear unabhängige Teilmenge

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 3/4 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Tutoraufgaben: Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I Wintersemester 3/ Aufgabenblatt 6. Januar Präsenzaufgaben

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzugen zur Vorlesung: Der Vollständigkeit

Mehr

HM I Tutorium 9. Lucas Kunz. 19. Dezember 2018

HM I Tutorium 9. Lucas Kunz. 19. Dezember 2018 HM I Tutorium 9 Lucas Kunz 19. Dezember 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Definition der Ableitung............................ 2 1.2 Ableitungsregeln................................ 2 1.2.1 Linearität................................

Mehr

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Zwölfte Woche, Rang(f) := dim Bild(f).

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Zwölfte Woche, Rang(f) := dim Bild(f). Fakultät für Mathematik PD Dr Markus Perling Heinrich Heine-Universität Düsseldorf Sommersemester 204 Lineare Algebra Zwölfte Woche, 256204 8 Der Rang einer Linearen Abbildung Auch in diesem Abschnitt

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 1 (SS 2011) Abgabetermin: Donnerstag, 21. April.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 1 (SS 2011) Abgabetermin: Donnerstag, 21. April. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 1 (SS 2011) Abgabetermin: Donnerstag, 21. April http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Symmetrische

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 13. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 13. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax

Mehr

Lösungen zur Klausur über Lie-Algebren

Lösungen zur Klausur über Lie-Algebren Universität zu Köln Sommersemester 2017 Mathematisches Institut 19. Juli 2017 Prof. Dr. P. Littelmann Lösungen zur Klausur über Lie-Algebren Dies ist keine Muster -Lösung, sondern eine Hilfe um die Lösung

Mehr

Lösung 2: Relationen, Abbildungen, Mächtigkeit, Gruppen

Lösung 2: Relationen, Abbildungen, Mächtigkeit, Gruppen D-MATH Lineare Algebra I HS 2016 Dr. Meike Akveld Lösung 2: Relationen, Abbildungen, Mächtigkeit, Gruppen 1. Gegeben n, m Z schreiben wir m n k Z : n = km Wir sagen m teilt n. Eine Zahl n Z ist gerade,

Mehr

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4 Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 08.11.2018 Dr. Markus Lange Analysis 1 Aufgabenzettel 4 Abgabe bis 14. November 2018, 19:00 Uhr Erinnerung: Die Anmeldung für den Übungsschein

Mehr

Gruppen. Kapitel Operationen Definiton Gruppe, symmetrische Gruppen. Gruppen und Untergruppen, Lernziele 1. Erzeugendensysteme,

Gruppen. Kapitel Operationen Definiton Gruppe, symmetrische Gruppen. Gruppen und Untergruppen, Lernziele 1. Erzeugendensysteme, Kapitel 1 Gruppen 1.1 Operationen Lernziele 1. Gruppen und Untergruppen, Erzeugendensysteme, Operationen und Bahnen 1.1.1 Definiton Gruppe, symmetrische Gruppen Definition 1.1. Sei G eine nicht leere Menge

Mehr

Analysis II. Vorlesung 44. Partielle Ableitungen

Analysis II. Vorlesung 44. Partielle Ableitungen Prof. Dr. H. Brenner Osnabrück SS 2015 Analysis II Vorlesung 44 Sei f: K n K eine durch Partielle Ableitungen (x 1,...,x n ) f(x 1,...,x n ) gegebene Abbildung. Betrachtet man für einen fixierten Index

Mehr

Klausur Sommersemester 2011 Tensorrechnung für Ingenieure Musterlösung

Klausur Sommersemester 2011 Tensorrechnung für Ingenieure Musterlösung Klausur Sommersemester 2011 Tensorrechnung für Ingenieure Musterlösung Prof Dr-Ing Ch Tsakmakis Dipl-Ing J Frischmann FB 13, FG Kontinuumsmechanik Aufgabe 1 (Klausuraufgabe) Seien drei Vektoren u, v, w

Mehr

1 Der Satz von Poincaré-Birkhoff-Witt. 2 Die freie Algebra. 3 Die universell einhüllende Algebra

1 Der Satz von Poincaré-Birkhoff-Witt. 2 Die freie Algebra. 3 Die universell einhüllende Algebra 1 Der Satz von Poincaré-Birkhoff-Witt Darstellungen von assoziativen Algebren sind oft einfacher zu handhaben als Darstellungen von Lie- Algebren. Die universell einhüllende Algebra einer Lie-Algebra hat

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 3

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 3 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 3 Die Lösungshinweise dienen

Mehr

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe 1 Halbgruppen Übersicht 11 Definitionen 5 12 Unterhalbgruppen 8 13 InvertierbareElemente 9 14 AllgemeinesAssoziativ-undKommutativgesetz 11 15 PotenzenundVielfache 11 16 Homomorphismen,Isomorphismen 12

Mehr

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe 1 Halbgruppen Übersicht 11 Definitionen 5 12 Unterhalbgruppen 8 13 InvertierbareElemente 9 14 AllgemeinesAssoziativ-undKommutativgesetz 11 15 PotenzenundVielfache 11 16 Homomorphismen,Isomorphismen 12

Mehr

Übungsblatt 10 zur Algebra I

Übungsblatt 10 zur Algebra I Universität Augsburg Sommersemester 2013 Lehrstuhl für Algebra und Zahlentheorie Ingo Blechschmidt Prof. Marc Nieper-Wißkirchen Robert Gelb Übungsblatt 10 zur Algebra I Abgabe bis 24. Juni 2013, 17:00

Mehr

mit "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor"

mit Skalarprodukt aus i-tem Zeilenvektor und j-tem Spaltenvektor Zusammenfassung Matrizen Transponierte: Addition: mit Skalare Multiplikation: Matrixmultiplikation: m x p m x n n x p mit ES "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor" "Determinante"

Mehr

Vorlesung. Mathematik für Physiker III. Kapitel 3 Differentialformen. 10. Differentialformen 1. Ordnung

Vorlesung. Mathematik für Physiker III. Kapitel 3 Differentialformen. 10. Differentialformen 1. Ordnung Vorlesung Mathematik für Physiker III Kapitel 3 Differentialformen 10. Differentialformen 1. Ordnung Sei V ein Vektorraum über R, V sein Dualraum. Zu einer k-dimensionalen Untermannigfaltigkeit M des R

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Hier

Mehr

Lineare Algebra I 14. Tutorium Lineare Abbildungen und Matrizen

Lineare Algebra I 14. Tutorium Lineare Abbildungen und Matrizen Lineare Algebra I 4 Tutorium Lineare Abbildungen und Matrizen Fachbereich Mathematik WS / Prof Dr Kollross 7 Februar Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Bewegungen im ) Als Bewegung

Mehr

4.1. Vektorräume und lineare Abbildungen

4.1. Vektorräume und lineare Abbildungen 4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt

Mehr

Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen

Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen Lineare Algebra I Tutorium Inverse Matrizen und Gruppen Fachbereich Mathematik WS / Prof Dr Kollross November Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Die zweite Variante des Gauß-Algorithmus)

Mehr

Musterlösung des 4. Übungsblatts

Musterlösung des 4. Übungsblatts Mathematisches Institut der Universität München Wintersemester 207/8 Grundlagen der Mathematik I Aufgabe. a) Für die Summen: Für die Produkte: Musterlösung des 4. Übungsblatts ( 2) k+ 2 ( 2) k+ 3 ( 2)

Mehr

Kapitel 4. Multilineare Algebra. 4.1 Determinantenfunktionen

Kapitel 4. Multilineare Algebra. 4.1 Determinantenfunktionen 92 Kapitel 4 Multilineare Algebra 4. Determinantenfunktionen Wir fixieren wieder einen Körper K, etwa IR oder C. Aus dem Vorkurs kennen wir das Spatprodukt dreier Vektoren des IR 3 v 3 v 2 λ v Sind v,

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische

Mehr

7 Vektorräume und Körperweiterungen

7 Vektorräume und Körperweiterungen $Id: vektor.tex,v 1.3 2009/05/25 15:03:47 hk Exp $ 7 Vektorräume und Körperweiterungen Wir sind gerade bei der Besprechung derjenigen Grundeigenschaften des Tensorprodukts, die mit vergleichsweise wenig

Mehr

Klausur Analysis II

Klausur Analysis II WS 28/9 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Klausur Analysis II 6.2.28 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

Serie 3: Ringe, Körper, Vektorräume

Serie 3: Ringe, Körper, Vektorräume D-MATH Lineare Algebra I HS 2016 Dr. Meike Akveld Serie 3: Ringe, Körper, Vektorräume 1. Im Folgenden sei n N und Z n bezeichne die Menge der Äquivalenzklassen von Z bezüglich der Relation: k n l n k l

Mehr

Musterlösung 7 Lineare Algebra für die Naturwissenschaften

Musterlösung 7 Lineare Algebra für die Naturwissenschaften Musterlösung 7 Lineare Algebra für die Naturwissenschaften Aufgabe Entscheiden Sie, ob folgende Abbildungen linear sind, und geben sie für die linearen Abbildungen eine Matrixdarstellung (in einer Basis

Mehr

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 4 (WS 2015/16) 1. Abgabetermin: Donnerstag, 19. November.

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 4 (WS 2015/16) 1. Abgabetermin: Donnerstag, 19. November. Algebra I Prof. Dr. M. Rost Übungen Blatt 4 (WS 2015/16) 1 Abgabetermin: Donnerstag, 19. November http://www.math.uni-bielefeld.de/~rost/a1 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige

Mehr

Universität Bielefeld Wintersemester 2017/18. Lineare Algebra 1 Präsenzübungsblatt 2 1

Universität Bielefeld Wintersemester 2017/18. Lineare Algebra 1 Präsenzübungsblatt 2 1 Präsenzübungsblatt 2 1 Durchweg seien X, Y, Z Mengen. Aufgabe 1. Für eine Teilmenge M X bezeichne M c = X \ M das Komplement von M in X. Seien M, N, P X beliebige Teilmengen. Zeigen Sie: (1) (M N) c =

Mehr

Messbare Vektorräume

Messbare Vektorräume Messbare Vektorräume Hans-Jörg Starkloff TU Bergakademie Freiberg Westsächsische Hochschule Zwickau Dezember 2010 / Januar 2011 Hans-Jörg Starkloff Messbare Vektorräume 1 1. Definition Geg. X linearer

Mehr

M U = {x U f 1 =... = f n k (x) = 0}, (1)

M U = {x U f 1 =... = f n k (x) = 0}, (1) Aufgabe 11. a) Es sei M = {(x, y, z) R 3 f 1 = xy = 0; f = yz = 0}. Der Tangentialraum T x M muss in jedem Punkt x M ein R-Vektorraum sein und die Dimension 1 besitzen, damit diese Menge M eine Untermannigfaltigkeit

Mehr

Die Unlösbarkeit der Gleichung fünften Grades durch Radikale. Teilnehmer: Gruppenleiter:

Die Unlösbarkeit der Gleichung fünften Grades durch Radikale. Teilnehmer: Gruppenleiter: Die Unlösbarkeit der Gleichung fünften Grades durch adikale Teilnehmer: Max Bender Marcus Gawlik Anton Milge Leonard Poetzsch Gabor adtke Miao Zhang Gruppenleiter: Jürg Kramer Andreas-Oberschule Georg-Forster-Oberschule

Mehr

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2.

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2. Adµ Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung Blatt Probeklausur 2 Lösungen zur Probeklausur 2 Aufgabe 1 1. Formulieren Sie den Satz von Taylor

Mehr

Algebra II. Prof. Dr. M. Rost. Übungen Blatt 3 (SS 2016) 1. Abgabetermin: Freitag, 6. Mai.

Algebra II. Prof. Dr. M. Rost. Übungen Blatt 3 (SS 2016) 1. Abgabetermin: Freitag, 6. Mai. Algebra II Prof. Dr. M. Rost Übungen Blatt 3 (SS 2016) 1 Abgabetermin: Freitag, 6. Mai http://www.math.uni-bielefeld.de/~rost/a2 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige Definitionen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen Aufgaben mit Musterlösung 21. März 2011 Tanja Geib 1 Aufgabe 1 Geben Sie zu B = {0, 2, 4} und

Mehr

In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa. Unterraum,

In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa. Unterraum, 2 Vektorräume In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa Unterraum, Linearkombination, lineare Unabhängigkeit und Erzeugendensystem.

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 36 Andreas Gathmann 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will so kann es sinnvoll sein zunächst kleinere einfachere Mengen (bzw. Gruppen) zu betrachten

Mehr

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen TEIL II: GRUPPEN In der modernen Algebra versucht man die Zahlen (Z, Q, R, ) durch die Konzentration auf Rechenoperationen (+,,... ), oder allgemeiner auf strukturelle Eigenschaften dieser Operationen,

Mehr

2. Symmetrische Gruppen

2. Symmetrische Gruppen 14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen

Mehr

4 Differenzierbarkeit einer konjugierten Funktion

4 Differenzierbarkeit einer konjugierten Funktion 4 Differenzierbarkeit einer konjugierten Funktion (Eingereicht von Corinna Vits) 4.1 Differenzierbarkeit 1.Ordnung Theorem 4.1.1: Sei f ConvR n strikt konvex. Dann ist int dom und f ist stetig differenzierbar

Mehr

Permutationsgruppen. 1 Zykelzerlegung und Signum. Jesko Hüttenhain. Winter 2013

Permutationsgruppen. 1 Zykelzerlegung und Signum. Jesko Hüttenhain. Winter 2013 Permutationsgruppen Jesko Hüttenhain Winter 2013 Sei N eine endliche Menge. Dann bezeichnen wir mit S N := {σ : N N σ bijektiv} die symmetrische Gruppe auf N. Für n N sei [n] := {1,..., n}. Wir schreiben

Mehr

Übungen zu Logik und Künstliche Intelligenz mit Musterlösungen 1 Blatt 11

Übungen zu Logik und Künstliche Intelligenz mit Musterlösungen 1 Blatt 11 Heilbronn, den 18.6.2010 Prof. Dr. V. Stahl WS 10/11 Übungen zu Logik und Künstliche Intelligenz mit Musterlösungen 1 Blatt 11 Aufgabe 1. Schreiben Sie auf wann ein Tripel (A, B, R) eine partielle Funktion,

Mehr

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen Inhaltsverzeichnis Teil II: Gruppen 2 3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen.................. 2 3.1.1 Gruppen.......................................... 2 3.1.2 Untergruppen.......................................

Mehr

Lösung zum 2. Übungsblatt

Lösung zum 2. Übungsblatt MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Prof. Dr. D. Rost SoSe 25 Blatt 2 3.5.25 Lösung zum 2. Übungsblatt. Gegeben seien die Vektoren v = 2, v 2 =, v 3 = in R 3 3 2 und ( ) ( ) w =, w 2 2 =, w

Mehr

Universität Zürich HS , Vorlesung #3

Universität Zürich HS , Vorlesung #3 Algebraic Number Theory P. Habegger Universität Zürich HS 2010 6.10.2010, Vorlesung #3 1.4 Diskriminante Die primitivste Invariante eines Zahlkörpers ist sein Grad. Die Diskriminante eines Zahlkörpers

Mehr

01. Gruppen, Ringe, Körper

01. Gruppen, Ringe, Körper 01. Gruppen, Ringe, Körper Gruppen, Ringe bzw. Körper sind wichtige abstrakte algebraische Strukturen. Sie entstehen dadurch, dass auf einer Menge M eine oder mehrere sogenannte Verknüpfungen definiert

Mehr

Erweiterter Euklidischer Algorithmus

Erweiterter Euklidischer Algorithmus Erweiterter Euklidischer Algorithmus Algorithmus ERWEITERTER EUKLIDISCHER ALG. (EEA) EINGABE: a, b N 1 If (b = 0) then return (a, 1, 0); 2 (d, x, y) EEA(b, a mod b); 3 (d, x, y) (d, y, x a b y); AUSGABE:

Mehr

BWM 2004 AUFGABE 1 Marcel Schmittfull. s i mod 11 = S mod 11 = const. i=1

BWM 2004 AUFGABE 1 Marcel Schmittfull. s i mod 11 = S mod 11 = const. i=1 BWM 004 AUFGABE 1 Marcel Schmittfull Aufgabe 1 Man bezeichne die Menge der an der Tafel stehenden Zahlen mit S {s 1, s,..., s n }. Die Summe aller Elemente einer Menge M werde durch M dargestellt. Behauptung.

Mehr

Mathematik für Informatiker I Mitschrift zur Vorlesung vom

Mathematik für Informatiker I Mitschrift zur Vorlesung vom Mathematik für Informatiker I Mitschrift zur Vorlesung vom 18.11.2004 Zur Wiederholung: Das Kartesische Produkt dient dem Ordnen von Mengen. A B = {(a, b) : a A, b B)} Spezialfall A = Äquivalenzrelation

Mehr

KANN DER VEKTORRAUM R 3 EIN KÖRPER WERDEN? 1. Der Körper Centsprichtdem Vektorraum R 2

KANN DER VEKTORRAUM R 3 EIN KÖRPER WERDEN? 1. Der Körper Centsprichtdem Vektorraum R 2 KANN DER VEKTORRAUM R 3 EIN KÖRPER WERDEN? MARKUS FULMEK 1. Der Körper Centsprichtdem Vektorraum R 2 Die Menge R 2 = { (x, y) : x, y R } bildet mit der komponentenweisen Addition + R 2 R 2 R 2, (x, y)+(a,

Mehr

1. Die freie Gruppe F [A]

1. Die freie Gruppe F [A] 1. Die freie Gruppe F [A] Definition: Eine Menge A heißt Alphabet. Eine formale Potenz der Form a k, a A, k Z heißt Silbe. Ein Wort ist eine endliche Folge a 1 a n k n von Silben. Die Folge mit Länge Null

Mehr

Brückenkurs Elementarmathematik

Brückenkurs Elementarmathematik Brückenkurs Elementarmathematik IV. Ungleichungen November 13, 2013 Inhalt 1 Ungleichungen 2 Umformungen von Ungleichungen 2.1 Äquivalenzumformungen 2.2 Addition und Multiplikation von Ungleichungen 3

Mehr

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 5. Äquivalenzrelationen 35 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will, so kann es sinnvoll sein, zunächst kleinere, einfachere Mengen (bzw. Gruppen)

Mehr

Wir lernen nun einen ganz wichtigen Ring kennen, den Polynomring: γ i = α j β k.

Wir lernen nun einen ganz wichtigen Ring kennen, den Polynomring: γ i = α j β k. 2.4 Polynomringe Wir lernen nun einen ganz wichtigen Ring kennen, den Polynomring: Definition 2.56. Sei R ein kommutativer Ring mit 1 (in den meisten Fällen wird R ein Körper sein). Wir betrachten die

Mehr

53 Die Parsevalsche Gleichung

53 Die Parsevalsche Gleichung 53 Die Parsevalsche Gleichung 53 Die Parsevalsche Gleichung 5 53. Skalarprodukte auf Räumen quadratintegrierbarer Funktionen. a) Die Orthogonalitätsrelationen (5.5) legen die Interpretation des Ausdrucks

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 2018/19 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2018 Steven Köhler Wintersemester 2018/19 Inhaltsverzeichnis Teil 1 Teil

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 2018/2019 18.10.2018 Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum

Mehr

Differentialformen. Lie-Ableitung von Differentialformen und Poincaré-Formel. Differentialform dp dx und ihre Invarianz bzgl. Hamiltonischer Flüsse.

Differentialformen. Lie-Ableitung von Differentialformen und Poincaré-Formel. Differentialform dp dx und ihre Invarianz bzgl. Hamiltonischer Flüsse. Differentialformen Plan Zuerst lineare Algebra: Schiefsymmetrische Formen im R n. Dann Differentialformen: Invarianz bzgl. Diffeomorphismen (und sogar beliebigen glatten Abbildungen). Äußere Ableitung.

Mehr

Seminar über Darstellungstheorie endlicher Gruppen Darstellungen

Seminar über Darstellungstheorie endlicher Gruppen Darstellungen Seminar über Darstellungstheorie endlicher Gruppen Darstellungen Fabia Weber, Samet Armagan 25. Februar 2016 Inhaltsverzeichnis 1.1 Denition einer linearen Darstellung 2 1.2 Die Gruppenalgebra F G 4 1.3

Mehr

Funktionen einer Variablen

Funktionen einer Variablen Funktionen einer Variablen 1 Zahlen 1.1 Zahlmengen Im täglichen Gebrauch trifft man vor allem auf die natürlichen Zahlen N = {1,2,3,...}. Gelegentlich wird auch die Bezeichnung N 0 = {0,1,2,...} benutzt.

Mehr

Lineare Algebra Weihnachtszettel

Lineare Algebra Weihnachtszettel Lineare Algebra Weihnachtszettel 4..008 Die Aufgaben auf diesem Zettel sind zum Üben während der Weihnachtspause gedacht, sie dienen der freiwilligen Selbstkontrolle. Die Aufgaben müssen nicht bearbeitet

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 4 Injektive und surjektive Abbildungen Definition 4.1. Es seien L und M Mengen und es sei eine Abbildung. Dann heißt F F

Mehr

Algebraische Kurven. Vorlesung 24. Tangenten bei Parametrisierungen. (Q)) die Richtung der Tangente von C in P.

Algebraische Kurven. Vorlesung 24. Tangenten bei Parametrisierungen. (Q)) die Richtung der Tangente von C in P. Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 24 Tangenten bei Parametrisierungen Satz 24.1. Es sei K ein unendlicher Körper und ϕ: A 1 K A n K eine durch n Polynome ϕ = (ϕ 1 (t),...,ϕ

Mehr

7 Vektorräume und Körperweiterungen

7 Vektorräume und Körperweiterungen $Id: vektor.tex,v 1.4 2009/05/28 16:37:16 hk Exp $ 7 Vektorräume und Körperweiterungen Bisher haben wir zwar die Existenz und Eindeutigkeit von Tensorprodukten bewiesen, und auch einige ihrer Eigenschaften

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 018/19 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de c 018 Steven Köhler Wintersemester 018/19 Inhaltsverzeichnis Teil 1 Teil Teil

Mehr

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit A Analysis, Woche 9 Mehrdimensionale Differentialrechnung I A 9. Differenzierbarkeit A3 =. (9.) Definition 9. Sei U R m offen, f : U R n eine Funktion und a R m. Die Funktion f heißt differenzierbar in

Mehr

Algebraische Topologie WS 2016/17 Ausgewählte Lösungen der Woche 4

Algebraische Topologie WS 2016/17 Ausgewählte Lösungen der Woche 4 6.132 - Algebraische Topologie WS 2016/17 Ausgewählte Lösungen der Woche 4 Martin Frankland 17.11.2016 Aufgabe 1. Seien X und Y Räume. Zeigen Sie, dass Homotopie f g eine Äquivalenzrelation auf der Menge

Mehr

Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen

Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen Kapitel XII Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen 53 Implizite Funktionen und allgemeine partielle Differenzierbarkeit 54 Der Umkehrsatz 55 Lokale Extrema unter Nebenbedingungen,

Mehr

Analysis für Physiker Zusätze

Analysis für Physiker Zusätze Analysis für Physiker Zusätze nach den Vorlesungen von Prof. Dr. Werner Timmermann (Sommersemester 2007, Wintersemester 2007/08) Herausgegeben von Jeffrey Kelling Felix Lemke Stefan Majewsky Stand: 23.

Mehr

HÖHERE MATHEMATIK I FÜR MW UND CIW Übungsblatt 5

HÖHERE MATHEMATIK I FÜR MW UND CIW Übungsblatt 5 PROF DR-ING RAINER CALLIES DR THOMAS STOLTE DIPL-TECH MATH KATHRIN RUF DIPL-TECH MATH KARIN TICHMANN WS / HÖHERE MATHEMATIK I FÜR MW UND CIW Übungsblatt Zentralübung Z Bezüglich eines kartesischen Koordinatensystems

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrück SS 2015 Elemente der Algebra Vorlesung 1 Der Gruppenbegriff Definition 1.1. Eine Verknüpfung auf einer Menge M ist eine Abbildung : M M M, (x,y) (x,y) = x y. Statt (x,y)

Mehr