Differentialformen. Lie-Ableitung von Differentialformen und Poincaré-Formel. Differentialform dp dx und ihre Invarianz bzgl. Hamiltonischer Flüsse.

Größe: px
Ab Seite anzeigen:

Download "Differentialformen. Lie-Ableitung von Differentialformen und Poincaré-Formel. Differentialform dp dx und ihre Invarianz bzgl. Hamiltonischer Flüsse."

Transkript

1 Differentialformen Plan Zuerst lineare Algebra: Schiefsymmetrische Formen im R n. Dann Differentialformen: Invarianz bzgl. Diffeomorphismen (und sogar beliebigen glatten Abbildungen). Äußere Ableitung. Lie-Ableitung von Differentialformen und Poincaré-Formel. Differentialform dp dx und ihre Invarianz bzgl. Hamiltonischer Flüsse.

2 Lineare Algebra: Wir arbeiten in R n Def. Eine (lineare) schiefsymmetrische k-form ist eine Abbildung ω : R n... R }{{} n R, k Stück welche folgende Eigenschaften besitzt: Linearität bzgl. jedes Arguments: ω(ξ 1,...,ξ i 1,λ ξ +λ ξ,ξ i+1,...,ξ k ) = λ ω(ξ 1,...,ξ i 1,ξ,ξ i+1,...,ξ k )+λ ω(ξ 1,...,ξ i 1,ξ,ξ i+1,...,ξ k ). Schiefsymmetrie: Für jedes i < j gilt ω(ξ 1,..,ξ j,...,ξ i,...,x k ) = ω(ξ 1,..,ξ i,...,ξ j,...,x k ) Bemerkung. Wegen der Schiefsymmetrie reicht es, nur Linearität bzgl. des ersten Arguments zu verlangen. Bemerkung Definition. Schiefsymmetrische k-formen sind für alle k N definiert. Wir werden jedoch sehen, dass für k > n jede schiefsymmetrische k-form identisch Null ist. Wir werden 0-Formen wie folgt definieren: 0-Formen sind für uns Konstanten (also Elemente in R).

3 Beispiele Jede lineare Abbildung l : R n R 1 (also: lineare Funktion) ist eine 1-Form. Erklärung. Schiefsymmetrie ist hier automatisch erfüllt, weil es nur ein Argument gibt. Sei Ω = (ω ij ) eine schiefsymmetrische (d.h. Ω T = Ω) n n-matrix. Wir definieren die 2-Form ω durch ω(x,y) = x T Ωy = i,j x i ω ij y j. Determinante: Wir definieren die n-form ω(ξ 1,...,ξ n ) = Determinante der n n Matrix, deren i te Spalte gleich ξ i ist. Schiefsymmetrie und Linearität folgen aus den Eigenschaften der Determinante.

4 Wie kann man lineare Formen angeben? Um zum Beispiel eine lineare Abbildung von R n nach R n anzugeben, können wir ihre Matrix (also im Wesentlichen n 2 Zahlen) angeben. Die Abbildung bestimmt die Matrix und die Matrix bestimmt die Abbildung. Was ist das Analogon der Darstellungsmatrizen für k-formen? Bsp. Eine 1-Form ist eine lineare Abbildung von R n nach R, also im Wesentlichen eine 1 n-matrix ω = (ω 1,...,ω n ). Die 1-Form ω ist dann gegeben durch x ω 1 x ω n x n. Bsp. Wie aus dem Standardkurs LA I bekannt (vgl. z.b. meine Vorlesungen am Ende des ersten Semesters), ist eine 2-Form im Wesentlichen eine schiefsymmetrische n n-matrix Ω = ( ) ω ij. Tatsächlich wissen wir aus der LA, dass jede Bilinearform mit Hilfe ihrer Gramschen Matrix dargestellt werden kann (mit Einträgen ω ij = ω(e i,e j )). Für schiefsymmetrische Bilinearformen ist diese Matrix offensichtlich schiefsymmetrisch. Die Formel für ω ist dann ω(x,y) = ω ij x i y j. i,j Da schiefsymmetrische Matrizen n(n 1) 2 unabhängige Komponenten haben, brauchen wir also n(n 1) 2 Zahlen, um eine 2-Form zu bestimmen.

5 Das Wedge-Produkt (Dachprodukt) von 1-Formen. Seien l 1,...,l k 1-Formen. Das Wedgeprodukt l 1... l k dieser Formen ist eine k-form, gegeben durch l 1 (ξ 1 ) l 1 (ξ k ) l 1... l k (ξ 1,...,ξ k ) = det.. = det ( l i (ξ j ) ). l k (ξ 1 ) l k (ξ k ) Bsp. Sei l(x) = x 1 +x 2 und f(x) = x 1 x 2. Dann ist ( ) x1 +x l f(x,y) = det 2 y 1 +y 2 = 2x x 1 x 2 y 1 y 1 y 2 +2x 2 y 1. 2 Wichtige Bezeichnung. Mit dx i bezeichnen wir die folgende 1-Form: dx i x 1. x n = x i. Bsp. dx 1... dx n ist eine der n-formen aus der 3. Folie: dx 1... dx n (ξ 1,...,ξ n ) = Determinante der n n Matrix, deren i te Spalte gleich ξ i ist.

6 Ein Satz aus der Linearen Algebra Es ist offensichtlich, dass die Menge Λ k = {alle k-formen} bzgl. der natürlichen Addition und Multiplikation ( ) einen Vektorraum bildet. n Satz 15. Der Raum Λ k ist -dimensional. Die k-formen k dx i1 dx ik wobei i 1 < < i k bilden eine Basis. Beweis wird an der Tafel vorgetragen. Folgerung. Jede lineare k-form kann man in der Form i 1<...<i k ω i1...i k dx i1 dx ik darstellen, wobei ω i1...i k R. Folgerung. Jede lineare k-form mit k > n ist identisch Null.

7 Differentialformen Def. Eine k-differentialform auf U ist eine (glatte) Abbildung ω : U R n... R }{{} n R, k Stück sodass für jedes p die Einschränkung von ω auf p R n... R }{{} n eine k Stück lineare k-form ist. Bsp. Eine Funktion ist eine 0-Differentialform (weil die Einschränkung der Funktion auf p konstant ist, und wir die Konstanten mit linearen 0-Formen identifizieren). Bsp. Sei f eine Funktion auf U. Wir betrachten das Differential df (als Abbildung von U R n nach R, (p,ξ) d p f(ξ)). Das ist eine 1-Differentialform. Im Punkt (p,ξ) U R n nimmt sie den Wert d p f(ξ) = f x 1 ξ 1 + f x n ξ n an. Bsp. Als Spezialfall des vorherigen Beispiels betrachten wir die i-te x 1 Koordinatenfunktion x i. := x i. Das Differential dieser Funktion x i ist dann die x n 1-Differentialform mit dx i (ξ) = ξ i.

8 Man kann die Definition des Wedgeprodukts auf Differentialformen erweitern: Das Wedgeprodukt l 1... l k von 1-Differentialformen l 1,...,l k ist eine k-form, gegeben durch l 1(p) (ξ 1 ) l 1(p) (ξ k ) l 1... l k(p) (ξ 1,...,ξ k ) = det.. l k(p) (ξ 1 ) l k(p) (ξ k ) = det ( l i(p) (ξ j ) ).

9 Folgerung. Jede lineare k-form kann man als i 1 <...<i k ω i1...i k dx i1 dx ik darstellen, wobei ω i1...i k R. Folgerung. Jede k-differentialform auf U kann man als i 1<...<i k ω i1...i k dx i1 dx ik darstellen, wobei ω i1...i k : U R (glatte) Funktionen sind. Bsp. Jede 1-Differentialform ist dann i ω i(p)dx i. Das Differential einer Funktion f ist f i x i dx i, also ω i (p) = f x i (p).

10 Verhalten von Differentialformen bezüglich Diffeomorphismen und Abbildungen Def. Sei U R n und φ : U V R m eine glatte Abbildung (sonst keine Regularitätsvoraussetzungen). Sei ω eine k-differentialform auf V. Wir definieren den Pullback φ ω durch die Regel φ ω p (ξ 1,...,ξ k ) = ω φ(p) (d p φ(ξ 1 ),...,d p φ(ξ k )). (Linearität, Glattheit und Schiefsymmetrie sind offensichtlich). Bemerkung. Diese Definition ist offenbar verträglich mit dem äußerem Produkt: φ (l 1... l k ) = φ l 1... φ l k. Beweis wird auf der Tafel vorgetragen. Bemerkung. Aus der Definition des Differentials folgt, dass φ (df) = d(φ f), wobei φ f := f φ. Hier ist f eine Funktion auf V und φ : U V. Deswegen ist φ d φ(p) f 1... d φ(p) f k = d p (φ f 1 )... d p (φ f k ).

11 φ (l 1... l k ) = φ l 1... φ l k. Bemerkung.Als Spezialfall betrachten wir die Basisform dy i1 dy ik auf V R m (wobei y 1,...,y m die Koordinaten auf R m sind). Die Abbildung φ : U V sei Dann ist φ(x) = y 1 (x). y m (x). φ (α(y)dy i1... dy ik ) = α(φ(x))dy i1 φ dy ik φ.

12 Äußere Ableitung von k-differentialformen Sei Λ k die Menge (eigentlich: Vektorraum) von k-differentialformen. Die Äußere Ableitung ist eine Abbildung gegeben durch d ( i 1<...<i k ω i1...i k (x)dx i1 dx ik Satz 16. d(φ ω) = φ (dω). d : Λ k Λ k+1, ) = i 1<...<i k dω i1...i k dx i1 dx ik. Folgerung. Die Äußere Ableitung hängt nicht von den Koordinaten ab. Beweis wird auf der Tafel vorgetragen. Die wichtige Schritte des Beweises ist die folgenden Aussagen: Lemma A. d(dω) = 0. Lemma B. Seien l 1,...,l k 1-Formen sodass dl i = 0. Dann gilt: d (fl 1... l k ) = df l 1... l k.

13 Lie-Ableitung Die Lie-Ableitung kann man für beliebige Objekte definieren, für welche das Verhalten bezüglich Diffeomorphismen erklärt ist (=geometrische Objekte): In unserer Vorlesung sind folgende geometrische Objekte vorgekommen: Vektorfelder Differentialformen Def. Sei Ω ein geometrisches Objekt und V ein Vektorfeld. Wir definieren L v Ω durch der Regel: L v Ω = d dt t=0 (Φ t Ω). Bemerkung. Lie hat seine Ableitung Fischer-Ableitung genannt: Ein Fischer sitzt am Ufer, beobachtet eine Stelle im Fluss und untersucht wie sich diese Stelle infinitesimal verändert. Die Lie-Ableitung eines Objekts ist ein geometrisches Objekt (weil die Koordinaten in der Definition nicht vorkommen). Es gilt: Wenn die Wirkung von Differeomorphismen auf ein Objekt linear ist (wenn also φ (λ Ω +λ Ω ) = λ φ (Ω )+λ φ (Ω ), so ist die Lie Ableitung ein Objekt desselben Typs wie das abgeleitete Objekt.

14 Def. Sei Ω ein geometrisches Objekt und V ein Vektorfeld. Wir definieren L vω durch der Regel: L vω = d dt t=0 (Φt Ω). ( ) 1 Bsp. Sei V =, dann ist Φ 0 t (x,y) = (x +t,y) und für jedes feste t ist dφ t = Id. Als Objekt Ω betrachten wir ein Vektorfeld ( U(x,y). Es ist dann (Φ t U)(x,y) = U(x t,y) und d U dt t=0 (Φ 1 ) t U) = x. U2 x ( 1 Bsp. Sei wieder V =, also Φ 0) t (x,y) = (x +t,y) und für jedes feste t ist dφ t = Id. Als Objekt Ω betrachten wir eine Differentialform, z.b. eine 2-Form i,j ω ijdx i dx j. Dann ist wieder (Φ t Ω)(x,y) = Ω(x t,y) und d dt t=0 (Φ t Ω) = i,j ω ij x 1 dx i dx j. Bsp. Sei f eine Funktion. Dann ist: L V f = V(f) = df(v).

15 Lie-Ableitung und Kommutatoren von Vektorfelder Satz 17. Für alle Vektorfelder U, V gilt [U,V] = L U V. Beweis. Da die Lie-Ableitung eine geometrische Operation ist, kann man die zwei Vektorfelder, [U,V] und L U V, in einem beliebigen Koordinatensystem vergleichen. Ist U(p) 0, so wählen wir Koordinaten, sodass U = (1,0,...,0) T. In diesen Koordinaten ist L U V = V 1 x 1. V n x 1 = [U,V]. Sei jetzt V 0 in einer Umgebung U(p). Dann ist Φ t Id auf U(p) und deswegen Φ t V = V und L U V = 0. Ebenso ist auch [U,V] = 0. Da fast jeder Punkt entweder W(p) 0 hat oder eine Umgebung besitzt sodass in dieser Umgebung U 0 ist, und weil die beide Seiten der Gleichung [U,V] = L U V stetig sind, erhalten wir in allen Punkten [U,V] = L U V.

16 Innere Ableitung Def. Sei ω eine k-differentialform und V ein Vektorfeld. Wir definieren die innere Ableitung i V ω als eine k 1-Differentialform definiert durch i V ω(ξ 1,...,ξ k 1 ) = ω(v,ξ 1,...,ξ k 1 ). Bemerkung. Bei der inneren Ableitung wird nichts abgeleitet!

17 Die Poincaré-Formel Satz 18. Für jede Differentialform ω und für jedes Vektorfeld gilt: L V ω = i V dω +d(i V ω). Schema des Beweises: Wie in Satz 17 können wir zwei Fälle betrachten: V(p) 0 oder V 0 in einer Umgebung W(p). Im ersten Fall können wir im Koordinatensystem mit V = (1,0,...,0) T arbeiten und die Poincare-Formel rechnerisch nachprüfen. Der Fall V 0 ist trivial: Beide Seiten der Poincare-Formel sind identisch Null.

Differentialformen Äußere Ableitung Abbildungen Konverse Poincaré Lemma. Die Äußere Ableitung. Felix Retter

Differentialformen Äußere Ableitung Abbildungen Konverse Poincaré Lemma. Die Äußere Ableitung. Felix Retter 25.06.2008 Inhaltsangabe Differentialformen Äußere Ableitung Abbildungen Konverse Poincaré Lemma Die p-form Sei P ein Punkt in E n. Der n-dimensionale lineare Raum L = L p wird dann gebildet von n a i

Mehr

1 Formen und äußeres Differential

1 Formen und äußeres Differential 1 Formen und äußeres Differential Wir betrachten den n-dimensionalen reellen Raum R n = { x = x 1,...,x n ) : x i R für i = 1,...,n }. Definition 1.1 Ein Tangentialvektor an R n im Punkt x R n ist ein

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

Konvexe Funktionen und Legendre-Transformation

Konvexe Funktionen und Legendre-Transformation Konvexe Funktionen und Legendre-Transformation Def. Eine Teilmenge A R n heißt konvex, wenn sie mit je zwei Punkten x, y auch stets deren Verbindungsstrecke xy = {x +t xy 0 t 1} = {(1 t)x +ty 0 t 1} enthält.

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

16 Vektorfelder und 1-Formen

16 Vektorfelder und 1-Formen 45 16 Vektorfelder und 1-Formen 16.1 Vektorfelder Ein Vektorfeld v auf D R n ist eine Abbildung v : D R n, x v(x). Beispiele. Elektrisches und Magnetisches Feld E(x), B(x), Geschwindigkeitsfeld einer Strömung

Mehr

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen)

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen) Def Wiederholung Sei f : V U eine lineare Abbildung Das Bild von f ist die folgende Teilmenge von U: Bild f = {u U so dass es gibt ein Element v V mit f (v) = u} (Andere Bezeichnung: f (V) wird in Analysis-Vorlesung

Mehr

Eine objektorientierte Programmierumgebung für differentialgeometrische Berechnungen in MuPAD

Eine objektorientierte Programmierumgebung für differentialgeometrische Berechnungen in MuPAD 1 Eine objektorientierte Programmierumgebung für differentialgeometrische Berechnungen in MuPAD Studienarbeit von WOLFGANG GLOBKE Betreuer: Dipl. Inf. Marcus Hausdorf Dr. Werner Seiler Institut für Algorithmen

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein

Mehr

Erweiterte Koordinaten

Erweiterte Koordinaten Erweiterte Koordinaten Sei K n ein n dimensionaler affiner Raum Die erweiterten Koordinaten des Punktes x x n K n sind x x n Kn+ (Das ist für alle K sinnvoll, weil in jedem Körper K wohldefiniert ist In

Mehr

8 Extremwerte reellwertiger Funktionen

8 Extremwerte reellwertiger Funktionen 8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R

Mehr

40 Lokale Extrema und Taylor-Formel

40 Lokale Extrema und Taylor-Formel 198 VI. Differentialrechnung in mehreren Veränderlichen 40 Lokale Extrema und Taylor-Formel Lernziele: Resultate: Satz von Taylor und Kriterien für lokale Extrema Methoden aus der linearen Algebra Kompetenzen:

Mehr

Kapitel 11. Bilinearformen über beliebigen Bilinearformen

Kapitel 11. Bilinearformen über beliebigen Bilinearformen Kapitel 11 Bilinearformen über beliebigen Körpern Wir können in diesem Kapitel rasch vorgehen, weil die meisten Konzepte im Zusammenhang mit Sesquilinearformen bereits eingeführt wurden. In diesem Abschnitt

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D. Dr. V. Gradinaru D. Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe..a Bezüglich des euklidischen Skalarprodukts in R ist die Orthogonalprojektion

Mehr

4. Vektorräume und Gleichungssysteme

4. Vektorräume und Gleichungssysteme technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

Lineare Abbildungen. i=0 c ix i n. K n K m

Lineare Abbildungen. i=0 c ix i n. K n K m Kapitel 4 Lineare Abbildungen In diesem Abschnitt lernen Sie erstmals eine Klasse von strukturerhaltenden Abbildungen kennen. Diese Konzept ist von zentraler Bedeutung in der Algebra. Grob gesagt geht

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Hier

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

Lineare Hülle. span(a) := λ i v i : so dass k N, λ i R und v i A.

Lineare Hülle. span(a) := λ i v i : so dass k N, λ i R und v i A. Lineare Hülle Def A sei eine nichtleere Teilmenge des Vektorraums (V,+, ) Die lineare Hülle von A (Bezeichung: span(a)) ist die Menge aller Linearkombinationen der Elemente aus A { k } span(a) := λ i v

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Gegeben sei die Gleichung 2x 2 4xy +y 2 3x+4y = 0. Verifizieren Sie, dass diese Gleichung

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 5 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Skalarprodukt und Orthogonalität.a) Bezüglich des euklidischen

Mehr

1.4 Homomorphismen und Isomorphismen

1.4 Homomorphismen und Isomorphismen Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 28 1.4 Homomorphismen und Isomorphismen Definition 1.4.1 Es seien (G, ) und (H, ) zwei Gruppen. Eine Abbildung ϕ : G H heißt (Gruppen-)Homomorphismus,

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau 312 LinAlg II Version 0 20. Juni 2006 c Rudolf Scharlau 4.3 Bilinearformen Bilinearformen wurden bereits im Abschnitt 2.8 eingeführt; siehe die Definition 2.8.1. Die dort behandelten Skalarprodukte sind

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 206 Lineare Algebra und analytische Geometrie II Vorlesung 33 Das Kreuzprodukt Eine Besonderheit im R 3 ist das sogenannte Kreuzprodukt, das zu zwei gegebenen Vektoren

Mehr

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016 Übungen zu Einführung in die Numerische Mathematik (VE) Sommersemester 6 Prof. Dr. Martin Rumpf Pascal Huber Sascha Tölkes Übungsblatt 8 Abgabe:.6.6 Aufgabe 5 (Elliptisches Randwertproblem auf einem Ring)

Mehr

ein geeignetes Koordinatensystem zu verwenden.

ein geeignetes Koordinatensystem zu verwenden. 1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

MAT Lineare Algebra, SS 07 Prof. Joachim Rosenthal Lösung zu Übungsblatt 7

MAT Lineare Algebra, SS 07 Prof. Joachim Rosenthal Lösung zu Übungsblatt 7 MAT.4 - Lineare Algebra, SS 07 Prof. Joachim Rosenthal Lösung zu Übungsblatt 7 Aufgabe Sei ϕ : V V R eine symmetrische Bilinearform auf einem reellen Vektorraum V. Für die Vektoren v,...,v n V gelte ϕ(v

Mehr

3.1.3 Newtonsche Interpolationsformel / Dividierte Differenzen

3.1.3 Newtonsche Interpolationsformel / Dividierte Differenzen KAPITEL 3 INTERPOLATION UND APPROXIMATION 4 33 Newtonsche Interpolationsformel / Dividierte Differenzen Das Verfahren von Neville ist unpraktisch, wenn man das Polynom selbst sucht oder das Polynom an

Mehr

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten Folgerung 3.33 Es sei f : T C in einem Punkt x T Hölder stetig, d.h. es gibt ein C > und ein < α 1 so, dass f(x) f(x ) C x x α für alle x T. Dann gilt lim N S N f(x ) = f(x ). Folgerung 3.34 Es f : T C

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Spektralzerlegung des Laplace-Operators auf Liegruppen und kompakten symmetrischen Räumen

Spektralzerlegung des Laplace-Operators auf Liegruppen und kompakten symmetrischen Räumen Spektralzerlegung des Laplace-Operators auf Liegruppen und kompakten symmetrischen Räumen Anna Engels Seminar Riemannsche Geometrie und Spektraltheorie SS 003 Zusammenfassung Ich will erklären, wie man

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Abschnitt: (symmetrische) Bilinearformen

Abschnitt: (symmetrische) Bilinearformen Abschnitt: (symmetrische) Bilinearformen Def Es seien (V,+, ) ein Vektorraum, u,u,u,v,v,v beliebige Vektoren aus V und λ,λ R beliebiege Skalare Eine Bilinearform auf V ist eine Abbildung σ : V V R mit

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 5: Differentialrechnung im R n Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juni 2009 1 / 31 5.1 Erinnerung Kapitel

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:

Mehr

Lineare Algebra II, Lösungshinweise Blatt 9

Lineare Algebra II, Lösungshinweise Blatt 9 Prof Dr Katrin Wendland Priv Doz Dr Katrin Leschke Christoph Tinkl SS 27 Lineare Algebra II, Lösungshinweise Blatt 9 Aufgabe (4 Punkte) Sei 2 3 4 A = 5 6 Berechnen Sie A k für alle k N und verifizieren

Mehr

Lösung Semesterendprüfung (Nachprüfung)

Lösung Semesterendprüfung (Nachprüfung) MLAE Mathematik: Lineare Algebra für Ingenieure Frühlingssemester 6 Dr. Christoph Kirsch ZHAW Winterthur Lösung Semesterendprüfung (Nachprüfung Aufgabe : Aufgabe : a Gemäss Def. der Vorlesung müssen wir

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

Mathematik II. Vorlesung 49. Der Banachsche Fixpunktsatz

Mathematik II. Vorlesung 49. Der Banachsche Fixpunktsatz Prof. Dr. H. Brenner Osnabrück SS 2010 Mathematik II Vorlesung 49 Der Banachsche Fixpunktsatz Satz 49.1. Es sei M ein nicht-leerer vollständiger metrischer Raum und f :M M eine stark kontrahierende Abbildung.

Mehr

Lösungsskizzen zur Klausur

Lösungsskizzen zur Klausur sskizzen zur Klausur Mathematik II Sommersemester 4 Aufgabe Es seien die folgenden Vektoren des R 4 gegeben: b = b = b 3 = b 4 = (a) Prüfen Sie ob die Vektoren b b 4 linear unabhängig sind bestimmen Sie

Mehr

4 Affine Koordinatensysteme

4 Affine Koordinatensysteme 4 Affine Koordinatensysteme Sei X φ ein affiner Raum und seien p,, p r X Definition: Nach ( c ist der Durchschnitt aller affinen Unterräume Z X, welche die Menge {p,,p r } umfassen, selbst ein affiner

Mehr

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme Optimale Steuerung, Prof.Dr. L. Blank 1 II Linear-quadratische elliptische Steuerungsprobleme Zuerst: Zusammenstellung einiger Begriffe und Aussagen aus der Funktionalanalysis (FA), um dann etwas über

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

σ-algebren, Definition des Maßraums

σ-algebren, Definition des Maßraums σ-algebren, Definition des Maßraums Ziel der Maßtheorie ist es, Teilmengen einer Grundmenge X auf sinnvolle Weise einen Inhalt zuzuordnen. Diese Zuordnung soll so beschaffen sein, dass dabei die intuitiven

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

Einführung in die Mathematik für Informatiker

Einführung in die Mathematik für Informatiker Einführung in die Mathematik für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 12.12.2016 9. Vorlesung Eigenschaften linearer Abbildungen Beschreibung linearer Abbildungen durch Matrizen... Eigenschaften

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

7 Vektorräume und Körperweiterungen

7 Vektorräume und Körperweiterungen $Id: vektor.tex,v 1.3 2009/05/25 15:03:47 hk Exp $ 7 Vektorräume und Körperweiterungen Wir sind gerade bei der Besprechung derjenigen Grundeigenschaften des Tensorprodukts, die mit vergleichsweise wenig

Mehr

Copyright, Page 1 of 5 Die Determinante

Copyright, Page 1 of 5 Die Determinante wwwmathematik-netzde Copyright, Page 1 of 5 Die Determinante Determinanten sind ein äußerst wichtiges Instrument zur Untersuchung von Matrizen und linearen Abbildungen Außerhalb der linearen Algebra ist

Mehr

Bild und Kern. Für eine lineare Abbildung L : V W bezeichnet man mit. Kern L = {v V : L(v) = 0} V. den Kern und mit

Bild und Kern. Für eine lineare Abbildung L : V W bezeichnet man mit. Kern L = {v V : L(v) = 0} V. den Kern und mit Bild und Kern Für eine lineare Abbildung L : V W bezeichnet man mit Kern L = {v V : L(v) = 0} V den Kern und mit Bild L = {w W : v V mit L(v) = w} W das Bild von L. Bild und Kern 1-1 Bild und Kern Für

Mehr

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008 KLAUSUR ZUR LINEAREN ALGEBRA I. Februar 008 MUSTERLÖSUNG Diese Klausur wurde je nach Sitzreihe in zwei verschiedenen Versionen geschrieben. Die andere Version unterscheidet sich von der vorliegenden jedoch

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen 11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen Ziel: Wir wollen lokale Extrema von Funktionen f : M R untersuchen, wobei M R n eine k-dimensionale Untermannigfaltigkeit des

Mehr

Kapitel 10. Lineare Abbildungen Definition linearer Abbildungen Eigenschaften und Beispiele Alle linearen Abbildungen R n V Bild von Unterräumen

Kapitel 10. Lineare Abbildungen Definition linearer Abbildungen Eigenschaften und Beispiele Alle linearen Abbildungen R n V Bild von Unterräumen Kapitel 10. Lineare Abbildungen Definition linearer Abbildungen Eigenschaften und Beispiele Alle linearen Abbildungen R n V Bild von Unterräumen Vorschau: Lineare Abbildungen Wer Vektorräume studiert,

Mehr

74 Gewöhnliche Differentialgleichungen / Sommersemester 2008

74 Gewöhnliche Differentialgleichungen / Sommersemester 2008 74 Gewöhnliche Differentialgleichungen / Sommersemester 2008 15 Flüsse Bisher wurde im wesentlichen die Abhängigkeit der Lösungen autonomer Systeme von der Zeit bei festem Anfangswert untersucht. Nun wird

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

Lösungen zu Übungsblatt 9

Lösungen zu Übungsblatt 9 Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da

Mehr

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1).

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1). Kapitel 4 Stetige lineare Funktionale 4.1 Der Satz von Hahn - Banach Definition 4.1. Sei X ein linearer normierter Raum über dem Körper K (R oder C). Ein linearer Operator f : X K heißt (reelles oder komplexes)

Mehr

Analysis II. Vorlesung 48. Die Hesse-Form

Analysis II. Vorlesung 48. Die Hesse-Form Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Vorlesung 48 Die Hesse-Form Wir sind natürlich auch an hinreichenden Kriterien für das Vorliegen von lokalen Extrema interessiert. Wie schon im eindimensionalen

Mehr

II. Lineare Gleichungssysteme. 10 Matrizen und Vektoren. 52 II. Lineare Gleichungssysteme

II. Lineare Gleichungssysteme. 10 Matrizen und Vektoren. 52 II. Lineare Gleichungssysteme 52 II Lineare Gleichungssysteme II Lineare Gleichungssysteme 10 Matrizen und Vektoren 52 11 Der Gaußsche Algorithmus 58 12 Basen, Dimension und Rang 62 13 Reguläre Matrizen 66 14 Determinanten 69 15 Skalarprodukte

Mehr

Quadratische Matrizen

Quadratische Matrizen Quadratische Matrizen (n n)-matrizen heißen quadratische Die entsprechenden linearen Abbildungen sind laut Definition Endomorphismen des R n (weil f A : R n R n ) Das Produkt von (n n)- Matrizen ist auch

Mehr

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Stefan Lell 2. Juli 2 Aufgabe. Sei t Q und A t = t 4t + 2 2t + 2 t t 2t 2t Mat 3Q a Bestimmen Sie die Eigenwerte von A t in Abhängigkeit

Mehr

Affine Geometrie (Einfachere, konstruktive Version)

Affine Geometrie (Einfachere, konstruktive Version) Affine Geometrie (Einfachere, konstruktive Version) Def. Affiner Raum der Dimension n über Körper K ist nach Definition K n. Bemerkung. Man könnte Theorie von affinen Raumen auch axiomatisch aufbauen mit

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum.

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum. Fabian Kohler Karolina Stoiber Ferienkurs Analsis für Phsiker SS 4 A Extrema In diesem Abschnitt sollen Extremwerte von Funktionen f : D R n R diskutiert werden. Auch hier gibt es viele Ähnlichkeiten mit

Mehr

Beziehungen zwischen Vektorräumen und ihren Dimensionen

Beziehungen zwischen Vektorräumen und ihren Dimensionen Beziehungen zwischen Vektorräumen und ihren Dimensionen Lineare Algebra I Kapitel 9 20. Juni 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

Lineare Algebra 6. Übungsblatt

Lineare Algebra 6. Übungsblatt Lineare Algebra 6. Übungsblatt Fachbereich Mathematik M. Schneider 16.05.01 Konstantin Pertschik, Daniel Körnlein Gruppenübung Aufgabe G19 Berechnen Sie das inverse Element bzgl. Multiplikation in der

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

1 Rechnen mit 2 2 Matrizen

1 Rechnen mit 2 2 Matrizen 1 Rechnen mit 2 2 Matrizen 11 Produkt Wir berechnen das allgemeine Produkt von A = Für das Produkt gilt AB = a11 a 12 a 21 a 22 a11 b 11 + a 12 b 21 a 11 b 12 + a 12 b 22 a 21 b 11 + a 22 b 21 a 21 b 12

Mehr

Extrema von Funktionen mit zwei Variablen

Extrema von Funktionen mit zwei Variablen Extrema von Funktionen mit zwei Variablen Es gilt der Satz: Ist an einer Stelle x,y ) f x x,y ) = und f y x,y ) = und besteht außerdem die Ungleichung f xx x,y )f yy x,y ) f xy x,y ) >, so liegt an dieser

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

Komplexe Zahlen und konforme Abbildungen

Komplexe Zahlen und konforme Abbildungen Kapitel 1 Komplexe Zahlen und konforme Abbildungen 1.0 Geometrie der komplexen Zahlen Die Menge C der komplexen Zahlen, lässt sich mithilfe der bijektiven Abbildung C := {x + iy : x,y R}, C z = x + iy

Mehr

1 Vektoren, Vektorräume, Abstände: 2D

1 Vektoren, Vektorräume, Abstände: 2D Vektoren, Vektorräume, Astände: D Definition: Die Menge aller (geordneten Paare reeller Zahlen (oder allgemeiner: Elemente eines elieigen Körpers, als Spalten geschrieen, ezeichnen wir als Vektoren: R

Mehr

Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt

Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt Beispiel. Gegeben sei die Folge (a n ) n N mit a n := n 2 + 5n + 1 n Es gilt ( ( ) (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n + 1 + n, woraus folgt a n = (n2 + 5n + 1) n 2 n2 + 5n + 1 + n = 5n + 1 n2

Mehr

V DETERMINANTEN In diesem Kapitel entwickeln wir die Theorie der Determinanten Die folgenden Beispiele sollen die Einfuhrung dieses Begries motivieren

V DETERMINANTEN In diesem Kapitel entwickeln wir die Theorie der Determinanten Die folgenden Beispiele sollen die Einfuhrung dieses Begries motivieren SKRIPTUM { LINEARE ALGEBRA II JB COOPER Inhaltsverzeichnis: x Determinanten x Eigenwerte x Euklidische Raume x8 Dualitat, Tensorprodukte, Alternierende Formen Anhang: ) Mengen, Abbildungen ) Gruppen )

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr

(geometrische) Anschauung

(geometrische) Anschauung (geometrische) Anschauung Marcus Page Juni 28 In dieser Lerneinheit widmen wir uns dem schon oft angesprochenen Zusammenhang zwischen Matrizen und linearen Abbildungen. Außerdem untersuchen wir Funktionen,

Mehr

Die Dimension eines Vektorraumes

Die Dimension eines Vektorraumes Die Dimension eines Vektorraumes Ist (b 1, b 2,..., b n ) eine Basis des Vektorraums V, so heißt n die Dimension von V. Die Möglichkeit dieser Definition beruht auf dem folgenden nichttrivialen Satz. Je

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr