1. Klassische Kryptographie: Caesar-Verschlüsselung

Größe: px
Ab Seite anzeigen:

Download "1. Klassische Kryptographie: Caesar-Verschlüsselung"

Transkript

1 1. Klassische Kryptographie: Caesar-Verschlüsselung Das Bestreben, Botschaften für andere unlesbar zu versenden, hat zur Entwicklung einer Wissenschaft rund um die Verschlüsselung von Nachrichten geführt, der Kryptographie. Die ersten Belege für verschlüsselte Nachrichten lassen sich auf ca v.chr. datieren. Besonders bekannt ist die sogenannte Cäsar-Verschlüsselung. Um wichtige Anweisungen und Warnungen an seine Heere zu schicken, verwendete Julius Cäsar um 50 v.chr. folgendes Verfahren: Jeder Buchstabe des Klartextalphabets wird um dieselbe Stellenanzahl nach hinten verschoben. Beispielsweise wird bei einer Verschiebung um 3 Stellen aus dem A im Klartext ein D im Geheimtext, aus einem B wird ein E, usw. Als Schlüssel kann der Buchstabe angegeben werden, durch den ein A im Klartext nach dem Verschlüsseln dargestellt wird (hier: D). Ein nützliches Hilfsmittel ist eine Chiffrier-Scheibe. Diese kann man auf die gewünschte Verschlüsselung einstellen und so für jeden Buchstaben aus dem Klartext den passenden Buchstaben für den Geheimtext ablesen. AUFGABE 1: Die folgende Nachricht wurde mit dem Schlüssel K verschlüsselt. Entschlüsseln Sie diese wieder! Qed qowkmrd!! Klartext: Text vor der Verschlüsselung Geheimtext: Text nach der Verschlüsselung Schlüssel: Information zum Ver- und Entschlüsseln Sender heißen Alice, Empfänger heißen Bob. Unbefugte, die die Nachricht lesen wollen, heißen Eve. AUFGABE 2: Bei der Überbringung der Nachricht ist der Schlüssel verloren gegangen! Bilden Sie mit Ihrer Tischreihe ein Entschlüsselungs-Team und entschlüsseln Sie die Nachricht schneller als die anderen Gruppen. Beantworten Sie auch die untenstehenden Fragen. Tqi Isxeudiju, mqi myh udjtusaud aeuddud, yij tqi Wuxuycdyilebbu. (Uydijuyd) Welcher Schlüssel wurde verwendet? Wie viele verschiedene Schlüssel gibt es bei dem Cäsar-Verfahren insgesamt? Welche Nachteile bietet es? 1) 2)

2 1. Klassische Kryptographie: Vigenère-Verschlüsselung und One-Time-Pad Das Verfahren von Cäsar wurde von Blaise de Vigenère ( ) deutlich verbessert. Statt jeden Buchstaben um die gleiche Stellenanzahl zu verschieben, verwendete Vigenère verschiedene solcher Cäsar-Verschlüsselungen. Dafür müssen Alice und Bob ein Schlüsselwort vereinbaren, beispielsweise KEY. Dieses Schlüsselwort wird nun unter den zu verschlüsselnden Text geschrieben und für jeden Buchstaben des Klartextes der Cäsar- Schlüssel gewählt, der durch den darunter stehenden Schlüsselbuchstaben vorgegeben wird. Ein gutes Hilfsmittel für dieses Verfahren ist das Vigenère-Quadrat. Bei diesem stehen die Klartextbuchstaben in der obersten Zeile. In jeder darunterliegenden Zeile steht ein Geheimalphabet zu einem bestimmten Cäsar-Schlüssel. In Zeile 1 ist es das Alphabet zum Schlüssel B, in Zeile 15 beispielsweise das zum Cäsar-Schlüssel P. AUFGABE: Markieren Sie sich im Quadrat farbig die Zeilen, die Sie zur Verschlüsselung mit dem Schlüssel KEY benötigen. Füllen Sie anschließend die Tabelle aus. Klartext B E I S P I E L S A T Z Schlüssel K E Y K E Y K E Y K E Y Geheimtext L I Vorteile Nachteile Das Verfahren von Vigenère kann noch weiter verbessert werden: Verwendet man für jeden Text einen neuen Schlüssel, der auch noch genauso lang ist wie der Klartext selber, so ist eine sichere Verschlüsselung möglich. Dies wurde am Ende des 1. Weltkriegs von dem Amerikaner Joseph O. Mauborgne durchgeführt und wird One-Time-Pad genannt. Man ließ kleine Blöcke drucken, auf deren Seiten jeweils lange, zufällige Buchstabenketten standen. Alice und Bob bekamen nun identische Blöcke und verwendeten für jede Nachricht, die sie übermitteln wollten, genau einen Code von der obersten Seite des Blocks. Anschließend wurde diese Seite vernichtet. Durch die Zufälligkeit des Schlüssels und Übereinstimmung in der Länge des Schlüssels und des Textes, ist das Verfahren theoretisch absolut sicher. Bedingungen für Sicherheit: 1. Jeder Schlüssel darf nur einmal verwendet werden. 2. Der Schlüssel muss mindestens genauso lang wie die Nachricht sein. 3. Der Schlüssel muss zufällig sein. 4. Der Schlüssel darf nur Alice und Bob bekannt sein.

3 3. Klassische Kryptographie: Binäres One-Time-Pad Bei der Übertragung von Daten mit einem Computer werden Buchstaben durch Zahlen im Dualsystem dargestellt. Hierzu kann jedem Buchstaben zunächst eine Zahl zugeordnet werden (1 26) und diese anschließend in einer Darstellung aus den Ziffern 0 und 1 ausgedrückt werden. a j s b k t c l u d m v e n w f o x g p y h q z i r Der Schlüssel für einen Text im Dualsystem besteht auch aus Nullen und Einsen. Die Verschlüsselung kann über eine Addition mit den folgenden Rechenregeln erfolgen: 0+0=0 1+0=1 0+1=1 1+1=0 Zur Entschlüsselung kann der Schlüssel erneut mit den gleichen Regeln addiert werden und der Empfänger erhält den Klartext! Aufgabe: Übersetzen Sie den Klartext Hallo in Binärdarstellung und verschlüsseln Sie die Nachricht mit dem Schlüssel Welcher Geheimtext würde sich in Buchstaben ergeben? Beantworten Sie auch die untenstehende Frage. Klartext H a l l o Übersetzung in Binärdarstellung zufälliger Schlüssel Geheimtext Geheimtext in Buchstaben Welche Schwierigkeiten können bei der Verschlüsselung mit einem One-Time-Pad auftreten?

4 Klassische Kryptographie: Asymmetrische Verfahren Mit dem Aufkommen von Computern und Internet hat die Kryptografie zunehmend an Bedeutung gewonnen. Da jedoch ein Schlüsseltausch zwischen je zwei Kommunikationspartner aufwändig ist, wird häufig ein gänzlich anderes Verfahren verwendet, bei dem kein Schlüsseltausch mehr nötig ist. Bei Public-Key-Verfahren besitzt jeder Teilnehmer zwei unterschiedliche Schlüssel. Einer davon ist geheim. Das heißt nur der Empfänger der Nachricht kennt diesen Schlüssel und verwendet ihn zur Entschlüsselung. Der zweite Schlüssel ist öffentlich (public key). Jeder, der eine Nachricht an den Besitzer der Schlüssel senden möchte, verwendet diesen öffentlichen Schlüssel zur Verschlüsselung. Die Entschlüsselung ist nur für den Empfänger mit seinem geheimen Schlüssel möglich. Die Ver- und Entschlüsselung bei solchen Verfahren beruht auf dem Verwenden mathematischer Funktionen, die in eine Richtung einfach zu berechnen sind, die Umkehrung jedoch eine besondere Information (den geheimen Schlüssel) benötigt. Im Gegensatz zu den bisher behandelten Verfahren, funktionieren Ver- und Entschlüsselung nicht auf gleiche Weise. Public-Key-Verfahren gehören daher zu der Gruppe der asymmetrischen Verfahren; Caesar, Vigenère und das One-Time-Pad zu der Gruppe der symmetrischen. Ein Beispiel für ein asymmetrisches Verfahren ist das RSA-Verfahren (benannt nach den Entwicklern Rivest, Shamir und Adleman), bei dem die Schwierigkeit der Faktorisierung großer Zahlen in ihre Primfaktoren ausgenutzt wird. Genauer: Es ist einfach, das Produkt zweier Primzahlen zu berechnen (z.b =5293). Wird einem jedoch nur das Ergebnis (5293) gegeben, und man soll die Primfaktoren bestimmen, so ist dies eine deutlich schwierigere Aufgabe. Erst recht, wenn Primzahlen mit 200 und mehr Stellen verwendet werden! Um die Rechnungen beim RSA-Verfahren nachzuvollziehen, benötigt man sogenanntes modulares Rechnen. Dieses wird im Alltag an vielen Stellen verwendet, beispielsweise bei Beantwortung der Frage, welcher Wochentag in 18 Tagen ist. Zur Lösung kann man wie folgt vorgehen: 1. Alle sieben Tage ist wieder der gleiche Wochentag wie heute. Der Divisor ist daher 7. Nun dividiert man: 18 : 7 = 2, Um die verbleibenden Tage zu erhalten multipliziert man den ganzzahligen Anteil mit dem Divisor: 2 7 = Nun bildet man die Differenz: = 4, d.h. in 18 Tagen ist der gleiche Wochentag wie in 4 Tagen! 4. Die formale Schreibweise ist folgende: 18 = 4 mod 7.

5 Klassische Kryptographie: RSA-Verfahren Aufgabe: Lesen Sie sich die Anleitung zum RSA-Verfahren durch und rechnen Sie anschließend das Beispiel mit dem Taschenrechner nach! 1. Schritt: Schlüsselerzeugung Hierzu wählt man zwei große Primzahlen p und q. Anschließend berechnet man folgende Produkte: n = p q φ (n)= (p-1) (q-1) Hiermit ermittelt man zwei Zahlen d und e mit folgender Eigenschaft: d e = 1 mod φ (n) 2. Schritt: Verschlüsselung Angenommen die Zahl m soll verschlüsselt werden. Dann verschlüsselt der Sender wie folgt: c = m e mod n Übertragen wird also die Zahl c! 3. Schritt: Entschlüsselung Der Empfänger kann die Zahl c nun wieder entschlüsseln: m = c d mod n = m ed mod n = m Beispiel: p=5 und q=11 Dann ist n = 55, φ (n) = (5-1) (11-1) = 40 und d e = 1 mod 40, hierfür kommen in Frage: d e = 41 (41 ist jedoch Primzahl!) d e = 81 klappt: 81 = 27 3 Der öffentliche Schlüssel ist also (55,27) und der private Schlüssel ist 3. Verschlüsselung der Zahl 2: 2 27 = 18 mod 55 Übertragen wird die Zahl 18. Entschlüsselung: 18 3 = 2 mod 55

6 4. Photonen und Polarisation Was sind eigentlich Quanten? Ein Quant bezeichnet den kleinstmöglichen Wert einer physikalischen Größe. Wir beschäftigen uns insbesondere mit Lichtquanten, sogenannten Photonen, dies sind die kleinstmöglichen Energieportionen von Licht. Photonen sind unteilbar und können eine bestimmte Polarisationsrichtung haben. Versuchsaufbau: VERSUCH 1: Polarisation in senkrechter Richtung 0 und in waagerechter Richtung 90 Einstellung 1. Filter Einstellung 2. Filter Intensität nach dem 2. Filter in mw Beobachtung:

7 4. Photonen und Polarisation VERSUCH 2: Polarisation in schräger Richtung 45 (Einstellung Filter 1) Einstellung Filter 2 gemessene Intensität in mw Beobachtung: Wie ist die Beobachtung zu interpretieren, wenn man annimmt, dass immer nur genau ein Einzelphoton beobachtet wird?

8 5. Steckbrief: Photonen Photonen sind die Energiequanten des Lichts, sie sind. Die Eigenschaften polarisiert in 0 -Richtung und polarisiert in 90 -Richtung. Das Gleiche gilt für die Polarisation in 45 -Richtung und in -45 -Richtung. Trifft ein in 0 -Richtung polarisiertes Photon auf einen 45 Filter, so verhält es sich. In 50% der Fälle erhält man als Messergebnis eine Polarisation in 45, ansonsten ist das Ergebnis eine Polarisation in -45. Eine über das Messergebnis ist nicht möglich!

9 6. Quantenkryptographie: Sender und Empfänger Aufbau: Ziel: Bob will herausfinden, welches Signal Alice losschickt Ablauf: Alice sendet ein zufällig polarisiertes Einzelphoton (0, 90, 45 oder -45 ) Bob entscheidet sich zufällig für einen Filter (0 oder 45 ) und misst das ankommende Signal Beide notieren jeweils, welche Einstellung der von ihnen verwendete Filter hatte und Bob notiert zusätzlich sein Messergebnis Beispiel: Filter Alice Filter Bob Messung Bob in mw Vermutung von Bob über Alices Signal Welche Information können Alice und Bob öffentlich austauschen, um sicher zu gehen, dass Bob genau weiß, welches Signal Alice losgeschickt hat, ohne diese Information zu verraten?

10 7. Quantenkryptographie: Angreifer Ein Angreifer Eve kann sich zwischen Alice und Bob in den Übertragungsweg setzen und versuchen, Alice Nachrichten abzufangen. Bleibt so ein Angriff unbemerkt? Aufbau: Beispiel: Signal Alice Filter Eve Vermutung von Eve Signal Eve Filter Bob Vermutung von Bob Übereinstimmung Bob und Alice Wenn Alice und Bob nach der Übertragung ihre gesendete bzw. empfangene Polarisationsrichtung austauschen, können sie dann erkennen, ob Eve mitgehört hat?

11 8. Quantenkryptographie: BB84-Protokoll Bereits 1970 hatte Stephen Wiesner die Idee, mit Hilfe von Photonen Geldscheine fälschungssicher zu machen, die jedoch aber nicht praktikabel war. Sein Kollege Charles Bennett erinnerte sich Jahre später wieder an diese Idee und entwickelte gemeinsam mit Gilles Brassard 1984 einen Ablaufplan für die Verschlüsselung mit Photonen, das BB84- Protokoll. Grundlage hierfür ist das binäre One-Time-Pad, der Schlüsselaustausch geschieht nun jedoch mittels Einzelphotonen. Im Folgenden wird jeder Polarisation ein Wert zugeordnet: Polarisation in 0 - und 90 - Richtung bilden die gerade Basis, die in 0 -Richtung erhält den Wert 1 und die in 90 - Richtung den Wert 0. Eine 45 -Polarisation entspricht dem Wert 1 und eine -45 -Polarisation dem Wert 0, die zugehörige Basis wird als schräge Basis bezeichnet. 1. Schritt 2. Schritt 3. Schritt Alice wählt zufällig eine Basis (gerade oder schräg) aus und verschickt mit dieser einen zufälligen Wert (0 oder 1) Bob misst mit einer zufälligen Basis (gerade oder schräg) die von Alice gesendete Nachricht und erhält als Messergebnis 0 oder 1 Alice und Bob vergleichen öffentlich ihre gewählten Basen und löschen alle Messergebnisse, bei denen sie unterschiedlichen Basen gewählt haben. 4. Schritt Alice und Bob vergleichen einige der Messwerte und überprüfen so, ob Eve mitgehört hat. Die zum Vergleichen genutzten Werte werden anschließend gelöscht. Die restlichen Ziffern bilden den Schlüssel. Wird Eve entdeckt, muss der Schlüsselaustausch auf einem neuen Kanal wiederholt werden. 5.Schritt Alice verschlüsselt die Nachricht und sendet sie so zu Bob. Dieser kann sie mit dem Schlüssel wieder entschlüsseln. AUFGABE 1: Gehen Sie für die Werte in der Tabelle das BB84-Protokoll durch und entscheiden Sie, ob die Messung in Schritt 3 gelöscht werden muss und ob in Schritt 4 Eve entdeckt wird. Alice Bob Löschung in Basis Wert Polarisation Basis Wert Polarisation Schritt 3 gerade 1 0 gerade 0 90 gerade 1 0 schräg 1 45 schräg 0-45 schräg 0-45 schräg 1 45 gerade 0 90 gerade 1 0 gerade 1 0 schräg 0-45 schräg 1 45 gerade 0 90 schräg 0-45 In Schritt 4: Eve entdeckt? AUFGABE 2: Sammeln Sie auf einem separatem Blatt Gründe für die Sicherheit des Verfahrens.

Kryptologie. Nicolas Bellm. 24. November 2005

Kryptologie. Nicolas Bellm. 24. November 2005 24. November 2005 Inhalt Einleitung 1 Einleitung 2 Klassische Skytale Monoalphabetische Verfahren Polyalphabetische Verfahren 3 Moderne Symmetrische Assymetrische 4 Ausblick Einleitung Einleitung Die ist

Mehr

Asymmetrische. Verschlüsselungsverfahren. erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau

Asymmetrische. Verschlüsselungsverfahren. erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau Asymmetrische Verschlü erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau Gliederung 1) Prinzip der asymmetrischen Verschlü 2) Vergleich mit den symmetrischen Verschlü (Vor- und Nachteile)

Mehr

Verschlüsselung. Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern. 12.10.2011 Fabian Simon Bfit09

Verschlüsselung. Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern. 12.10.2011 Fabian Simon Bfit09 Verschlüsselung Fabian Simon BBS Südliche Weinstraße Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern 12.10.2011 Fabian Simon Bfit09 Inhaltsverzeichnis 1 Warum verschlüsselt man?...3

Mehr

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie IT-Sicherheit: Kryptographie Asymmetrische Kryptographie Fragen zur Übung 5 C oder Java? Ja (gerne auch Python); Tips waren allerdings nur für C Wie ist das mit der nonce? Genau! (Die Erkennung und geeignete

Mehr

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009 Das RSA-Verfahren Armin Litzel Proseminar Kryptographische Protokolle SS 2009 1 Einleitung RSA steht für die drei Namen Ronald L. Rivest, Adi Shamir und Leonard Adleman und bezeichnet ein von diesen Personen

Mehr

1. Asymmetrische Verschlüsselung einfach erklärt

1. Asymmetrische Verschlüsselung einfach erklärt 1. Asymmetrische Verschlüsselung einfach erklärt Das Prinzip der asymmetrischen Verschlüsselung beruht im Wesentlichen darauf, dass sich jeder Kommunikationspartner jeweils ein Schlüsselpaar (bestehend

Mehr

Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne

Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne Verfahren: DES (Feistel-Chiffre) mehrfache Wiederholung

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

Kryptographie Reine Mathematik in den Geheimdiensten

Kryptographie Reine Mathematik in den Geheimdiensten Kryptographie Reine Mathematik in den Geheimdiensten Priska Jahnke 10. Juli 2006 Kryptographie Reine Mathematik in den Geheimdiensten Kryptographie (Kryptologie) = Lehre von den Geheimschriften Kaufleute,

Mehr

11. Das RSA Verfahren und andere Verfahren

11. Das RSA Verfahren und andere Verfahren Chr.Nelius: Kryptographie (SS 2011) 31 11. Das RSA Verfahren und andere Verfahren Eine konkrete Realisierung eines Public Key Kryptosystems ist das sog. RSA Verfahren, das im Jahre 1978 von den drei Wissenschaftlern

Mehr

10. Kryptographie. Was ist Kryptographie?

10. Kryptographie. Was ist Kryptographie? Chr.Nelius: Zahlentheorie (SoSe 2015) 39 10. Kryptographie Was ist Kryptographie? Die Kryptographie handelt von der Verschlüsselung (Chiffrierung) von Nachrichten zum Zwecke der Geheimhaltung und von dem

Mehr

Kryptologie. Verschlüsselungstechniken von Cäsar bis heute. Arnulf May

Kryptologie. Verschlüsselungstechniken von Cäsar bis heute. Arnulf May Kryptologie Verschlüsselungstechniken von Cäsar bis heute Inhalt Was ist Kryptologie Caesar Verschlüsselung Entschlüsselungsverfahren Die Chiffrierscheibe Bestimmung der Sprache Vigenére Verschlüsselung

Mehr

Entwicklung der Asymmetrischen Kryptographie und deren Einsatz

Entwicklung der Asymmetrischen Kryptographie und deren Einsatz Entwicklung der Asymmetrischen Kryptographie und deren Einsatz Peter Kraml, 5a hlw Facharbeit Mathematik Schuljahr 2013/14 Caesar-Verschlüsselung Beispiel Verschiebung der Buchstaben im Alphabet sehr leicht

Mehr

Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur

Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit Thema: Asymmetrische Verschlüsselung, Digitale Signatur Vortragender: Rudi Pfister Überblick: Asymmetrische Verschlüsselungsverfahren - Prinzip

Mehr

Proseminar: Electronic Commerce und Digitale Unterschriften Public-Key-Kryptographie

Proseminar: Electronic Commerce und Digitale Unterschriften Public-Key-Kryptographie Proseminar: Electronic Commerce und Digitale Unterschriften Public-Key-Kryptographie Ziele der Kryptographie 1. Vertraulichkeit (Wie kann man Nachrichten vor Fremden geheim halten?) 2. Integrität (Wie

Mehr

27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln

27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln 27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln Autor Dirk Bongartz, RWTH Aachen Walter Unger, RWTH Aachen Wer wollte nicht schon mal eine Geheimnachricht übermitteln?

Mehr

Mit Python von Caesar zur Public-Key Kryptographie

Mit Python von Caesar zur Public-Key Kryptographie Mit Python von Caesar zur Public-Key Kryptographie Thomas Grischott KSS 30. Juni 2008 1 Die Caesarverschiebung Caesar hat Nachrichten an seine Feldherren verschlüsselt, indem er jeden Buchstaben um drei

Mehr

12 Kryptologie. ... immer wichtiger. Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW...

12 Kryptologie. ... immer wichtiger. Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW... 12 Kryptologie... immer wichtiger Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW... Kryptologie = Kryptographie + Kryptoanalyse 12.1 Grundlagen 12-2 es gibt keine einfachen Verfahren,

Mehr

Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung)

Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung) Was bisher geschah Sicherheitsziele: Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung) von Information beim Speichern und

Mehr

Kryptographie eine erste Ubersicht

Kryptographie eine erste Ubersicht Kryptographie eine erste Ubersicht KGV bedeutet: Details erfahren Sie in der Kryptographie-Vorlesung. Abgrenzung Steganographie: Das Kommunikationsmedium wird verborgen. Klassische Beispiele: Ein Bote

Mehr

1. Quantenkryptografie die Idee. 2. Verschlüsselung mit einem One Time Pad (Einmalblock)

1. Quantenkryptografie die Idee. 2. Verschlüsselung mit einem One Time Pad (Einmalblock) 1. Quantenkryptografie die Idee Kryptographie ist die Kunst eine Nachricht so zu verschlüsseln, dass sie für fremde Personen unlesbar und ohne jeglichen Informationsgehalt ist. Trotz vielfältiger Forschung

Mehr

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der

Mehr

Einführung in die moderne Kryptographie

Einführung in die moderne Kryptographie c by Rolf Haenni (2006) Seite 1 Von der Caesar-Verschlüsselung zum Online-Banking: Einführung in die moderne Kryptographie Prof. Rolf Haenni Reasoning under UNcertainty Group Institute of Computer Science

Mehr

IT-Sicherheit Kapitel 3 Public Key Kryptographie

IT-Sicherheit Kapitel 3 Public Key Kryptographie IT-Sicherheit Kapitel 3 Public Key Kryptographie Dr. Christian Rathgeb Sommersemester 2013 1 Einführung In der symmetrischen Kryptographie verwenden Sender und Empfänger den selben Schlüssel die Teilnehmer

Mehr

Klassische Verschlüsselungsverfahren

Klassische Verschlüsselungsverfahren Klassische Verschlüsselungsverfahren Matthias Rainer 20.11.2007 Inhaltsverzeichnis 1 Grundlagen 2 2 Substitutionschiffren 2 2.1 Monoalphabetische Substitutionen....................... 3 2.1.1 Verschiebechiffren............................

Mehr

1 Kryptosysteme 1 KRYPTOSYSTEME. Definition 1.1 Eine Kryptosystem (P(A), C(B), K, E, D) besteht aus

1 Kryptosysteme 1 KRYPTOSYSTEME. Definition 1.1 Eine Kryptosystem (P(A), C(B), K, E, D) besteht aus 1 RYPTOSYSTEME 1 ryptosysteme Definition 1.1 Eine ryptosystem (P(A), C(B),, E, D) besteht aus einer Menge P von lartexten (plaintext) über einem lartextalphabet A, einer Menge C von Geheimtexten (ciphertext)

Mehr

Von Cäsar bis RSA. Chiffrierung von der 1. bis zur 8. Klasse. Dr. Anita Dorfmayr Universität Wien. Lehrerfortbildungstag der ÖMG Wien, 13.

Von Cäsar bis RSA. Chiffrierung von der 1. bis zur 8. Klasse. Dr. Anita Dorfmayr Universität Wien. Lehrerfortbildungstag der ÖMG Wien, 13. Von Cäsar bis RSA Chiffrierung von der 1. bis zur 8. Klasse Dr. Anita Dorfmayr Universität Wien Lehrerfortbildungstag der ÖMG Wien, 13. April 2007 Gliederung Einführung Geschichte Zielsetzungen der Kryptografie

Mehr

Ich sehe was, was Du nicht siehst! über visuelle Geheimschriften (Girls Day, 26. April 2007; Stufe 9/10)

Ich sehe was, was Du nicht siehst! über visuelle Geheimschriften (Girls Day, 26. April 2007; Stufe 9/10) Fakultät für Mathematik und Informatik Univeristät Würzburg Am Hubland, 97 074 Würzburg Ich sehe was, was Du nicht siehst! über visuelle Geheimschriften (Girls Day, 26. April 2007; Stufe 9/10) Worum geht

Mehr

Public-Key Verschlüsselung

Public-Key Verschlüsselung Public-Key Verschlüsselung Björn Thomsen 17. April 2006 Inhaltsverzeichnis 1 Einleitung 2 2 Wie funktioniert es 2 3 Vergleich mit symmetrischen Verfahren 3 4 Beispiel: RSA 4 4.1 Schlüsselerzeugung...............................

Mehr

Grundlagen der Kryptographie

Grundlagen der Kryptographie Grundlagen der Kryptographie Seminar zur Diskreten Mathematik SS2005 André Latour a.latour@fz-juelich.de 1 Inhalt Kryptographische Begriffe Primzahlen Sätze von Euler und Fermat RSA 2 Was ist Kryptographie?

Mehr

Wie bleibt unser Geheimnis geheim?

Wie bleibt unser Geheimnis geheim? Wie bleibt unser Geheimnis geheim? Jan Tobias Mühlberg Wie bleibt unser Geheimnis geheim? MuT, Wintersemester 2009/10 Jan Tobias Mühlberg & Johannes Schwalb muehlber@swt-bamberg.de Lehrstuhl: Prof. Lüttgen,

Mehr

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008 RSA-Verschlüsselung von Johannes Becker Gießen 2006/2008 Zusammenfassung Es wird gezeigt, wieso das nach Ronald L. Rivest, Adi Shamir und Leonard Adleman genannte RSA-Krptosstem funktioniert, das mittlerweile

Mehr

Verschlüsselungsverfahren

Verschlüsselungsverfahren Verschlüsselungsverfahren Herrn Breder hat es nach dem Studium nach München verschlagen. Seine Studienkollegin Frau Ahrend wohnt in Heidelberg. Da beide beruflich sehr stark einspannt sind, gibt es keine

Mehr

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Technische Universität München Zentrum Mathematik PD Dr. hristian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Aufgabe 5.1: In einer Implementierung

Mehr

1.1. Von den Anfängen der Verschlüsselung bis zur modernen Kryptografie

1.1. Von den Anfängen der Verschlüsselung bis zur modernen Kryptografie Dr. Anita Dorfmayr, Universität Wien Von Cäsar bis RSA Verschlüsselung von der 1. bis zur 8. Klasse Anwendungsorientierter Mathematikunterricht kann nicht nur Motivation und Interesse der Schüler/innen

Mehr

Schutz von Informationen bei Übertragung über unsichere Kanäle Beispiele für zu schützende Informationen

Schutz von Informationen bei Übertragung über unsichere Kanäle Beispiele für zu schützende Informationen Kryptographie Motivation Schutz von Informationen bei Übertragung über unsichere Kanäle Beispiele für zu schützende Informationen Geheimzahlen (Geldkarten, Mobiltelefon) Zugriffsdaten (Login-Daten, Passwörter)

Mehr

Kryptologie. GFS im Fach Mathematik. Nicolas Bellm. 12. November - 16. November 2005

Kryptologie. GFS im Fach Mathematik. Nicolas Bellm. 12. November - 16. November 2005 Kryptologie GFS im Fach Mathematik Nicolas Bellm 12. November - 16. November 2005 Der Inhalt dieses Dokuments steht unter der GNU-Lizenz für freie Dokumentation http://www.gnu.org/copyleft/fdl.html Inhaltsverzeichnis

Mehr

Symmetrische und Asymmetrische Kryptographie. Technik Seminar 2012

Symmetrische und Asymmetrische Kryptographie. Technik Seminar 2012 Symmetrische und Asymmetrische Kryptographie Technik Seminar 2012 Inhalt Symmetrische Kryptographie Transpositionchiffre Substitutionchiffre Aktuelle Verfahren zur Verschlüsselung Hash-Funktionen Message

Mehr

Facharbeit. Public-Key-Verfahren(PGP) Stephan Larws Informatik 02

Facharbeit. Public-Key-Verfahren(PGP) Stephan Larws Informatik 02 Facharbeit Public-Key-Verfahren(PGP) Stephan Larws Informatik 02 1 Inhaltsverzeichnis 1.) DES 2.) Das Problem der Schlüsselverteilung - Lösung von Diffie, Hellman und Merkle 3.) Die Idee der asymmetrischen

Mehr

4 Codierung nach Viginere (Lösung)

4 Codierung nach Viginere (Lösung) Kapitel 4 Codierung nach Viginere (Lösung) Seite 1/14 4 Codierung nach Viginere (Lösung) 4.1 Einführung Blaise de Vigenère lebte von 1523 bis 1596 in Frankreich und war nach dem Studium bei verschiedenen

Mehr

Verschlüsselung. Chiffrat. Eve

Verschlüsselung. Chiffrat. Eve Das RSA Verfahren Verschlüsselung m Chiffrat m k k Eve? Verschlüsselung m Chiffrat m k k Eve? Aber wie verteilt man die Schlüssel? Die Mafia-Methode Sender Empfänger Der Sender verwendet keine Verschlüsselung

Mehr

Cacherhochschule CHS. Teil II polyalphabetische Substitutionschiffren

Cacherhochschule CHS. Teil II polyalphabetische Substitutionschiffren Cacherhochschule CHS Multi-Mystery Rätselhilfe -Event Teil II polyalphabetische Substitutionschiffren Herzlich willkommen! Kurz zur Erinnerung: Teil I behandelte Chiffren und Codes Polybios, Vanity, ROT

Mehr

Datensicherheit durch Kryptographie

Datensicherheit durch Kryptographie Datensicherheit durch Kryptographie Dr. Michael Hortmann Fachbereich Mathematik, Universität Bremen T-Systems Michael.Hortmann@gmx.de 1 Kryptographie: Klassisch: Wissenschaft und Praxis der Datenverschlüsselung

Mehr

Quantenkryptographie

Quantenkryptographie Quantenkryptographie Eine kurze Einführung --------------------------------------- (c) 2003 Johannes Tränkle Quelle: www.traenkle.org/texte/quanten.shtml Quantenkryptographie: Verschlüsselung: z.b. One-Time-

Mehr

Elliptische Kurven in der Kryptographie

Elliptische Kurven in der Kryptographie Elliptische Kurven in der Kryptographie Projekttage Mathematik 2002 Universität Würzburg Mathematisches Institut Elliptische Kurven in der Kryptographie p.1/9 Übersicht Kryptographie Elliptische Kurven

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

SSL/TLS Sicherheit Warum es sich lohnt, sich mit Ciphersuites zu beschäftigen

SSL/TLS Sicherheit Warum es sich lohnt, sich mit Ciphersuites zu beschäftigen SSL/TLS Sicherheit Warum es sich lohnt, sich mit Ciphersuites zu beschäftigen Immo FaUl Wehrenberg immo@ctdo.de Chaostreff Dortmund 16. Juli 2009 Immo FaUl Wehrenberg immo@ctdo.de (CTDO) SSL/TLS Sicherheit

Mehr

Mathematik sehen und verstehen

Mathematik sehen und verstehen Mathematik sehen und verstehen Schlüssel zur Welt Bearbeitet von Dörte Haftendorn 1. Auflage 2010. Taschenbuch. x, 341 S. Paperback ISBN 978 3 8274 2044 2 Format (B x L): 16,8 x 24 cm Weitere Fachgebiete

Mehr

Seminar für LAK. Angewandte Mathematik

Seminar für LAK. Angewandte Mathematik LV-Nummer: 250115 Wintersemester 2009/2010 Ao. Univ.-Prof. Dr. Peter Schmitt Seminar für LAK Angewandte Mathematik Martin Kletzmayr Matrikelnummer: 0304008 Studienkennzahl: A 190 313 406 Email: martin.kletzmayr@gmx.net

Mehr

Netzwerktechnologien 3 VO

Netzwerktechnologien 3 VO Netzwerktechnologien 3 VO Univ.-Prof. Dr. Helmut Hlavacs helmut.hlavacs@univie.ac.at Dr. Ivan Gojmerac gojmerac@ftw.at Bachelorstudium Medieninformatik SS 2012 Kapitel 8 - Netzwerksicherheit 8.1 Was ist

Mehr

Kodierungsalgorithmen

Kodierungsalgorithmen Kodierungsalgorithmen Komprimierung Verschlüsselung Komprimierung Zielsetzung: Reduktion der Speicherkapazität Schnellere Übertragung Prinzipien: Wiederholungen in den Eingabedaten kompakter speichern

Mehr

Übungen zu. Grundlagen der Kryptologie SS 2008. Hochschule Konstanz. Dr.-Ing. Harald Vater. Giesecke & Devrient GmbH Prinzregentenstraße 159

Übungen zu. Grundlagen der Kryptologie SS 2008. Hochschule Konstanz. Dr.-Ing. Harald Vater. Giesecke & Devrient GmbH Prinzregentenstraße 159 Übungen zu Grundlagen der Kryptologie SS 2008 Hochschule Konstanz Dr.-Ing. Harald Vater Giesecke & Devrient GmbH Prinzregentenstraße 159 D-81677 München Tel.: +49 89 4119-1989 E-Mail: hvater@htwg-konstanz.de

Mehr

Einführung in die verschlüsselte Kommunikation

Einführung in die verschlüsselte Kommunikation Einführung in die verschlüsselte Kommunikation Loofmann AFRA Berlin 25.10.2013 Loofmann (AFRA Berlin) Creative Common BY-NC-SA 2.0 25.10.2013 1 / 37 Ziele des Vortrages Wie funktioniert Verschlüsselung?

Mehr

Grundbegriffe der Kryptographie II Technisches Seminar SS 2012 Deniz Bilen

Grundbegriffe der Kryptographie II Technisches Seminar SS 2012 Deniz Bilen Grundbegriffe der Kryptographie II Technisches Seminar SS 2012 Deniz Bilen Agenda 1. Kerckhoff sches Prinzip 2. Kommunikationsszenario 3. Wichtige Begriffe 4. Sicherheitsmechanismen 1. Symmetrische Verschlüsselung

Mehr

Seminar zur Kryptologie

Seminar zur Kryptologie Seminar zur Kryptologie Practical Key Recovery Schemes Basierend auf einer Veröffentlichung von Sung-Ming Yen Torsten Behnke Technische Universität Braunschweig t.behnke@tu-bs.de Einführung Einführung

Mehr

Kryptographie praktisch erlebt

Kryptographie praktisch erlebt Kryptographie praktisch erlebt Dr. G. Weck INFODAS GmbH Köln Inhalt Klassische Kryptographie Symmetrische Verschlüsselung Asymmetrische Verschlüsselung Digitale Signaturen Erzeugung gemeinsamer Schlüssel

Mehr

KRYPTOLOGIE KRYPTOLOGIE

KRYPTOLOGIE KRYPTOLOGIE KRYPTOLOGIE Die Kryptologie beschäftigt sich mit dem Verschlüsseln von Nachrichten. Sie zerfällt in zwei Gebiete: die Kryptographie, die sich mit dem Erstellen von Verschlüsselungsverfahren beschäftigt,

Mehr

Linux User Group Tübingen

Linux User Group Tübingen theoretische Grundlagen und praktische Anwendung mit GNU Privacy Guard und KDE Übersicht Authentizität öffentlicher GNU Privacy Guard unter KDE graphische Userinterfaces:, Die dahinter

Mehr

Kryptographische Verfahren. zur Datenübertragung im Internet. Patrick Schmid, Martin Sommer, Elvis Corbo

Kryptographische Verfahren. zur Datenübertragung im Internet. Patrick Schmid, Martin Sommer, Elvis Corbo Kryptographische Verfahren zur Datenübertragung im Internet Patrick Schmid, Martin Sommer, Elvis Corbo 1. Einführung Übersicht Grundlagen Verschlüsselungsarten Symmetrisch DES, AES Asymmetrisch RSA Hybrid

Mehr

Public-Key-Kryptosystem

Public-Key-Kryptosystem Public-Key-Kryptosystem Zolbayasakh Tsoggerel 29. Dezember 2008 Inhaltsverzeichnis 1 Wiederholung einiger Begriffe 2 2 Einführung 2 3 Public-Key-Verfahren 3 4 Unterschiede zwischen symmetrischen und asymmetrischen

Mehr

Erste Vorlesung Kryptographie

Erste Vorlesung Kryptographie Erste Vorlesung Kryptographie Andre Chatzistamatiou October 14, 2013 Anwendungen der Kryptographie: geheime Datenübertragung Authentifizierung (für uns = Authentisierung) Daten Authentifizierung/Integritätsprüfung

Mehr

Kryptographie. nur mit. Freier Software!

Kryptographie. nur mit. Freier Software! Michael Stehmann Kryptographie nur mit Freier Software! Kurze Einführung in Kryptographie ErsterTeil: Bei der Kryptographie geht es um die Zukunft von Freiheit und Demokratie Artur P. Schmidt, 1997 http://www.heise.de/tp/artikel/1/1357/1.html

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Algorithmische Kryptographie

Algorithmische Kryptographie Algorithmische Kryptographie Walter Unger Lehrstuhl für Informatik I 16. Februar 2007 Quantenkryptographie 1 Einleitung Grundlagen aus der Physik 2 Datenübertragung 1. Idee 2. Idee Nochmal Physik 3 Sichere

Mehr

Das Verschlüsseln verstehen

Das Verschlüsseln verstehen Das Verschlüsseln verstehen Kurz-Vorlesung Security Day 2013 Prof. (FH) Univ.-Doz. DI. Dr. Ernst Piller Kurzvorlesung "Das Verschlüsseln verstehen", Security Day 2013, Ernst Piller 1 Warum eigentlich Verschlüsselung

Mehr

Kryptographie und Verschlüsselung

Kryptographie und Verschlüsselung 7-it Kryptographie und Verschlüsselung Jörg Thomas 7-it Kryptographie und Verschlüsselung Begriffsbildung Geschichte Ziel moderner Kryptographie Sicherheit Public-Key-Kryptographie Ausblick Begriffsbildung

Mehr

Lehreinheit E V2 Verschlüsselung mit symmetrischen Schlüsseln

Lehreinheit E V2 Verschlüsselung mit symmetrischen Schlüsseln V-Verschlüsslung Lehreinheit Verschlüsselung mit symmetrischen Schlüsseln Zeitrahmen 70 Minuten Zielgruppe Sekundarstufe I Sekundarstufe II Inhaltliche Voraussetzung V1 Caesar-Chiffre Für Punkt 2: Addieren/Subtrahieren

Mehr

Kryptographische Verfahren auf Basis des Diskreten Logarithmus

Kryptographische Verfahren auf Basis des Diskreten Logarithmus Kryptographische Verfahren auf Basis des Diskreten Logarithmus -Vorlesung Public-Key-Kryptographie SS2010- Sascha Grau ITI, TU Ilmenau, Germany Seite 1 / 18 Unser Fahrplan heute 1 Der Diskrete Logarithmus

Mehr

Vorkurs für. Studierende in Mathematik und Physik. Einführung in Kryptographie Kurzskript 2015

Vorkurs für. Studierende in Mathematik und Physik. Einführung in Kryptographie Kurzskript 2015 Vorkurs für Studierende in Mathematik und Physik Einführung in Kryptographie Kurzskript 2015 Felix Fontein Institut für Mathematik Universität Zürich Winterthurerstrasse 190 8057 Zürich 11. September 2015

Mehr

Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit Grundlagen: Asymmetrische Verschlüsslung, Digitale Signatur

Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit Grundlagen: Asymmetrische Verschlüsslung, Digitale Signatur Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit Grundlagen: Asymmetrische Verschlüsslung, Digitale Signatur Rudi Pfister Rudi.Pfister@informatik.stud.uni-erlangen.de Public-Key-Verfahren

Mehr

Einführung Verschlüsselung Mag. Dr. Klaus Coufal

Einführung Verschlüsselung Mag. Dr. Klaus Coufal Einführung Verschlüsselung Mag. Dr. Klaus Coufal Verschlüsselung Symmetrisch Asymmetrisch Rechenleistung Primzahlenzerlegung Quantenkryptographie Schlüsselverwaltung Dr. Klaus Coufal 4.9.2014 Einführung

Mehr

IT-Sicherheit - Sicherheit vernetzter Systeme -

IT-Sicherheit - Sicherheit vernetzter Systeme - IT-Sicherheit - Sicherheit vernetzter Systeme - Kapitel 4: Grundlagen der Kryptologie Helmut Reiser, LRZ, WS 09/10 IT-Sicherheit 1 Inhalt 1. Kryptologie: Begriffe, Klassifikation 2. Steganographie 3. Kryptographie,

Mehr

Inhalt. 1. Kryptographie. 1. Etymologische Aspekte 2. Historische Aspekte 3. Probleme 4. (A-)Symmetrische Verschlüsselung

Inhalt. 1. Kryptographie. 1. Etymologische Aspekte 2. Historische Aspekte 3. Probleme 4. (A-)Symmetrische Verschlüsselung Quantenkryptographie Quantenkryptographie 1 1 Inhalt 1. Kryptographie Quantenschlüsselaustausch 1. Etymologische Aspekte. Historische Aspekte 3. Probleme 4. (A-)Symmetrische Verschlüsselung. Quantenschlüsselaustausch

Mehr

Grundfach Informatik in der Sek II

Grundfach Informatik in der Sek II Grundfach Informatik in der Sek II Kryptologie 2 3 Konkrete Anwendung E-Mail- Verschlüsselung From: To: Subject: Unterschrift Date: Sat,

Mehr

VON. Kryptographie. 07. März 2013. Powerpoint-Präsentation

VON. Kryptographie. 07. März 2013. Powerpoint-Präsentation VON 07. März 2013 & Kryptographie Powerpoint-Präsentation 1 Allgemeines über die Kryptographie kryptós= griechisch verborgen, geheim gráphein= griechisch schreiben Kryptographie + Kryptoanalyse= Kryptologie

Mehr

Grundlagen der Verschlüsselung und Authentifizierung (2)

Grundlagen der Verschlüsselung und Authentifizierung (2) Grundlagen der Verschlüsselung und Authentifizierung (2) Ausarbeitung im Seminar Konzepte von Betriebssystem-Komponenten Benjamin Klink 21. Juli 2010 Inhaltsverzeichnis 1 Einleitung 1 2 Asymmetrische Verschlüsselung

Mehr

Modul Diskrete Mathematik WiSe 2011/12

Modul Diskrete Mathematik WiSe 2011/12 1 Modul Diskrete Mathematik WiSe 2011/12 Ergänzungsskript zum Kapitel 4.2. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung

Mehr

RSA Primzahlen zur Verschlüsselung von Nachrichten

RSA Primzahlen zur Verschlüsselung von Nachrichten RSA Primzahlen zur Verschlüsselung von Nachrichten Anton Schüller 1 Ulrich Trottenberg 1,2 Roman Wienands 2 Michael Koziol 2 Rebekka Schneider 2 1 Fraunhofer-Institut Algorithmen und Wissenschaftliches

Mehr

Kryptographie mit elliptischen Kurven

Kryptographie mit elliptischen Kurven Kryptographie mit elliptischen Kurven Gabor Wiese Universität Regensburg Kryptographie mit elliptischen Kurven p. 1 Problemstellung Kryptographie mit elliptischen Kurven p. 2 Problemstellung Caesar Kryptographie

Mehr

Was ist Kryptographie

Was ist Kryptographie Was ist Kryptographie Kryptographie Die Wissenschaft, mit mathematischen Methoden Informationen zu verschlüsseln und zu entschlüsseln. Eine Methode des sicheren Senden von Informationen über unsichere

Mehr

RSA-Verschlüsselung. Verfahren zur Erzeugung der beiden Schlüssel:

RSA-Verschlüsselung. Verfahren zur Erzeugung der beiden Schlüssel: RSA-Verschlüsselung Das RSA-Verfahren ist ein asymmetrisches Verschlüsselungsverfahren, das nach seinen Erfindern Ronald Linn Rivest, Adi Shamir und Leonard Adlemann benannt ist. RSA verwendet ein Schlüsselpaar

Mehr

Einfache kryptographische Verfahren

Einfache kryptographische Verfahren Einfache kryptographische Verfahren Prof. Dr. Hagen Knaf Studiengang Angewandte Mathematik 26. April 2015 c = a b + a b + + a b 1 11 1 12 2 1n c = a b + a b + + a b 2 21 1 22 2 2n c = a b + a b + + a b

Mehr

AUFGABEN ZUR KRYPTOLOGIE

AUFGABEN ZUR KRYPTOLOGIE AUFGABEN ZUR KRYPTOLOGIE Aufgabe 1 Der folgende Geheimtext ging hervor aus der Verschlüsselung eines deutschen Klartexts mit einem monoalphabetischen Chiffrierungsverfahren. nyv syv svdvu yst vyuv sglmdv

Mehr

Wiederholung: Informationssicherheit Ziele

Wiederholung: Informationssicherheit Ziele Wiederholung: Informationssicherheit Ziele Vertraulichkeit : Schutz der Information vor unberechtigtem Zugriff bei Speicherung, Verarbeitung und Übertragung Methode: Verschüsselung symmetrische Verfahren

Mehr

Wie Sie beliebig viele PINs, die nur aus Ziffern bestehen dürfen, mit einem beliebigen Kennwort verschlüsseln: Schritt 1

Wie Sie beliebig viele PINs, die nur aus Ziffern bestehen dürfen, mit einem beliebigen Kennwort verschlüsseln: Schritt 1 Wie Sie beliebig viele PINs, die nur aus Ziffern bestehen dürfen, mit einem beliebigen Kennwort verschlüsseln: Schritt 1 Zunächst einmal: Keine Angst, die Beschreibung des Verfahrens sieht komplizierter

Mehr

4 RSA und PGP. Die Mathematik von RSA an einem Beispiel

4 RSA und PGP. Die Mathematik von RSA an einem Beispiel 4 RSA und PGP Im Juni 1991 wurde das Programm PGP (für pretty good privacy ) von Phil Zimmermann ins Internet gestellt. Es ermöglichte jedermann, e-mails derart gut zu verschlüsseln, dass nicht einmal

Mehr

IT Sicherheit: Authentisierung

IT Sicherheit: Authentisierung Dr. Christian Rathgeb IT-Sicherheit, Kapitel 4 / 18.11.2015 1/21 IT Sicherheit: Dr. Christian Rathgeb Hochschule Darmstadt, CASED, da/sec Security Group 18.11.2015 Dr. Christian Rathgeb IT-Sicherheit,

Mehr

Kurze Einführung in kryptographische Grundlagen.

Kurze Einführung in kryptographische Grundlagen. Kurze Einführung in kryptographische Grundlagen. Was ist eigentlich AES,RSA,DH,ELG,DSA,DSS,ECB,CBC Benjamin.Kellermann@gmx.de GPG-Fingerprint: D19E 04A8 8895 020A 8DF6 0092 3501 1A32 491A 3D9C git clone

Mehr

Informatik für Ökonomen II HS 09

Informatik für Ökonomen II HS 09 Informatik für Ökonomen II HS 09 Übung 5 Ausgabe: 03. Dezember 2009 Abgabe: 10. Dezember 2009 Die Lösungen zu den Aufgabe sind direkt auf das Blatt zu schreiben. Bitte verwenden Sie keinen Bleistift und

Mehr

9 Schlüsseleinigung, Schlüsselaustausch

9 Schlüsseleinigung, Schlüsselaustausch 9 Schlüsseleinigung, Schlüsselaustausch Ziel: Sicherer Austausch von Schlüsseln über einen unsicheren Kanal initiale Schlüsseleinigung für erste sichere Kommunikation Schlüsselerneuerung für weitere Kommunikation

Mehr

1 Geheime Beispiel-Botschaften in verschiedenen Jahrhunderten:

1 Geheime Beispiel-Botschaften in verschiedenen Jahrhunderten: 01-Vortrag-Geheimcodes.docx 1 / 13 GEHEIME BOTSCHAFTEN Eine kleine Einführung in das Codieren von Texten Seit jeher wurden wichtige Botschaften verschlüsselt. Z.B. auch von Julius Caesar (60 v.chr.) 1

Mehr

RSA Verfahren. Ghazwan Al Hayek Hochschule für Technik Stuttgart. 2. November 2008

RSA Verfahren. Ghazwan Al Hayek Hochschule für Technik Stuttgart. 2. November 2008 RSA Verfahren Ghazwan Al Hayek Hochschule für Technik Stuttgart 2. November 2008 1 Inhaltsverzeichnis 1. Einleitung 1.1. Übersicht 1.2. Private-Key-Verfahren 1.3. Public-Key-Verfahren 1.4. Vor/ Nachteile

Mehr

Informatik Programmieren 6.Klasse

Informatik Programmieren 6.Klasse Informatik Programmieren 6.Klasse Inhalt 1. Kryptologie... 1 2. Substitutionsverfahren... 2 3. Vigenère-Chiffre... 3 4. Hashing... 4 5. MD5... 4 6. PGP?... 4 Wie arbeitet PGP?... 5 7. Delphi Programme...

Mehr

Virtuelle Lehrerweiterbildung Informatik in Niedersachsen Kerstin Strecker Kryptografie S. 1. Kryptografie

Virtuelle Lehrerweiterbildung Informatik in Niedersachsen Kerstin Strecker Kryptografie S. 1. Kryptografie Kerstin Strecker Kryptografie S. 1 Kryptografie 1. Alice, Bob und Eve Solange Menschen miteinander kommunizieren, besteht auch der Wunsch, bestimmte Nachrichten geheim zu halten. Einerseits, weil die Nachricht

Mehr

Computeralgebra in der Lehre am Beispiel Kryptografie

Computeralgebra in der Lehre am Beispiel Kryptografie Kryptografie Grundlagen RSA KASH Computeralgebra in der Lehre am Beispiel Kryptografie Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA KASH Überblick Kryptografie mit

Mehr

Stammtisch 04.12.2008. Zertifikate

Stammtisch 04.12.2008. Zertifikate Stammtisch Zertifikate Ein Zertifikat ist eine Zusicherung / Bestätigung / Beglaubigung eines Sachverhalts durch eine Institution in einem definierten formalen Rahmen 1 Zertifikate? 2 Digitale X.509 Zertifikate

Mehr

Kryptographie oder Verschlüsselungstechniken

Kryptographie oder Verschlüsselungstechniken Kryptographie oder Verschlüsselungstechniken Dortmund, Dezember 1999 Prof. Dr. Heinz-Michael Winkels, Fachbereich Wirtschaft FH Dortmund Emil-Figge-Str. 44, D44227-Dortmund, TEL.: (0231)755-4966, FAX:

Mehr

Facharbeit Mathematik - Kryptologie. Thorsten Ferres MSS94

Facharbeit Mathematik - Kryptologie. Thorsten Ferres MSS94 Facharbeit Mathematik - Kryptologie Thorsten Ferres MSS94 Facharbeit Mathematik - Kryptologie 1 Kryptologie - Was ist das für eine Wissenschaft? 3 Welche Algorithmen gibt es - was sind Algorithmen? 5 Substitutionsalgorithmen

Mehr

10. Public-Key Kryptographie

10. Public-Key Kryptographie Stefan Lucks 10. PK-Krypto 274 orlesung Kryptographie (SS06) 10. Public-Key Kryptographie Analyse der Sicherheit von PK Kryptosystemen: Angreifer kennt öffentlichen Schlüssel Chosen Plaintext Angriffe

Mehr

Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung)

Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung) Was bisher geschah Sicherheitsziele: Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung) von Information beim Speichern und

Mehr