Der größte gemeinsame Teiler und das kleinste gemeinsame Vielfache Proseminar Modul 4c, Gruppe 3: Primzahlen, Dr. Regula Krapf

Größe: px
Ab Seite anzeigen:

Download "Der größte gemeinsame Teiler und das kleinste gemeinsame Vielfache Proseminar Modul 4c, Gruppe 3: Primzahlen, Dr. Regula Krapf"

Transkript

1 Der größte gemeinsame Teiler und das kleinste gemeinsame Vielfache Proseminar Modul 4c, Gruppe 3: Primzahlen, Dr. Regula Krapf Carina Hilger Inhaltsverzeichnis 1 Der größte gemeinsame Teiler (ggt) Division mit Rest nach Euklid Der Euklidische Algorithmus Der erweiterte Euklidische Algorithmus Das kleinste gemeinsame Vielfache (kgv) 7 3 Primfaktorzerlegung 10 4 Literaturverzeichnis 13

2 Die folgende Ausarbeitung beschäftigt sich mit dem ggt und kgv zweier natürlicher Zahlen, sowie deren Ermittlung mittels Primfaktorzerlegung. Definitionen und Sätze wurden aus dem Buch Zahlentheorie von Harald Scheid und Andreas Frommer [1] und dem Skript Elementarmathematik vin Regula Krapf [2] entnommen. 1 Der größte gemeinsame Teiler (ggt) Wir beschäftigen uns zunächst mit dem größten gemeinsamen Teiler von zwei natürlichen Zahlen a und b. Er ist die größte gemeinsame Zahl, durch die sich zwei Zahlen ohne Rest teilen lassen. Definition. Seien a, b N. Dann definiert man ggt (a, b) := max{g N g a g b} den größten gemeinsamen Teiler von a und b. Zwei Zahlen a, b N heißen teilerfremd, falls ggt (a, b) = 1. Definition 1 besagt, dass für a, b N 0 gilt g = ggt (a, b) g a g b c N : (c a c b c g). 1.1 Division mit Rest nach Euklid Unter der Division von a und b mit Rest verstehen wir folgende Darstellung. Satz 1. Für alle a, b N \ {0} gibt es q, r N mit a = qb + r und 0 r < b. Die Zahlen q = a b und r = a qb sind dabei durch a und b eindeutig bestimmt. Nun gilt genau dann c a und c b, wenn c b und c r gilt, gemäß Lemma 1. Also ist ggt (a, b) = ggt (r, b). Ist r = 0, dann ist ggt (a, b) = b. Ist r 0, so wiederholen wir die obige Umformung mit vertauschten Rollen: Lemma 1. Seien a, b N mit a = qb + r mit q, r N und 0 r < b. Dann gilt: ggt (a, b) = ggt (b, r). Beweis. Für einen Teiler c von b gilt c a c qb + r c r. Also ist jeder Teiler von a und b auch ein Teiler von b und r. Lemma 2. Seien a, b N. Für jedes c N gilt: Falls c a und c b, so folgt c ggt (a, b).

3 Beweis. Wir beweisen per Widerspruch. Annahme: b N sei minimal, sodass a, c N existieren mit c a, c b und c ggt (a, b). Nach Lemma 1 sei a = qb + r mit r < b. nach ggt (a, b) = ggt (b, r) und c a und c b c r = a qb. Lemma 1 Nun gilt aber nach Annahme c b, c r und c ggt (b, r). b r c ggt (a, b). Dieses Lemma definiert auch ggt (0, 0): Da 0 die einzige durch alle Zahlen aus N teilbare Zahl ist, gilt ggt (0, 0) = 0. Beispiel 1. Wir berechnen ggt (24, 32). Es gilt: Teiler von 24: 1, 2, 3, 4, 6, 8, 12, 24 Teiler von 32: 1, 2, 4, 8, 16, 32 Somit gilt ggt (24, 32) = 8. Die Bildung des ggt zweier Zahlen ist eine assoziative Verknüpfung, d.h. es gilt ggt (ggt (a, b), c) = ggt (a, ggt (b, c)). Definition. Für a N sei T a := {b N b a} die Teilermenge von a. Satz 2. Für a, b N gilt T ggt (a,b) = T a T b. Beweis. " ": Sei c T ggt (a,b) c ggt (a, b). Für a: ggt (a, b) a c a c T a. Für b: ggt (a, b) b c b c T b. " ": Sei c T a T b c T a und c T b. c a und c b c ggt (a, b) nach Lemma 2 c T ggt (a,b).

4 Aus Satz 2 folgt: T ggt (ggt (a,b),c) = T ggt (a,b) T c = (T a T b ) T c = T a (T b T c ) = T a T ggt (b,c) = T ggt (a,ggt (b,c)). Verallgemeinert können wir für alle a, b, c N definieren: und ggt (a, b, c) := ggt (ggt (a, b), c)(= ggt (a, ggt (b, c))) T a T b T c = T ggt (a,b,c). Daraus ergibt sich: Genau dann ist d = ggt (a, b, c), wenn (1) d a und d b und d c; (2) aus t a und t b und t c folgt t d. Wegen der Assoziativität können wir rekursiv ggt (a 1,..., a n ) für a 1... ; a n N definieren, gemäß der vorangehenden Definition: ggt (a 1,..., a n+1 ) := ggt (ggt (a 1,..., a n ), a n+1 ). Allgemein gilt für a 1, a 2,..., a n N ist T a1 T a2... T an = T ggt (a1,a 2,...a n). Daraus folgt: Genau dann ist d = ggt (a 1, a 2,..., a n ), wenn (1) d a 1 und d a 2 und... und d a n ; (2) aus t a 1 und t a 2 und... und t a n folgt t d. 1.2 Der Euklidische Algorithmus Man bezeichnet den euklidischen Algorithmus auch als Wechselwegnahme, da man abwechselnd ein Vielfaches der einen Zahl von der anderen Zahl wegnimmt. Für a, b N wird die folgende Kette von Divisionen mit Rest als euklidischer Algorithmus bezeichnet:

5 Setze a = r 0, b = r 1. a = v 1 b + r 2 mit 0 < r 2 < b b = v 2 r 2 + r 3 mit 0 < r 3 < r 2 r 2 = v 3 r 3 + r 4 mit 0 < r 4 < r 3. r n 3 = v n 2 r n 2 + r n 1 mit 0 < r n 1 < r n 2 r n 2 = v n 1 r n 1 + r n mit 0 < r n < r n 1 r n 1 = v n r n. Dabei ist n dadurch bestimmt, dass r n der letzte von 0 verschiedene Rest in der Divisionskette ist. Ein solches n existiert, denn die Folge der Reste nimmt streng monoton ab: b > r 2 > r 3 >... > r n 1 > r n. Satz 3. Der letzte von 0 verschiedene Rest r n im euklidischen Algorithmus für a, b N ist der größte gemeinsame Teiler von a und b. Beweis. Mit den Bezeichnungen im euklidischen Algorithmus gilt wegen Lemma 1 ggt (a, b) = ggt (b, r 1 ) = ggt (r 1, r 2 ) =... = ggt (r n 1, r n ) = r n. Beispiel 2. Es soll ggt (156, 66) berechnet werden: 156 = = = = 3 6 Es ergibt sich also ggt (156, 66) = Der erweiterte Euklidische Algorithmus Lemma 3. (Lemma von Bézout) Für alle a, b N \ {0} gibt es u, v Z mit ggt (a, b) = ua + vb.

6 Beweis. Durch vollständige Induktion. Behauptung: Für alle j {0,... n} gibt es s j, t j Z mit r j = s j a + t j b. Induktionsanfang: r 0 = a = }{{} 1 a + }{{} 0 b s 0 t 0 r 1 = b = }{{} 0 a + }{{} 1 b s 1 t 1 Induktionsannahme: Wir nehmen an, die Behauptung gelte für alle k j. D.h., für alle k j gibt es s k, t k Z mit r k = s k a + t k b. Induktionsschluss: Wir müssen zeigen: Es gibt s j+1, t j+1 Z mit r j+1 = s j+1 a+t j+1 b. Es gilt r j 1 = v j r j + r j+1 r j+1 = r j 1 v j r j IA = (sj 1 a + t j 1 b) v j (s j a + t j b) = (s j 1 v j s j ) a + (t j 1 v j t j ) }{{}}{{} =:s j+1 =:t j+1 b Damit ist die Induktionsbehauptung bewiesen. Es folgt ggt (a, b) = r n = s }{{} n a+ t n b. }{{} =:u :=v Beispiel 3. Wir haben vorhin den ggt (156, 66) berechnet. Daraus ergibt sich 6 = = 24 ( ) = = 3 ( ) 66 = ggt (156, 66) = u v 66 mit u = 3 und v = 7. Die Darstellung ggt (a, b) = ua+vb mit u, v Z wird auch Vielfachensummendarstellung genannt. Seien x, y Z dann ist ggt (a, b) = ua + vb und ggt (ggt (a, b), c) = x ggt (a, b) + yc. Daraus folgt:

7 ggt (a, b, c) = ggt (ggt (a, b), c) = x(ua + vb) + yc = (xu)a + (xv)b + yc. Verallgemeinert gilt: Für a 1, a 2,..., a n N existieren v 1, v 2,..., v n Z, sodass gilt ggt (a 1, a 2,..., a n ) = v 1 a 1 + v 2 a v n a n. Satz 4. Sind a 1,... a n N alle teilerfremd zu m Z, dann ist auch ihr Produkt teilerfremd zu m. Beweis. Sei ggt (a 1, m) = ggt (a 2, m) =... = ggt (a n, m) = 1. Dann gibt es u 1,... u n und v 1,... v n (u i, v i Z) mit 1 = u 1 a 1 + v 1 m 1 = u 2 a 2 + v 2 m. 1 = u n a n + v n m. Nach Multiplikation dieser Gleichungen folgt 1 = (u 1 u 2... u n )(a 1 a 2... a n ) + vm mit v Z. Ein gemeinsamer Teiler kann daher nur 1 sein. 2 Das kleinste gemeinsame Vielfache (kgv) In diesem Kapitel beschäftigen wir uns mit dem kleinsten gemeinsamen Vielfachen zweier natürlicher Zahlen a und b. Es ist das kleinste positive Zahl, welche sowohl Vielfaches von a als auch von b ist. Definition. Seien a, b N. Dann definiert man kgv (a, b) := min{k N a k b k} das kleinste gemeinsame Vielfache von a und b. Die Definition besagt, dass für a, b N \ {0} gilt k = kgv (a, b) a k b k c N : (a c b c k c). Lemma 4. Genau dann gilt a c und b c, wenn kgv (a, b) c. Beweis. " ": Es gelte kgv (a, b) c.

8 Für a: a kgv (a, b) und kgv (a, b) c a c (wegen der Transitivität der Teilbarkeitsrelation). Für b: b kgv (a, b) und kgv (a, b) c b c (wegen der Transitivität der Teilbarkeitsrelation). " ": Es gelte a c und b c. Sei k = kgv (a, b) und c = q k + r mit q, r N und 0 r < k. Beweis per Widerspruch: Annahme: r 0 r = c qk Für a: a c und a qk a c qk = r. Für b: b c und b qk b c qk = r k r Also gilt r = 0 k c. Beispiel 4. Wir berechnen kgv (24, 32). Vielfache von 24: 24, 48, 72, 96, 120,... Vielfache von 32: 32, 64, 96,... Somit folgt kgv (24, 32) = 96. Satz 5. Für a, b N gilt kgv (a, b) = a b ggt (a,b). Beweis. Man setze Wegen gilt a c und b c. c := a b ggt (a, b). a ggt (a, b), b ggt (a, b) N

9 Nach dem Lemma von Bézout gilt ggt (a, b) = ua + vb mit u, v Z. Für ein beliebiges d V a V b gilt c d, denn die Zahl ist ganz. d c = d ggt (a, b) a b = d (ua + vb) a b = u d b + v d a Folglich ist c d und damit c das kleinste gemeinsame Vielfache von a und b. Die Bildung des kgv zweier Zahlen ist eine assoziative Verknüpfung, d.h. es gilt kgv (kgv (a, b), c) = kgv (a, kgv (b, c)). Definition. Für a N sei V a := {b N a b} die Vielfachenmenge von a. Satz 6. Für a, b N gilt V kgv (a,b) = V a V b. Beweis. " ": Sei c V kgv (a,b) kgv (a, b) c. Für a: a kgv (a, b) a c c V a. Für b: b kgv (a, b) b c c V b. " ": Sei c V a V b c V a und c V b. a c und b c kgv (a, b) c nach Lemma 4 c V kgv (a,b). Aus Satz 6 folgt V kgv (a,b),c) = V kgv (a,b) V c = (V a V b ) V c = V a (V b V c ) = V a V kgv (b,c) = V kgv (a,kgv (b,c)). Allgemein gilt für a 1, a 2,..., a n N ist V a1 V a2... V an = V kgv (a1,a 2,...,a n). Also ist genau dann v = kgv (a 1, a 2,..., a n ), wenn gilt: (1) a 1 v und a 2 v und... und a n v; (2) aus a 1 c und a 2 c und... und a n c folgt v c.

10 3 Primfaktorzerlegung Definition. Eine natürliche Zahl p N mit p 2 heißt Primzahl, falls 1 und p die einzigen Teiler von p sind. Wir bezeichnen mit P die Menge aller Primzahlen. Eine Primfaktorzerlegung einer natürlichen Zahl n N mit n 2 ist ein Produkt n = p P pep, wobei e p N für fast alle p P und e p = 0. Lemma 5. Seien a, b N \ {0, 1} und a = p P pep und b = p P pfp die Primfaktorzerlegungen von a und b. Dann gilt a b e p f p für alle p P. Beweis. Wir beweisen beide Richtungen einzeln: die Primfaktorzer- " ": Es gelte a b. Somit gibt es ein k N mit ak = b. Sei p P pgp legung von k. Dann gilt p fp = b = ak = p gp p ep = p gp+ep. p P p P p P p P Aus der Eindeutigkeit der Primfaktorzerlegung folgt f p = g p + e p e p für allep P. " ": Sei e p f p für alle p P. Dann gibt es für jedes p P eine natürliche Zahl g p N mit f p = e p + g p. Setze k = p P pgp. Daraus folgt mit k = p P pgp. b = p P p fp = p P Also folgt, dass a ein Teiler von b ist. p ep+gp = p P p ep p gp = ak Mit Hilfe des Hauptsatzes der Arithmetik können wir nun aus der Primfaktorzerlegung von a und von b die Primfaktorzerlegung von ggt (a, b) und kgv (a, b) bestimmen: p P

11 Lemma 6. Seien a, b N \ {0, 1} und a = p P pep und b = p P pfp die Primfaktorzerlegung von a und b. Dann gilt: (a) ggt (a, b) = p P pmin{ep,fp} (b) kgv (a, b) = p P pmax{ep,fp}. Beweis. (a): Sei g = ggt (a, b) und g = p P pmin{ep,fp}. Nach Definition des ggt gilt g a und g b. Sei g = p P p gp die Primfaktorzerlegung von g. Aus dem vorherigen Lemma folgt, dass g p e p und g p f p für alle p P. Somit gilt g p min{e p, f p } für jedes p P und damit g g. Es folgt auch, dass g a und g b und damit nach Lemma 2 auch g ggt (a, b) = g. Nun gilt g g und g g, also g = g. (b): Sei also k = kgv (a, b) und k = p P pmax{ep,fp}. Nach Definition des kgv gilt a k und b k. Sei k = p P p kp die Primfaktorzerlegung von k. Es folgt aus Lemma 6, dass k p e p und k p f p für alle p P. Somit gilt k p max{e p, f p } für jedes p P und damit k k. Es folgt auch, dass a k und b k und damit nach Lemma 3 auch k = kgv (a, b) k. Nun gilt k k und k k, also k = k.

12 Beispiel 5. Sei a = 120 und b = 150. Wir möchten ggt und kgv dieser beiden Zahlen ermitteln. Dazu zerlegen wir sie in ihre Primfaktoren. 120 = = = = ggt (120, 150) = = 30 kgv (120, 150) = = 600.

13 4 Literaturverzeichnis [1] Scheid, Harald; Frommer, Andreas: Zahlentheorie, 4. Auflage. Elsevier: München, [2] Krapf, Regula; Skript Elementarmathematik, Wintersemester 2017/2018.

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9 Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )

Mehr

Chr.Nelius: Zahlentheorie (WS 2006/07) ggt und kgv

Chr.Nelius: Zahlentheorie (WS 2006/07) ggt und kgv ChrNelius: Zahlentheorie (WS 2006/07) 8 3 ggt und kgv Wir erinnern uns hoffentlich an die folgenden Definitionen des ggt s und des kgv s zweier ganzer Zahlen (31) DEF: Eine ganze Zahl g heißt größter gemeinsamer

Mehr

Beispiel: Primelemente in den Gaußschen Zahlen

Beispiel: Primelemente in den Gaußschen Zahlen Beispiel: Primelemente in den Gaußschen Zahlen Satz Primelemente in Z[i] Für die Primelemente π Z[i] gilt bis auf Assoziiertheit 1 N(π) = p für ein p P oder 2 π = p für ein p P mit p x 2 + y 2 für (x,

Mehr

Euklidischer Algorithmus

Euklidischer Algorithmus Euklidischer Algorithmus Ermitteln des größten gemeinsamen Teilers mit Euklid: function ggt (m, n) Hierbei ist m begin 0undn 0vorausgesetzt. if m = 0 then return n else return ggt (n mod m, m) fi end Man

Mehr

Zahlentheorie. Stefan Takacs Linz, am 2. Juni 2004

Zahlentheorie. Stefan Takacs Linz, am 2. Juni 2004 Zahlentheorie Anna Rieger 0355556 Stefan Takacs 0356104 Daniela Weberndorfer 0355362 Linz, am 2. Juni 2004 Zusammenfassung Die vorliegende Arbeit über die grundlegenden Sätze der Zahlentheorie beschäftigt

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 10.01.2014 Alexander Lytchak 1 / 9 Erinnerung: Zwei ganz wichtige Gruppen Für jede Gruppe (G, ) und jedes Element g

Mehr

Zahlenlehre 1. Die Mathematik ist die Königin der Wissenschaften und die Zahlentheorie ist die Königin der Mathematik (Carl Friedrich Gauß)

Zahlenlehre 1. Die Mathematik ist die Königin der Wissenschaften und die Zahlentheorie ist die Königin der Mathematik (Carl Friedrich Gauß) Die Mathematik ist die Königin der Wissenschaften und die Zahlentheorie ist die Königin der Mathematik (Carl Friedrich Gauß) 6. Termin, Wien 2014 Mag. a Dagmar Kerschbaumer Letzter Termin g-adische Darstellung

Mehr

Beispiel: Primelemente in den Gaußschen Zahlen

Beispiel: Primelemente in den Gaußschen Zahlen Beispiel: Primelemente in den Gaußschen Zahlen Satz Primelemente in Z[i] Für die Primelemente π Z[i] gilt bis auf Assoziiertheit 1 N(π) = p für ein p P oder 2 π = p für ein p P mit p x 2 + y 2 für (x,

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 4 Das Lemma von Bezout Satz 1. (Lemma von Bézout) Jede Menge von ganzen Zahlen a 1,...,a n besitzt einen größten gemeinsamen Teiler

Mehr

KAPITEL 13. Polynome. 1. Primfaktorzerlegung in den ganzen Zahlen. ,, p r

KAPITEL 13. Polynome. 1. Primfaktorzerlegung in den ganzen Zahlen. ,, p r KAPITEL 13 Polynome 1. Primfaktorzerlegung in den ganzen Zahlen DEFINITION 13.1 (Primzahl). Eine Zahl p ist genau dann eine Primzahl, wenn folgende beiden Bedingungen gelten: (1) Es gilt p > 1. (2) Für

Mehr

Seminar zur. Zahlentheorie. Prof. Dr. T. Wedhorn. Vortrag zum Thema. Euklidische und faktorielle Ringe Peter Picht. und.

Seminar zur. Zahlentheorie. Prof. Dr. T. Wedhorn. Vortrag zum Thema. Euklidische und faktorielle Ringe Peter Picht. und. Seminar zur Zahlentheorie Prof. Dr. T. Wedhorn Vortrag zum Thema Euklidische und faktorielle Ringe 13.11.2007 Peter Picht und Stephan Schmidt 4 Euklidische und faktorielle Ringe (A) Assoziierheit, Irreduziblität,

Mehr

10. Teilbarkeit in Ringen

10. Teilbarkeit in Ringen 70 Andreas Gathmann 10. Teilbarkeit in Ringen Ein wichtiges Konzept in Ringen, das ihr für den Fall des Ringes Z bereits aus der Schule kennt, ist das von Teilern also der Frage, wann und wie man ein Ringelement

Mehr

Lineare Algebra I 5. Tutorium Die Restklassenringe /n

Lineare Algebra I 5. Tutorium Die Restklassenringe /n Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll

Mehr

2 Teilbarkeit in Z. (a) Aus a b folgt a b und a b und a b und a b. (b) Aus a b und b c folgt a c.

2 Teilbarkeit in Z. (a) Aus a b folgt a b und a b und a b und a b. (b) Aus a b und b c folgt a c. 2 Teilbarkeit in Z Bis auf weiteres stehen kleine Buchstaben für ganze Zahlen. Teilbarkeit. Sei a 0. Eine Zahl b heißt durch a teilbar, wenn es ein q gibt mit b = qa. Wir sagen dann auch: a teilt b (ist

Mehr

Grundlagen der Arithmetik und Zahlentheorie

Grundlagen der Arithmetik und Zahlentheorie Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend

Mehr

3 Primzahlen. j,... stets Primzahlen. 3.1 Satz. Jedes a > 1 ist als Produkt von Primzahlen darstellbar (Primfaktorzerlegung. n=1

3 Primzahlen. j,... stets Primzahlen. 3.1 Satz. Jedes a > 1 ist als Produkt von Primzahlen darstellbar (Primfaktorzerlegung. n=1 3 Primzahlen Die Zahl 1 hat nur einen positiven Teiler, nämlich 1. Jede Zahl a > 1 hat mindestens zwei positive Teiler: 1 und a. Definition. Eine Primzahl ist eine Zahl a > 1, welche nur die Teiler 1 und

Mehr

Bsp. Euklidischer Algorithmus

Bsp. Euklidischer Algorithmus Bsp. Euklidischer Algorithmus Bsp: Berechne ggt(93, 42) mittels EUKLID. 93 2 42 = 9 42 4 9 = 6 9 1 6 = 3 6 2 3 = 0 D.h. ggt(93, 42) = 3. Durch Rücksubstitution erhalten wir die Bézout-Koeffizienten x,

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 17 Wir wollen für den Polynomring in einer Variablen über einem Körper zeigen, dass dort viele wichtige Sätze, die für den Ring

Mehr

Hauptsatz der Zahlentheorie.

Hauptsatz der Zahlentheorie. Hauptsatz der Zahlentheorie. Satz: Jede natürliche Zahl n N läßt sich als Produkt von Primzahlpotenzen schreiben, n = p r 1 1 p r 2 2... p r k k, wobei p j Primzahl und r j N 0 für 1 j k. Beweis: durch

Mehr

Danach arithmetische Fragestellungen wie vollkommene Zahlen und Dreieckszahlen der Griechen.

Danach arithmetische Fragestellungen wie vollkommene Zahlen und Dreieckszahlen der Griechen. Was ist Zahlentheorie? Ursprünglich ist die Zahlentheorie (auch: Arithmetik) ein Teilgebiet der Mathematik, welches sich allgemein mit den Eigenschaften der ganzen Zahlen und insbesondere mit den Lösungen

Mehr

1.2 Eigenschaften der ganzen Zahlen

1.2 Eigenschaften der ganzen Zahlen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 13 1.2 Eigenschaften der ganzen Zahlen Dieser Abschnitt handelt von den gewöhlichen ganzen Zahlen Z und ihren Verknüpfungen plus und mal. Man kann die natürlichen

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 3 Der euklidische Algorithmus Euklid (4. Jahrhundert v. C.) Definition 3.1. Seien zwei Elemente a, b (mit b 0) eines euklidischen Bereichs

Mehr

5 Grundlagen der Zahlentheorie

5 Grundlagen der Zahlentheorie 5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk

Mehr

Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen.

Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen. Seminarausarbeitung Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen. Andre Eberhard Mat. Nr. 25200607 5. November 207 Inhaltsverzeichnis

Mehr

Kapitel 2. Elementare Zahlentheorie Primfaktorzerlegung

Kapitel 2. Elementare Zahlentheorie Primfaktorzerlegung Kapitel 2. Elementare Zahlentheorie 2.1. Primfaktorzerlegung Menge der ganzen Zahlen Z = {..., 3, 2, 1, 0, 1, 2, 3,...} Addition Inverse Multiplikation Z Z Z, Z Z, Z Z Z, (a, b) a + b a a (a, b) a b Ausgezeichnete

Mehr

3. Der größte gemeinsame Teiler

3. Der größte gemeinsame Teiler Chr.Nelius: Zahlentheorie (SoSe 2016) 18 3. Der größte gemeinsame Teiler (3.1) DEF: a und b seien beliebige ganze Zahlen. a) Eine ganze Zahl t heißt gemeinsamer Teiler von a und b, wenn gilt t a und t

Mehr

10. Teilbarkeit in Ringen

10. Teilbarkeit in Ringen 70 Andreas Gathmann 10. Teilbarkeit in Ringen Ein wichtiges Konzept in Ringen, das ihr für den Fall des Ringes Z bereits aus der Schule kennt, ist das von Teilern also der Frage, wann und wie man ein Ringelement

Mehr

Zahlen. Vorlesung Mathematische Strukturen. Sommersemester Zahlen. Zahlen

Zahlen. Vorlesung Mathematische Strukturen. Sommersemester Zahlen. Zahlen Vorlesung Mathematische Strukturen Sommersemester 2016 Prof. Barbara König Übungsleitung: Christine Mika & Dennis Nolte Division mit Rest Seien a, b Z zwei ganze mit a 0. Dann gibt es eindeutig bestimmte

Mehr

2. Teilbarkeit. Euklidischer Algorithmus

2. Teilbarkeit. Euklidischer Algorithmus O. Forster: Einführung in die Zahlentheorie 2. Teilbarkeit. Euklidischer Algorithmus 2.1. Wir benutzen die folgenden Bezeichnungen: Z = {0, ±1, ±2, ±3,...} Menge aller ganzen Zahlen N 0 = {0, 1, 2, 3,...}

Mehr

Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Wo liegt der Unterschied zwischen dem 1. und 2. Binom? Wie nutzt man das 1./2. B

Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Wo liegt der Unterschied zwischen dem 1. und 2. Binom? Wie nutzt man das 1./2. B 90 Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Wo liegt der Unterschied zwischen dem 1. und 2. Binom? Wie nutzt man das 1./2. Binom zum Kopfrechnen? Für was kann man das 3. Binom

Mehr

Der chinesische Restsatz mit Anwendung

Der chinesische Restsatz mit Anwendung Der chinesische Restsatz mit Anwendung Nike Garath n.garath@gmx.de Martrikelnummer: 423072 Seminar: Verschlüsslungs- und Codierungstheorie Dozent: Dr. Thomas Timmermann Sommersemester 2017 Inhaltsverzeichnis

Mehr

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3 Das vorliegende Skript beschäftigt sich mit dem Thema Rechnen mit Kongruenzen. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft (MSG) im Jahr 2013. Die vorliegende

Mehr

Kapitel 2. Ganze Zahlen. 2.1 Teilbarkeit

Kapitel 2. Ganze Zahlen. 2.1 Teilbarkeit Kapitel 2 Ganze Zahlen In diesem Kapitel setzen wir voraus, dass die Menge Z der ganzen Zahlen, ihre Ordnung und die Eigenschaften der Addition und Multiplikation ganzer Zahlen dem Leser vertraut sind.

Mehr

WS 2016/17 Torsten Schreiber

WS 2016/17 Torsten Schreiber 104 Diese Fragen sollten Sie ohne Skript beantworten können: Was bedeutet die Rechtseindeutigkeit einer Relation? Was weiß man von einer surjektiven Funktion? Wann ist eine Funktion total / partiell? Welche

Mehr

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg 1 Mathematisches Institut II 06.07.004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Vorlesung 5: Elementare Zahlentheorie: Teilbarkeit Primfaktorzerlegung

Mehr

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen)

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) WS 2015/16 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Lösungen der Aufgaben

Lösungen der Aufgaben Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.

Mehr

5. Der größte gemeinsame Teiler

5. Der größte gemeinsame Teiler Chr.Nelius: Zahlentheorie (SoSe 2017) 22 5. Der größte gemeinsame Teiler (5.1) DEF: a und b seien beliebige ganze Zahlen. a) Eine ganze Zahl t heißt gemeinsamer Teiler von a und b, wenn gilt t a und t

Mehr

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe.

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. Das heißt, um den ggt von zwei 1000-Bit-Zahlen zu ermitteln,

Mehr

Diskrete Strukturen. Vorlesung 15: Arithmetik. 5. Februar 2019

Diskrete Strukturen. Vorlesung 15: Arithmetik. 5. Februar 2019 1 Diskrete Strukturen Vorlesung 15: Arithmetik 5. Februar 2019 Nächste Termine Modul Diskrete Strukturen Hörsaalübung (Mo. 9:15) Vorlesung (Di. 17:15) 4.2. Tutorium (Klausurvorbereitung) 11.2. 12.2. 5.2.

Mehr

4.21 Die zahlentheoretischen Bücher VII, VIII und IX der Elemente

4.21 Die zahlentheoretischen Bücher VII, VIII und IX der Elemente 4.21 Die zahlentheoretischen Bücher VII, VIII und IX der Elemente Buch VII der Elemente behandelt auch heute noch aktuelle Begriffe wie Teiler, Vielfache, ggt, kgv und Primzahl und ihre Eigenschaften.

Mehr

Fibonacci-Zahlen und goldener Schnitt

Fibonacci-Zahlen und goldener Schnitt Fibonacci-Zahlen und goldener Schnitt Suche eine Darstellung der Form F n = x n für reelle Zahl x > 0. Aus der definierenden Gleichung folgt sofort x 2 = x + 1. Dann liefert die p-q-formel: x 1,2 = 1 2

Mehr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen

Mehr

Interim. Kapitel Einige formale Definitionen

Interim. Kapitel Einige formale Definitionen Kapitel 1 Interim Da ich keine Infos über Titel und Nummerierungen anderer Kapitel dieser Vorlesung habe, nenne ich dies einfach mal Kapitel 1. 17.11.04 1.1 Einige formale Definitionen Wir rekapitulieren

Mehr

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen Universität Paderborn WS 2007/2008 Warburger Str. 100 33098 Paderborn Seminararbeit zur Zahlentheorie Die Gaußschen Zahlen Tatjana Linkin, Svetlana Krez 20. November 2007 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis

Mehr

3. Diskrete Mathematik

3. Diskrete Mathematik Diophantos von Alexandria um 250 Georg Cantor 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,

Mehr

(c) x = a 2 b = ( ) ( ) = Anzahl der Teiler von x: τ(x) = (1 + 1) (3 + 1) (1 + 1) (7 + 1) = 128

(c) x = a 2 b = ( ) ( ) = Anzahl der Teiler von x: τ(x) = (1 + 1) (3 + 1) (1 + 1) (7 + 1) = 128 Aufgabe 1 Wir betrachten die beiden Zahlen a = 57 101 3 und b = 3 57 79 101 (4+2+4=10 Punkte) ( Es gilt: 3, 57, 79, 101 P ) Hier liegt ein Fehler in der Aufgabenstellung vor, denn wegen 57 = 3 19 ist 57

Mehr

Einführung in die Algebra. Algebra I. Alfred Geroldinger. Franz Halter-Koch. und. und. basierend auf dem Skriptum von

Einführung in die Algebra. Algebra I. Alfred Geroldinger. Franz Halter-Koch. und. und. basierend auf dem Skriptum von Einführung in die Algebra und Algebra I basierend auf dem Skriptum von Alfred Geroldinger und Franz Halter-Koch i ii Vorbemerkungen Wir bezeichnen mit N = {0, 1, 2, 3,... } die Menge der natürlichen Zahlen

Mehr

3. Vorlesung. Arithmetische Theorien.

3. Vorlesung. Arithmetische Theorien. 3. Vorlesung. Arithmetische Theorien. In dieser Vorlesung wollen wir uns mit dem Begriff des Rechnens befassen und zwar mit dem angewandten als auch dem formalen Rechnen. Wir wissen dass die griechischen

Mehr

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Clemens Heuberger 22. September 2014 Inhaltsverzeichnis 1 Dezimaldarstellung 1 2 Teilbarkeit

Mehr

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit Schweizer Mathematik-Olympiade smo osm Zahlentheorie I - Tipps & Lösungen Aktualisiert: 15. Oktober 2016 vers. 1.2.0 1 Teilbarkeit Einstieg 1.1 Zeige, dass 900 ein Teiler von 10! ist. Tipp: Schreibe 900

Mehr

Form der Äquivalenzklassen

Form der Äquivalenzklassen Form der Äquivalenzklassen Anmerkung: Es gilt a = a ± m = a ± 2m =... = a + km mod m für alle k Z. Wir schreiben auch {x Z x = a + mk, k Z} = a + mz. Es gibt m verschiedene Äquivalenzklassen modulo m:

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 21 Ein guter Schüler lernt auch bei einem schlechten Lehrer... Kleinstes gemeinsames Vielfaches und größter gemeinsamer Teiler

Mehr

Kapitel 2. Kapitel 2 Natürliche und ganze Zahlen

Kapitel 2. Kapitel 2 Natürliche und ganze Zahlen Natürliche und ganze Zahlen Inhalt 2.1 2.1 Teiler 12 12 60 60 2.2 2.2 Primzahlen 2, 2, 3, 3, 5, 5, 7, 7, 11, 11, 13, 13,...... 2.3 2.3 Zahldarstellungen 17 17 = (1 (10 0 0 1) 1) 2 2 2.4 2.4 Teilbarkeitsregeln

Mehr

Vorlesung Diskrete Strukturen Die natürlichen Zahlen

Vorlesung Diskrete Strukturen Die natürlichen Zahlen Vorlesung Diskrete Strukturen Die natürlichen Zahlen Bernhard Ganter WS 2009/10 Alles ist Zahl? Wenn in der modernen Mathematik alles auf Mengen aufgebaut ist, woher kommen dann die Zahlen? Sind Zahlen

Mehr

10. Teilbarkeit in Ringen

10. Teilbarkeit in Ringen 10. Teilbarkeit in Ringen 67 10. Teilbarkeit in Ringen Ein wichtiges Konzept in Ringen, das ihr für den Fall des Ringes Z bereits aus der Schule kennt, ist das von Teilern also der Frage, wann und wie

Mehr

1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl

1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl Westfälische Wilhelms-Universität Münster Mathematik Sommersemester 2017 Seminar: Verschlüsselungs- und Codierungstheorie Leitung: Thomas Timmermann 1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl

Mehr

Vorkurs Mathematik. Vorlesung 2. Primzahlen

Vorkurs Mathematik. Vorlesung 2. Primzahlen Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Vorkurs Mathematik Vorlesung 2 Primzahlen Das Sieb des Eratosthenes liefert eine einfache Methode, eine Liste von Primzahlen unterhalb einer bestimmten Größe

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2018/2019 Grundkurs Mathematik I Vorlesung 20 Wir kehren zur Thematik der Primzahlen und der Primfaktorzerlegung einer natürlichen Zahl zurück. Bisher kennen wir nur die

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 9. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 9. Vorlesung 1 / 17 Themen

Mehr

2. Teil: Diskrete Strukturen

2. Teil: Diskrete Strukturen 2. Teil: Diskrete Strukturen Kenntnis der Zahlenbereiche N, Z, Q, R, C setzen wir voraus. Axiomatische Einführung von N über Peano-Axiome. Z aus N leicht abzuleiten. Wie wird Q definiert? R ist der erste

Mehr

Vorlesung Diskrete Strukturen Die natürlichen Zahlen

Vorlesung Diskrete Strukturen Die natürlichen Zahlen Vorlesung Diskrete Strukturen Die natürlichen Zahlen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung

Mehr

b liegt zwischen a und c.

b liegt zwischen a und c. 2 DIE ANORDNUNGSAXIOME 5 (2.4) a, b, c R : (a < b 0 < c) ac < bc Monotoniegesetz der Multiplikation Bezeichnungen a > b : b < a (> wird gelesen: größer als ) a b : a < b oder a = b a b : a > b oder a =

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Mathematik und ihre Didaktik WS 02/03 W. Neidhardt Übung 1. Übungen zu Mathematik und Didaktik I

Mathematik und ihre Didaktik WS 02/03 W. Neidhardt Übung 1. Übungen zu Mathematik und Didaktik I W. Neidhardt Übung 1 Übungen zu Mathematik und Didaktik I Plenumsübung: Einfache Algorithmen mit JAVAscript 1 5 Beweisen Sie mit Hilfe des Prinzips vom kleinsten Element, dass 5 irrational ist. 2 Zahlen

Mehr

Dr. Regula Krapf Sommersemester Beweismethoden

Dr. Regula Krapf Sommersemester Beweismethoden Vorkurs Mathematik Dr. Regula Krapf Sommersemester 2018 Beweismethoden Aufgabe 1. Überlegen Sie sich folgende zwei Fragen: (1) Was ist ein Beweis? (2) Was ist die Funktion von Beweisen? Direkte Beweise

Mehr

Vortrag 4 - Primärzerlegung

Vortrag 4 - Primärzerlegung Vortrag 4 - Primärzerlegung von Christian Straßberger Beispiel 4.1: Primfaktorzerlegung als Primärzerlegung Sei n Z : n = ±p d1 1 pd2 2 pdr r, wobei p i Primzahlen, d i N. Dann ist (n) = (p d1 1 ) (pdr

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 80 Andreas Gathmann 11. Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als ein Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 12 Man muss auch teilen können. Teilbarkeitseigenschaften Wir besprechen nun die Eigenschaft, dass eine natürliche Zahl eine

Mehr

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung )

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung ) Institut für Analysis und Scientific Computing TU Wien W. Auzinger WS 05/6 A N A L Y S I S I F Ü R T P H, U E (03.088). Übungstest (FR, 6..05) (mit Lösung ) Aufgabe. a ) Wandeln Sie die periodische Dezimalzahl

Mehr

Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt.

Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt. 1 1 Funktionen 1.1 Grundlegende Zahlenmengen Georg Cantor (1845-1918) hat den Begriff der Menge eingeführt. Man versteht darunter die Zusammenfassung einzelner Dinge, welche Elemente genannt werden, zu

Mehr

Kanonische Primfaktorzerlegung

Kanonische Primfaktorzerlegung Kanonische Primfaktorzerlegung Jede natürliche Zahl Form kann auf eindeutige Weise in der geschrieben werden, wobei, für und Primzahlen sind. Dies ist die kanonische Primfaktorzerlegung von. Mathematik

Mehr

1 Modulare Arithmetik

1 Modulare Arithmetik $Id: modul.tex,v 1.10 2012/04/12 12:24:19 hk Exp $ 1 Modulare Arithmetik 1.2 Euklidischer Algorithmus Am Ende der letzten Sitzung hatten wir den größten gemeinsamen Teiler zweier ganzer Zahlen a und b

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Ringe. Kapitel Einheiten

Ringe. Kapitel Einheiten Kapitel 8 Ringe Die zahlreichen Analogien zwischen Matrizenringen und Endomorphismenringen (beides sind zugleich auch Vektorräume) legen es nahe, allgemeinere ringtheoretische Grundlagen bereitzustellen,

Mehr

Lösung zur 13. Hausübung Algebraische Strukturen (keine Abgabe)

Lösung zur 13. Hausübung Algebraische Strukturen (keine Abgabe) TU Kaiserslautern Fachbereich Mathematik Prof. Dr. Andreas Gathmann Inga Schwabrow Lösung zur 13. Hausübung Algebraische Strukturen (keine Abgabe) Aufgabe 1. Wintersemester 2016/17 (1 + i) (1 i) 3 (2 +

Mehr

1.2. Teilbarkeit und Kongruenz

1.2. Teilbarkeit und Kongruenz 1.2. Teilbarkeit und Kongruenz Aus den Begriffen der Teilbarkeit bzw. Teilers ergeben sich die Begriffe Rest und Restklassen. Natürliche Zahlen, die sich nur durch sich selbst oder die 1 dividieren lassen,

Mehr

Primzahlen und Primfaktorzerlegung

Primzahlen und Primfaktorzerlegung Primzahlen und Primfaktorzerlegung Yasin Hamdan Inhaltsverzeichnis 1 Das Sieb des Eratosthenes 1 2 Primfaktorzerlegung 4 2.1 Existenz und Eindeutigkeit.......................... 4 2.2 Hasse-Diagramme...............................

Mehr

Alternativ kann man auch die Differenz a n+1 a n betrachten:

Alternativ kann man auch die Differenz a n+1 a n betrachten: Aufgabe 1 Folgen auf Monotonie und Beschränktheit prüfen. a) Beschränktheit? Die Folge ( ) n N mit = n + ( 1) n ist nach unten beschränkt, denn es gilt n + ( 1) n n 1 1 für alle n N. Allerdings ist die

Mehr

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0.

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0. Def 4 Eine Menge K mit zwei Abbildungen + : K K K und : K K K (heißen Addition und Multiplikation; wir werden a b bzw a+b statt (a,b), +(a,b) schreiben) ist ein kommutativer Ring, falls: (R1) (K, +) ist

Mehr

1 Aufbau des Zahlensystems

1 Aufbau des Zahlensystems 1 Aufbau des Zahlensystems 1.1 Die Menge N der natürlichen Zahlen 1.1.1 Definition Die mathematischen Eigenschaften dieser durch das Abzählen von Gegenständen motivierten Zahlenmenge lassen sich auf die

Mehr

KAPITEL 2. Zahlen Natürlichen Zahlen

KAPITEL 2. Zahlen Natürlichen Zahlen KAPITEL 2 Zahlen 21 Natürlichen Zahlen Leopold Kronecker (7121823-29121891: Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk (1886 N := {0, 1, 2, 3, 4, 5, } Wir können addieren

Mehr

1 Grundbegriffe. Algebra I 2. April 2008 c Rudolf Scharlau,

1 Grundbegriffe. Algebra I 2. April 2008 c Rudolf Scharlau, Algebra I 2. April 2008 c Rudolf Scharlau, 2002 2008 1 1 Grundbegriffe Einige grundlegende Begriffe der Algebra, wie Gruppe, Körper, Homomorphismus und weitere, sind bereits aus den Grundvorlesungen über

Mehr

Kanonische Primfaktorzerlegung

Kanonische Primfaktorzerlegung Mathematik I für Informatiker Zahlen p. 1 Kanonische Primfaktorzerlegung Jede natürliche Zahl n kann auf eindeutige Weise in der Form n = p α 1 1 pα 2 2... pα k k geschrieben werden, wobei k N 0, α i N

Mehr

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 5, Wintersemester vom 21. Januar 2006

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 5, Wintersemester vom 21. Januar 2006 Prof. E.-W. Zink Institut für Mathematik Humboldt-Universität zu Berlin Elemente der Algebra und Zahlentheorie Musterlösung, Serie 5, Wintersemester 2005-06 vom 21. Januar 2006 1. Sei (N, v) Peano-Menge

Mehr

3.5 Kryptographie - eine Anwendung der Kongruenzrechnung

3.5 Kryptographie - eine Anwendung der Kongruenzrechnung 1 3.5 Kryptographie - eine Anwendung der Kongruenzrechnung Das Wort Kryptographie leitet sich aus der griechischen Sprache ab, nämlich aus den beiden Worten κρυπτ oς(kryptos)=versteckt, geheim und γραϕɛιν(grafein)=schreiben.

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** M. Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2004 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen IN 0 := IN {0}{0, 1, 2, 3, 4,...} Z := {..., 2,

Mehr

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule Berufsfeldbezogenes Fachseminar - Zahlentheorie Lisa Laudan Prof. Dr. Jürg Kramer Wintersemester 2014/2015 Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule 1.1

Mehr

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st Primzahlen Herbert Koch Mathematisches Institut Universität Bonn 12.08.2010 1 Die Primfaktorzerlegung Wir kennen die natürlichen Zahlen N = 1, 2,..., die ganzen Zahlen Z, die rationalen Zahlen (Brüche

Mehr

Zahlentheorie I. smo osm. Thomas Huber. Inhaltsverzeichnis. Aktualisiert: 1. August 2016 vers Teilbarkeit 2.

Zahlentheorie I. smo osm. Thomas Huber. Inhaltsverzeichnis. Aktualisiert: 1. August 2016 vers Teilbarkeit 2. Schweizer Mathematik-Olympiade smo osm Zahlentheorie I Thomas Huber Aktualisiert: 1. August 2016 vers. 1.0.0 Inhaltsverzeichnis 1 Teilbarkeit 2 2 ggt und kgv 3 3 Abschätzungen 6 1 Teilbarkeit Im Folgenden

Mehr

Elementare Zahlentheorie

Elementare Zahlentheorie Euklid-1 Euklid sche Ringe (Das Rechnen in Z und in K[T]). Ist K ein Körper und f K[T] ein Polynom, so nennt man f normiert, falls f 0 gilt und der höchste Koeffizient von f gleich 1 ist. (Natürlich gilt:

Mehr

Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein.

Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein. Klausur zur Vorlesung Zahlentheorie 21. Juli 2010 12 Uhr 15 14 Uhr 00 Ruhr-Universität Bochum PD. Dr. Claus Mokler Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein. Name,

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger 2009 ***

Übungen zum Vorkurs Mathematik für Studienanfänger 2009 *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2009 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 8 Grundlagen der Mathematik Präsenzaufgaben (P13) Primfaktorzerlegungen Die Primfaktorzerlegungen lauten: a) 66 =

Mehr

1 Der Ring der ganzen Zahlen

1 Der Ring der ganzen Zahlen 1 Der Ring der ganzen Zahlen Letztendlich wird die Addition und Multiplikation in endlichen Körpern auf die Addition und Multiplikation von ganzen Zahlen zurückgeführt. Deswegen müssen wir die an sich

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie Prof. Dr. Sebastian Iwanowski DM4 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 4: Zahlentheorie Beutelspacher 5 Lang 7, Biggs 20, 22, 23 (jeweils teilweise,

Mehr

In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0.

In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0. Kapitel 5: Die Einheitengruppe von Z/Z und Primitivwurzeln modulo In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0. 16

Mehr

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen Steven Klein 04.01.017 1 In dieser Ausarbeitung konstruieren wir die reellen Zahlen aus den rationalen Zahlen. Hierzu denieren wir zunächst

Mehr