Algorithmen in Zellularautomaten

Größe: px
Ab Seite anzeigen:

Download "Algorithmen in Zellularautomaten"

Transkript

1 Algorithmen in Zellularautomaten 12. Thomas Worsch Fakultät für Informatik Institut für Theoretische Informatik Sommersemester 2018

2 Ziele Diffusion weitere Beispiele: Wellen, BZ-Reaktion, Reaktions-Diffusions-Systeme Einsparung von Zuständen bei stochastischen ZA 2 / 36

3 Taylorentwicklung Überblick Taylorentwicklung Von Taylor zu ZA ZA für Diffusion ZA für Wellenausbreitung Rundungsfehler und probabilistische ZA 3 / 36

4 Taylorentwicklung Satz von Taylor Es sei f eine reelle Funktion einer Veränderlichen, die auf einem Intervall I α =]x 0 α; x 0 + α[ mindestens (n + 1) mal stetig differenzierbar ist. Dann gibt es für jedes x I α ein θ [0; 1], so dass f (x) = n k=0 f (k) (x 0 ) (x x 0 ) k + R n (x, x 0, θ) k! mit R n (x, x 0, θ) = f (n+1) (x 0 + θ(x x 0 )) (x x 0 ) n+1. (n + 1)! 4 / 36

5 Taylorentwicklung Taylorentwicklung (eine Veränderliche) Ist f auf einem Intervall I α =]x 0 α; x 0 + α[ unendlich oft stetig differenzierbar, und gilt für alle x I α und alle θ [0; 1] dann gilt für alle x = x 0 + x I α : lim R n(x, x 0, θ) = 0, n f (x 0 + x) = f (x 0 ) + x f (x 0 ) + ( x)2 f (x 0 ) + 2 ( x) k = f (k) (x 0 ) k! k=0 ( ( 1 = x d ) ) k f (x 0 ). k! dx k=0 5 / 36

6 Taylorentwicklung Taylorentwicklung (zwei Veränderliche) Ist f (x,y) auf I α = { (x,y) (x x 0 ) 2 + (y y 0 ) 2 < α } unendlich oft stetig differenzierbar, und ist lim n R n (..., θ) = 0, dann gilt für alle ( x, y) mit ( x) 2 + ( y) 2 < α: f (x 0 + x,y 0 + y) = = r,s 0 k=0 1 k! ( x) r ( y) s r +s f x r y s (x 0,y 0 ) r!s! ( ( x x + y y ) k f ) (x 0,y 0 ). 6 / 36

7 Taylorentwicklung Nablaoperator Nützliche Skalarprodukte: := ( x ) y 2 = = 2 x y 2 x = ( x y) ( x ) = x y x + y y 7 / 36

8 Taylorentwicklung Bemerkung Mit dem lässt sich die Taylorentwicklung schreiben als: f (x + x) = k=0 1 ( ) ( x ) k f (x) k! 8 / 36

9 Taylorentwicklung Abkürzungen Es seien t, x und y festgelegt. (T f )(t, x,y) := f (t + t, x,y) (T f )(t, x,y) := f (t t, x,y) (X f )(t, x,y) := f (t, x + x,y) (X f )(t, x,y) := f (t, x x,y) (Y f )(t, x,y) := f (t, x,y + y) (Y f )(t, x,y) := f (t, x,y y) (I f )(t, x,y) := f (t, x,y) 9 / 36

10 Von Taylor zu ZA Überblick Taylorentwicklung Von Taylor zu ZA ZA für Diffusion ZA für Wellenausbreitung Rundungsfehler und probabilistische ZA 10 / 36

11 Von Taylor zu ZA Bezug zu Zellularautomaten Diskretisierung: Bringe Werte f (t, x,y) mit den Zuständen von Zellen in Verbindung: Fixiere Werte t 0, x 0, y 0, t, x und y und definiere: д : N 0 Z Z R (t, i, j) f (t 0 + t t, x 0 + i x,y 0 + j y) Speichere Näherung von д(t, i, j) in Zelle (i, j). Aufgabe: Finde Überführungsfunktion, so dass nach einmaliger Anwendung in Zelle (i, j) Wert д(t + 1, i, j) gespeichert. Probleme: Warum soll das überhaupt gehen? Fehler durch Näherungen 11 / 36

12 Von Taylor zu ZA Bezug zu Zellularautomaten Diskretisierung: Bringe Werte f (t, x,y) mit den Zuständen von Zellen in Verbindung: Fixiere Werte t 0, x 0, y 0, t, x und y und definiere: д : N 0 Z Z R (t, i, j) f (t 0 + t t, x 0 + i x,y 0 + j y) Speichere Näherung von д(t, i, j) in Zelle (i, j). Aufgabe: Finde Überführungsfunktion, so dass nach einmaliger Anwendung in Zelle (i, j) Wert д(t + 1, i, j) gespeichert. Probleme: Warum soll das überhaupt gehen? Fehler durch Näherungen 11 / 36

13 Von Taylor zu ZA Bezug zu Zellularautomaten Diskretisierung: Bringe Werte f (t, x,y) mit den Zuständen von Zellen in Verbindung: Fixiere Werte t 0, x 0, y 0, t, x und y und definiere: д : N 0 Z Z R (t, i, j) f (t 0 + t t, x 0 + i x,y 0 + j y) Speichere Näherung von д(t, i, j) in Zelle (i, j). Aufgabe: Finde Überführungsfunktion, so dass nach einmaliger Anwendung in Zelle (i, j) Wert д(t + 1, i, j) gespeichert. Probleme: Warum soll das überhaupt gehen? Fehler durch Näherungen 11 / 36

14 Von Taylor zu ZA Rechnung Für q {t, x,y}, q { t, x, y} und Q {T, X, Y } liefert die Taylorentwicklung: Q f = f + q f q + ( q)2 2 f 2 q 2 + ( q)3 3 f 3! q 3 + Q f = f q f q + ( q)2 2 f 2 q 2 ( q)3 3 f 3! q 3 ± 12 / 36

15 Von Taylor zu ZA Näherung für erste Ableitung (1) Also: Q f = f + q f q + ( q)2 2 f 2 q 2 + ( q)3 3 f 3! q 3 + O(( q)4 ) Q f f + q f q f q Q I q f ( Fehler: O( q) ) 13 / 36

16 Von Taylor zu ZA Näherung für erste Ableitung (2) Oder: Q f = f + q f q + ( q)2 2 f 2 q 2 + ( q)3 3 f 3! q 3 + O(( q)4 ) Q f = f q f q + ( q)2 2 f 2 q 2 ( q)3 3 f 3! q 3 + O(( q)4 ) Q f Q f = 2 q f + O(( q) 3 ) f q q Q Q 2 q f ( Fehler: O(( q) 2 ) ) 14 / 36

17 Von Taylor zu ZA Näherung für zweite Ableitung Analog: Q f + Q f = 2f + ( q) 2 2 f q 2 + O(( q)4 ) 2 f q 2 Q 2I + Q ( q) 2 f ( Fehler: O(( q) 2 ) ) Q I q I Q q q f 15 / 36

18 ZA für Diffusion Überblick Taylorentwicklung Von Taylor zu ZA ZA für Diffusion ZA für Wellenausbreitung Rundungsfehler und probabilistische ZA 16 / 36

19 ZA für Diffusion Beispiel (Diffusion) Es sei f eine Funktion mit f = D 2 f, also ( f 2 ) t = D f x f y 2 Einsetzen der Näherungen für die Ableitungen ergibt: T I t Auflösen nach T f... f D X 2I + X ( x) 2 f + D Y 2I + Y ( y) 2 f 17 / 36

20 ZA für Diffusion Beispiel (Diffusion) Es sei f eine Funktion mit f = D 2 f, also ( f 2 ) t = D f x f y 2 Einsetzen der Näherungen für die Ableitungen ergibt: T I t Auflösen nach T f... f D X 2I + X ( x) 2 f + D Y 2I + Y ( y) 2 f 17 / 36

21 ZA für Diffusion Auflösen nach T f liefert die Näherung f (t + t, x,y) f (t, x,y) +D t +D t (f (t, x + x,y) f (t, x,y)) (f (t, x,y) f (t, x x,y)) ( x) 2 (f (t, x,y + y) f (t, x,y)) (f (t, x,y) f (t, x,y y)) ( y) 2 18 / 36

22 ZA für Diffusion Weniger fehlerträchtig: also: f (t + t, x,y) T T 2 t f (t t, x,y) f D X 2I + X ( x) 2 f + D Y 2I + Y ( y) 2 f +2D t +2D t (f (t, x + x,y) f (t, x,y)) (f (t, x,y) f (t, x x,y)) ( x) 2 (f (t, x,y + y) f (t, x,y)) (f (t, x,y) f (t, x,y y)) ( y) 2 19 / 36

23 ZA für Diffusion Diffusion durch Mittelwertbildung Es sei N = M r (2), insbesondere also n N = n N. Es sei x = y. Betrachte f (x) und f (x) := 1 N f (x + xn). n N Taylorentwicklung für die f (x + xn) liefert f (x) = = 1 N k=0 n N k=0 1 1 N k! 1 ( ) ( xn ) k f (x) k! n N ( ) ( xn ) k f (x) Terme für ungerades k fallen weg. 20 / 36

24 ZA für Diffusion Wegen der Symmetrie von N erhält man näherungsweise f (x) f (x) N = f (x) + ( x)2 2 N ( ( xn ) 2 f ) (x) n N ( (n ) 2 f ) (x) n N Nach einiger Rechnung ergibt sich wegen N = M (2) r : (n ) 2 = n N (4r + 2)r(r + 1)(2r + 1) / 36

25 ZA für Diffusion Somit: f (x) f (x) + ( x)2 2(2r + 1) 2 r(r + 1) ( 2 2(2r + 1) 2 f ) (x) 6 = f (x) + ( x) 2r(r + 1) ( 2 f )(x) 6 beziehungsweise ( 2 f )(x) 6 ( x) 2 r(r + 1) ( f (x) f (x)) 22 / 36

26 ZA für Diffusion Folglich: Für T f f + t f t = f + td 2 f ( ) 6D t 6D t 1 ( x) 2 f + r(r + 1) ( x) 2 f r(r + 1) 6D t ( x) 2 = 1 ergibt sich T f f. r(r + 1) Mittelwertbildung approximiert Diffusion mit D = ( x)2 t r(r + 1) / 36

27 ZA für Diffusion Algorithmus (effiziente Berechnung von Mittelwerten) f beliebig; д = N f Im Eindimensionalen: Also: д(x) д(x 1) = = i=r i= r i=r f (x + i) f (x + i) i= r i=r i= r i=r 1 i= r 1 = f (x + r) f (x r 1) f (x 1 + i) f (x + i) д(x) = д(x 1) + f (x + r) f (x r 1) Bei sequenzieller Berechnung im Mittel nur 2 Additionen statt 2r 24 / 36

28 ZA für Diffusion Algorithmus (effiziente Berechnung von Mittelwerten) f beliebig; д = N f Im Eindimensionalen: Also: д(x) д(x 1) = = i=r i= r i=r f (x + i) f (x + i) i= r i=r i= r i=r 1 i= r 1 = f (x + r) f (x r 1) f (x 1 + i) f (x + i) д(x) = д(x 1) + f (x + r) f (x r 1) Bei sequenzieller Berechnung im Mittel nur 2 Additionen statt 2r 24 / 36

29 ZA für Diffusion Effiziente Berechnung von Mittelwerten 2 Im Zweidimensionalen: h(x, y) = д(x, y) = r f (x,y + j) j= r r h(x + i,y) i= r Dann ist д = N f. Im Durchschnitt nur 4 Additionen statt (2r + 1) / 36

30 ZA für Wellenausbreitung Überblick Taylorentwicklung Von Taylor zu ZA ZA für Diffusion ZA für Wellenausbreitung Rundungsfehler und probabilistische ZA 26 / 36

31 ZA für Wellenausbreitung Beispiel (Wellenausbreitung) Es sei f eine Funktion mit f = c 2 2 f, also 2 f t 2 = c2 ( 2 ) f x f y 2 Wie kommt man von 2 f t 2 zu einem Näherungswert für T f? 27 / 36

32 Tд д + t д t = д + t 2 f t 2 28 / 36 ZA für Wellenausbreitung Beispiel (Wellenausbreitung 2) Mögliche Approximierungen: Oder mit д = f t : T f 2f T f + ( t) 2 2 f t 2 T f f + t f t f + tд Tд д + t д t = д + t 2 f t 2 Oder:

33 ZA für Wellenausbreitung Beispiel (Belousov-Zhabotinski-Reaktion) chemische Uhr, räumliche Strukturen (z.b. Spiralen) Oregonator -Beschreibung: du dt dv dt dw dt = k 1 av k 2 uv + k 3 au k 4 u 2 = k 1 av k 2 uv + f k 5 w = 2k 3 au k 5 w siehe auch (ab Minute 18) 29 / 36

34 ZA für Wellenausbreitung Beispiel (Reaktions-Diffusions-Systeme) Allgemeines Schema: f 1 t f 2 t f k t = F 1 (f 1, f 2,..., f k ) + D 1 2 f 1 = F 2 (f 1, f 2,..., f k ) + D 2 2 f 2. = F k (f 1, f 2,..., f k ) + D k 2 f k Beispiel (RDS von Turing) F 1 (f 1, f 2 ) = f 1 f 2 f 1 12 F 2 (f 1, f 2 ) = f 1 f / 36

35 Rundungsfehler und probabilistische ZA Überblick Taylorentwicklung Von Taylor zu ZA ZA für Diffusion ZA für Wellenausbreitung Rundungsfehler und probabilistische ZA 31 / 36

36 Rundungsfehler und probabilistische ZA Rundungsfehler Durchschnittsbildung in H (1) 1 -Nachbarschaft mit Abrunden: / 36

37 Rundungsfehler und probabilistische ZA Rundungsfehler 2 kaufmännisches Runden hilft nicht: Ausweg Manchmal hilft geschicktes zufälliges Runden (Weimar und Boon, 1994) 33 / 36

38 Rundungsfehler und probabilistische ZA Rundungsfehler 2 kaufmännisches Runden hilft nicht: Ausweg Manchmal hilft geschicktes zufälliges Runden (Weimar und Boon, 1994) 33 / 36

39 Rundungsfehler und probabilistische ZA Probabilistisches Runden Es sei k N und ε [0; 1[. Einfache Variante des probabilistischen Rundens von k + ε: mit Wahrscheinlichkeit ε runde auf k + 1 mit Wahrscheinlichkeit 1 ε runde auf k Es ist ε(k + 1) + (1 ε)k = k + ε. Aufwendige Variante: Wähle Zahlen k i und Wahrscheinlichkeiten p i (ε), so dass i p i (ε) = 1 ist und i k i p i (ε) = k + ε. Runde mit Wahrscheinlichkeit p i (ε) auf k i. 34 / 36

40 Rundungsfehler und probabilistische ZA Definition (probabilistischer/stochastischer ZA) lokale Überführungsfunktion von der Form δ : Q N [0; 1] Q δ(l)(q) ist die Wahrscheinlichkeit, dass eine Zelle mit lokaler Konfiguration l in Zustand q übergeht. Für alle l Q N muss gelten: δ(l)(q) = 1 q Q Verschiedene Zellen mit gleicher lokaler Konfiguration können in einem Schritt in verschiedene Nachfolgezustände übergehen. 35 / 36

41 Zusammenfassung Geeignete Diskretisierung partieller Differentialgleichungen liefert manchmal Zellularautomaten, die gute Näherungen sind. Manchmal reichen abgebrochenen Taylorentwicklungen. Rundungsfehler kann man manchmal durch probabilistisches Runden (in entsprechenden Zellularautomaten) verkleinern. 36 / 36

Algorithmen in Zellularautomaten

Algorithmen in Zellularautomaten Algorithmen in Zellularautomaten 13. ZA-Modelle mit wenigen Zuständen Thomas Worsch Fakultät für Informatik Institut für Theoretische Informatik Sommersemester 2018 Ziele einige (sehr) einfache ZA als

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Übungen zur Analysis 2

Übungen zur Analysis 2 Mathematisches Institut der Universität München Prof. Dr. Franz Merkl Sommersemester 2013 Blatt 10 21.06.2013 Übungen zur Analysis 2 10.1 Betrachten Sie die Funktion f : R 2 R, f(x, y) =x 2 + y 2, den

Mehr

Algorithmen in Zellularautomaten. Thomas Worsch Institut für Theoretische Informatik Karlsruher Institut für Technologie

Algorithmen in Zellularautomaten. Thomas Worsch Institut für Theoretische Informatik Karlsruher Institut für Technologie Algorithmen in Zellularautomaten Thomas Worsch Institut für Theoretische Informatik Karlsruher Institut für Technologie Sommersemester 08 Grundlegende Definitionen. Beispiel. Betrachten wir die folgende

Mehr

Algorithmen in Zellularautomaten

Algorithmen in Zellularautomaten Algorithmen in Zellularautomaten 9. Sortieren in zweidimensionalen ZA Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Sommersemester 2017 Ziele Problemstellung: Sortieren von

Mehr

Algorithmen in Zellularautomaten

Algorithmen in Zellularautomaten Algorithmen in Zellularautomaten Algorithmen in Zellularautomaten 2. Berechnungsmächtigkeit von Zellularautomaten Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Sommersemester

Mehr

Taylorentwicklung von Funktionen einer Veränderlichen

Taylorentwicklung von Funktionen einer Veränderlichen Taylorentwicklung von Funktionen einer Veränderlichen 17. Januar 2013 KAPITEL 1. MATHEMATISCHE GRUNDLAGEN 1 Kapitel 1 Mathematische Grundlagen 1.1 Stetigkeit, Differenzierbarkeit und C n -Funktionen Der

Mehr

Probeklausur zur Analysis 2, SoSe 2017

Probeklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 21717 Fakultät 4 - Mathematik und Naturwissenschaften Prof N V Shcherbina Dr T P Pawlaschyk wwwkanauni-wuppertalde Probeklausur zur Analysis 2, SoSe 217 Hinweis Die Lösungen

Mehr

M U = {x U f 1 =... = f n k (x) = 0}, (1)

M U = {x U f 1 =... = f n k (x) = 0}, (1) Aufgabe 11. a) Es sei M = {(x, y, z) R 3 f 1 = xy = 0; f = yz = 0}. Der Tangentialraum T x M muss in jedem Punkt x M ein R-Vektorraum sein und die Dimension 1 besitzen, damit diese Menge M eine Untermannigfaltigkeit

Mehr

1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler

1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler Zusammenfassung Kapitel IV: Funktionen mehrerer Veränderlicher und vektorwertige Funktionen 1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler Definition vektorwertige

Mehr

Der Satz von Taylor. Kapitel 7

Der Satz von Taylor. Kapitel 7 Kapitel 7 Der Satz von Taylor Wir haben bereits die Darstellung verschiedener Funktionen, wie der Exponentialfunktion, der Cosinus- oder Sinus-Funktion, durch unendliche Reihen kennen gelernt. In diesem

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel;

Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel; Kapitel Der Satz von Taylor. Taylor-Formel und Taylor-Reihe (Taylor-Polynom; Restglied; Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel; die Klasse C ; reell analytische Funktionen) In

Mehr

Kapitel 9. Schätzverfahren und Konfidenzintervalle. 9.1 Grundlagen zu Schätzverfahren

Kapitel 9. Schätzverfahren und Konfidenzintervalle. 9.1 Grundlagen zu Schätzverfahren Kapitel 9 Schätzverfahren und Konfidenzintervalle 9.1 Grundlagen zu Schätzverfahren Für eine Messreihe x 1,...,x n wird im Folgenden angenommen, dass sie durch n gleiche Zufallsexperimente unabhängig voneinander

Mehr

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man:

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man: AM3: Differenzial- und Integralrechnung im R n 1 Begriffe f : x 1 f 1 x 1, x 2,..., x n ) x 2... f 2 x 1, x 2,..., x n )... x n f m x 1, x 2,..., x n ) }{{}}{{} R n R m aus Platzgründen schreibt man: f

Mehr

4.4 Taylorentwicklung

4.4 Taylorentwicklung 4.4. TAYLORENTWICKLUNG 83 4.4 Taylorentwicklung. Definitionen f sei eine reellwertige m + -mal stetig differenzierbare Funktion der n Variablen x bis x n auf einem Gebiet M R n. Die Verbindungsgerade der

Mehr

bekannt Analog reduzieren wir die Randwerte im 2d-System. Man erhält dann eine Blocktridia-

bekannt Analog reduzieren wir die Randwerte im 2d-System. Man erhält dann eine Blocktridia- 3.. Jetzt: Eliminiere 1. und 2. wie folgt u 2 + 2u 1 = h 2 f 1 + α }{{} bekannt Nun: Au = b mit A R n,n, b R n, u R n und A hat die Gestalt 2 1 1 2 1 A =......... =: tridiag( 1, 2, 1)...... 1 1 2 Analog

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 2. Teil 2-1 1) Welche Garantie

Mehr

Übungen zu Grundlagen der Mathematik 2 Lösungen Blatt 12 SS 14. Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion.

Übungen zu Grundlagen der Mathematik 2 Lösungen Blatt 12 SS 14. Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion. Übungen zu Grundlagen der Mathematik Lösungen Blatt 1 SS 14 Prof. Dr. W. Decker Dr. M. Pleger Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion f : U R, (x, y) x y x + y, im Punkt (1, 1) bis einschließlich.

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

(a), für i = 1,..., n.

(a), für i = 1,..., n. .4 Extremwerte Definition Sei M R n eine Teilmenge, f : M R stetig, a M ein Punkt. f hat in a auf M ein relatives (oder lokales) Maximum bzw. ein relatives (oder lokales) Minimum, wenn es eine offene Umgebung

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 7 Anwendungen der Differentialrechnung 7.1 Maxima und Minima einer Funktion................. 141 7.2 Mittelwertsatz............................ 144 7.3 Kurvendiskussion..........................

Mehr

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv?

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv? Umkehrfunktionen Aufgabe 1. Sei A = {1, 2, 3, 4}. Definieren Sie eine bijektive Funktion f A A und geben Sie ihre Umkehrfunktion f 1 an. Lösung von Aufgabe 1. Zum Beispiel f, f 1 A A mit f(x) = x f 1 (x)

Mehr

u(x, 0) = g(x) : 0 x 1 u(0, t) = u(1, t) = 0 : 0 t T

u(x, 0) = g(x) : 0 x 1 u(0, t) = u(1, t) = 0 : 0 t T 8.1 Die Methode der Finiten Differenzen Wir beschränken uns auf eindimensionale Probleme und die folgenden Anfangs und Anfangsrandwertprobleme 1) Cauchy Probleme für skalare Erhaltungsgleichungen, also

Mehr

Differentialrechnung im R n

Differentialrechnung im R n Kapitel 9 Differentialrechnung im R n Bisher haben wir uns mit Funtionen beschäftigt, deren Verhalten durch eine einzelne Variable beschrieben wird. In der Praxis reichen solche Funtionen in der Regel

Mehr

Übungen zu Differentialgleichungen (WiSe 12/13)

Übungen zu Differentialgleichungen (WiSe 12/13) Übungen zu Differentialgleichungen WiSe 2/) Blatt 6 22 November 202 Gruppenübung Aufgabe G Sei f t, p) := p 5, t, p) R 2 Gegeben sei das Anfangswertproblem ẋ = f t,x), x0) = ) Bestimmen sie das maximale

Mehr

Bemerkungen. f (x 1,..., x i + x i,..., x n ) f (x 1,..., x n ) lim. f xi (x 1,..., x n ) =

Bemerkungen. f (x 1,..., x i + x i,..., x n ) f (x 1,..., x n ) lim. f xi (x 1,..., x n ) = Bemerkungen Die Erweiterung der Definition von partiellen Ableitungen 1. Ordnung für Funktionen u = f (x 1,..., x n ) mit n > 2 Veränderlichen ist offensichtlich: f xi (x 1,..., x n ) = f (x 1,..., x i

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 2. Teil 2-1 1) Welche Garantie

Mehr

2.8 Kurvenscharen, Orthogonaltrajektorien und Einhüllende. Bei den trennbaren Dgln fanden wir die Lösung in impliziter Gestalt:

2.8 Kurvenscharen, Orthogonaltrajektorien und Einhüllende. Bei den trennbaren Dgln fanden wir die Lösung in impliziter Gestalt: 2.8 Kurvenscharen, Orthogonaltrajektorien und Einhüllende Erinnerung: Bei den trennbaren Dgln fanden wir die Lösung in impliziter Gestalt: h(x, y, c) = 0. Für jedes feste c R war das die Gleichung einer

Mehr

55.3 Die zentralen Begriffe zur totalen Differenzierbarkeit

55.3 Die zentralen Begriffe zur totalen Differenzierbarkeit Abschnitt 55 Totale Differenzierbarkeit R Plato 35 sind all diejenigen Punkte E Q Randpunkte, für die k D oder k D für mindestens einen Inde k gilt Für all solche Punkte E enthält nämlich die enge BE;

Mehr

4.7 Der Taylorsche Satz

4.7 Der Taylorsche Satz 288 4 Differenziation 4.7 Der Taylorsche Satz Die Differenzierbarkeit, also die Existenz der ersten Ableitung einer Funktion, erlaubt bekanntlich, diese Funktion lokal durch eine affine Funktion näherungsweise

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 09/10. Michael Karow. Themen: Taylor-Entwicklung und lokale Extrema

Vorlesung: Analysis II für Ingenieure. Wintersemester 09/10. Michael Karow. Themen: Taylor-Entwicklung und lokale Extrema Vorlesung: Analysis II für Ingenieure Wintersemester 09/10 Michael Karow Themen: Taylor-Entwicklung und lokale Extrema Motivierendes Beispiel: die Funktion f(x, y) = x(x 1) 2 2 y 2. Dieselbe Funktion von

Mehr

Höhere Mathematik I/II

Höhere Mathematik I/II Markus Stroppel Höhere Mathematik I/II Z. Zusätze. Z.. Skalarprodukte in Funktionenräumen. Wir wollen an einigen Beispielen zeigen, dass es nützlich sein kann, Skalarprodukte auch in ganz allgemeinen (reellen)

Mehr

Vorlesung: Analysis I für Ingenieure

Vorlesung: Analysis I für Ingenieure Vorlesung: Analysis I für Ingenieure Michael Karow Thema: Satz von Taylor Die Taylor-Entwicklung I Satz von Taylor. Sei f : R D R an der Stelle x n-mal differenzierbar. Dann gilt für x D, n f (k) (x )

Mehr

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Algorithmen in Zellularautomaten

Algorithmen in Zellularautomaten Algorithmen in Zellularautomaten 1. Grundlegende Definitionen 2. Berechnungsmächtigkeit von ZA 3. Endliche Muster und Konfigurationen 4. Selbstreproduktion 5. Sortieren in eindimensionalen ZA 6. Einfache

Mehr

I. Verfahren mit gebrochen rationalen Funktionen:

I. Verfahren mit gebrochen rationalen Funktionen: I. Verfahren mit gebrochen rationalen Funktionen: 1. Definitionslücken bestimmen: Nenner wird gleich 0 gesetzt! 2. Prüfung ob eine hebbare Definitionslücke vorliegt: Eine hebbare Definitionslücke liegt

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 2. Teil 2-1 1) Welche Garantie

Mehr

Modelle der Parallelverarbeitung 7. Baumförmige Zellularautomaten

Modelle der Parallelverarbeitung 7. Baumförmige Zellularautomaten Modelle der Parallelverarbeitung Modelle der Parallelverarbeitung 7. Baumförmige Zellularautomaten Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Sommersemester 2016 1 / 29 Überblick

Mehr

Umkehrfunktion. g (y) = f (x) 1, x = g(y), Umkehrfunktion 1-1

Umkehrfunktion. g (y) = f (x) 1, x = g(y), Umkehrfunktion 1-1 Umkehrfunktion Ist für eine stetig differenzierbare n-variate Funktion f : D R n die Jacobi-Matrix f (x ) für einen Punkt x im Innern des Definitionsbereiches D R n nicht singulär, so ist f lokal invertierbar,

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min Aufgabe 1 8 Punkte Es seien eine Kurve K R mit Parametrisierung C : [ π, π] R und ein Vektorfeld g : R R gegeben durch cos t 4y Ct :, gx, y : sin t 1 05 K 05 05 1 15 05 a 3 Punkte Berechnen Sie die Zirkulation

Mehr

Analysis I. 1. Beispielklausur mit Lösungen

Analysis I. 1. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Das Bild einer Abbildung F: L M. (2) Eine Cauchy-Folge

Mehr

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 26, 207 Erinnerung Satz. (Zwischenwertsatz) Sei f : [a, b] R stetig mit f(a) f(b). Dann gibt es zu jedem

Mehr

Parseval-Identität: Seien zwei Funktionen v. mit Fourier-Reihen: dann gilt: Parseval-Identität. Speziell:

Parseval-Identität: Seien zwei Funktionen v. mit Fourier-Reihen: dann gilt: Parseval-Identität. Speziell: Parseval-Identität: Seien zwei Funktionen v. mit Fourier-Reihen: dann gilt: (kühnes Vertauschen von Integral und Summe!) Parseval-Identität Speziell: Anmerkung: beide Seiten kann man als Skalarprodukt

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 11. Juli 2016 Ableitungen im Höherdimensionalen Im Eindimensionalen war die Ableitung f (x 0 ) einer Funktion f : R R die

Mehr

Computer-orientierte Mathematik

Computer-orientierte Mathematik Computer-orientierte Mathematik 6. Vorlesung - Christof Schuette 30.11.18 Memo: Relative und Absolute Kondition Relative Kondition der Grundrechenarten: Addition, Multiplikation und Division liefern beruhigende

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 7.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc. Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

Das heißt, Γ ist der Graph einer Funktion von d 1 Veränderlichen.

Das heißt, Γ ist der Graph einer Funktion von d 1 Veränderlichen. Kapitel 2 Der Gaußsche Satz Partielle Differentialgleichung sind typischerweise auf beschränkten Gebieten des R d, d 1, zu lösen. Dabei sind die Eigenschaften dieser Gebiete von Bedeutung, insbesondere

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

Analysis für Informatiker und Statistiker Modulprüfung

Analysis für Informatiker und Statistiker Modulprüfung Prof. Dr. Peter Otte Wintersemester 2013/14 Tom Bachmann, Sebastian Gottwald 18.02.2014 Analysis für Informatiker und Statistiker Modulprüfung Lösungsvorschlag Name:.......................................................

Mehr

Abbildung 10.1: Das Bild zu Beispiel 10.1

Abbildung 10.1: Das Bild zu Beispiel 10.1 Analysis 3, Woche Mannigfaltigkeiten I. Definition einer Mannigfaltigkeit Die Definition einer Mannigfaltigkeit braucht den Begriff Diffeomorphismus, den wir in Definition 9.5 festgelegt haben. Seien U,

Mehr

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen Version 01.02. Januar 2007 MIA Analysis einer reellen Veränderlichen WS 06/07 Kurzfassung Martin Schottenloher Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen In diesem Kapitel werden differenzierbare

Mehr

Taylor-Entwicklungen und Taylor-Polynome.

Taylor-Entwicklungen und Taylor-Polynome. Taylor-Entwicklungen und Taylor-Polynome. Ausgangsfrage: Wie kann manf(x) in der Nähe vonx 0 approximieren? 0. Antwort:f(x) f(x 0 ) fürx x 0. 1. Antwort: Ist f differenzierbar, so gilt f(x) = f(x 0 )+f

Mehr

C. Eicher Analysis Study Center ETH Zürich HS Extremwerte

C. Eicher Analysis Study Center ETH Zürich HS Extremwerte C. Eicher Analysis Study Center ETH Zürich HS 05 Extremwerte Gelöste Aufgabenbeispiele:. Bestimme die lokalen und globalen Extrema der Funktion f(x) = x x + x auf dem Intervall [ 4, ]. a. Bestimmung der

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Präsenzübungen zur Analysis I Lehramt

Präsenzübungen zur Analysis I Lehramt Technische Universität Dortmund 12. Oktober 217 Matthias Schulte Blatt, WiSe 17/18 Aufgabe.1 (Elementare Beweistechniken). a) Zeige, dass 2 Q gilt! b) Es seien A,B Mengen. Zeige: A B = B \A = B. Aufgabe.2

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 29.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Motivation 2. Terminologie 3. Endliche Automaten und reguläre

Mehr

Skalarprodukte im Funktionenraum und orthogonale Funktionen

Skalarprodukte im Funktionenraum und orthogonale Funktionen 1 Skalarprodukte im Funktionenraum und orthogonale Funktionen Im Allgemeinen muss ein reelles Skalarprodukt (, ) (wir betrachten reelle Funktionen) folgende Eigenschaften ausweisen: Bilinearität (Linearität

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 4 Höhere Mathematik II für die Fachrichtung Informatik Lösungsvorschläge zum. Übungsblatt Aufgabe 37

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

Heinrich-Hertz-Oberschule, Berlin

Heinrich-Hertz-Oberschule, Berlin Reellwertige Funktionen mehrerer Variabler Teilnehmer: Maximilian Ringleb Jakob Napiontek Kay Makowsky Mallku Schlagowski Trung Duc Nguyen Alexander Reinecke Herder-Oberschule, Berlin Heinrich-Hertz-Oberschule,

Mehr

3. Potenzreihen. Definition 7.5. Eine unendliche Reihe der Form. a k x k. Es handelt sich also um eine Funktionenreihe mit f k (x) = a k x k.

3. Potenzreihen. Definition 7.5. Eine unendliche Reihe der Form. a k x k. Es handelt sich also um eine Funktionenreihe mit f k (x) = a k x k. 3. Potenzreihen Definition 7.5. Eine unendliche Reihe der Form a x mit x R (veranderlich und a R (onstant heit Potenzreihe, die Zahlen a ( heien Koezienten der Potenzreihe. Es handelt sich also um eine

Mehr

streng monoton steigend. streng monoton fallend. Ist f eine in einem Intervall stetige und im Innern des Intervalls differenzierbare Funktion mit

streng monoton steigend. streng monoton fallend. Ist f eine in einem Intervall stetige und im Innern des Intervalls differenzierbare Funktion mit 3. Anwendungen ================================================================= 3.1 Monotonie Eine Funktion f heißt in ihrem Definitionsbereich D monoton steigend, wenn für alle x 1, x 2 D mit x 1 < x

Mehr

Kapitel 1. Holomorphe Funktionen

Kapitel 1. Holomorphe Funktionen Kapitel 1 Holomorphe Funktionen Zur Erinnerung: I IR sei ein offenes Intervall, und sei z 0 I. Eine Funktion f : I IR heißt differenzierbar in z 0, falls der Limes fz fz 0 lim =: f z 0 z z 0 z z 0 existiert.

Mehr

68 Abschätzungen für Abweichungen vom Erwartungswert

68 Abschätzungen für Abweichungen vom Erwartungswert 68 Abschätzungen für Abweichungen vom Erwartungswert 68.1 Motivation Mit der Varianz bzw. Standardabweichungen kennen wir bereits ein Maß für die Fluktuation einer Zufallsvariablen um ihren Erwartungswert.

Mehr

Approximation von Funktionen

Approximation von Funktionen von Funktionen Fakultät Grundlagen Februar 6 Fakultät Grundlagen von Funktionen Übersicht Problemstellung Taylorpolynom Taylorenreihe Zusammenhang von e-funktion und trigonometrischen Funktionen 3 Fakultät

Mehr

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2.

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2. Adµ Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung Blatt Probeklausur 2 Lösungen zur Probeklausur 2 Aufgabe 1 1. Formulieren Sie den Satz von Taylor

Mehr

Der Taylorsche Satz Herleitung und Anwendungen

Der Taylorsche Satz Herleitung und Anwendungen Der Taylorsche Satz Herleitung und Anwendungen Joachim Schneider Juni 2004 Zusammenfassung Es wird ein enfacher Beweis des Taylorsche Satz über die lokale Approximierbarkeit hinreichend glatter Funktionen

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 5: Differentialrechnung im R n Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juni 2009 1 / 31 5.1 Erinnerung Kapitel

Mehr

Taylor-Entwicklung der Exponentialfunktion.

Taylor-Entwicklung der Exponentialfunktion. Taylor-Entwicklung der Exponentialfunktion. Betrachte die Exponentialfunktion f(x) = exp(x). Zunächst gilt: f (x) = d dx exp(x) = exp(x). Mit dem Satz von Taylor gilt um den Entwicklungspunkt x 0 = 0 die

Mehr

41 Der Satz über implizite Funktionen

41 Der Satz über implizite Funktionen 41 Der Satz über implizite Funktionen 203 41 Der Satz über implizite Funktionen Lernziele: Resultate: Satz über implizite Funktionen Methode: Implizite Differentiation Kompetenzen: (Lokale) Auflösung von

Mehr

Die Topologie von R, C und R n

Die Topologie von R, C und R n Die Topologie von R, C und R n Für R haben wir bereits eine Reihe von Strukturen kennengelernt: eine algebraische Struktur (Körper), eine Ordnungsstruktur und eine metrische Struktur (Absolutbetrag, Abstand).

Mehr

Höhere Mathematik II für BWIW, BNC, BAI, BGIP, GTB, Ma Hausaufgaben zum Übungsblatt 5 - Lösung

Höhere Mathematik II für BWIW, BNC, BAI, BGIP, GTB, Ma Hausaufgaben zum Übungsblatt 5 - Lösung TU Bergakademie Freiberg Sommersemester Dr. Gunter Semmler Dr. Anja Kohl Höhere Mathematik II für BWIW, BNC, BAI, BGIP, GTB, Ma Hausaufgaben zum Übungsblatt 5 - Lösung Differentialrechnung für Funktionen

Mehr

Kapitel 22. Einführung in die Funktionentheorie

Kapitel 22. Einführung in die Funktionentheorie Kapitel 22 Einführung in die Funktionentheorie In Kapitel 17 wurde die Differentialrechnung von Funktionen f: R m R n mehrerer Veränderlicher besprochen. Der Ableitungsbegriff war dabei nicht als Verallgemeinerung

Mehr

Merkblatt zur Funktionalanalysis

Merkblatt zur Funktionalanalysis Merkblatt zur Funktionalanalysis Literatur: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen.

Mehr

Beschreibungskomplexität von Grammatiken Definitionen

Beschreibungskomplexität von Grammatiken Definitionen Beschreibungskomplexität von Grammatiken Definitionen Für eine Grammatik G = (N, T, P, S) führen wir die folgenden drei Komplexitätsmaße ein: Var(G) = #(N), Prod(G) = #(P ), Symb(G) = ( α + β + 1). α β

Mehr

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle.

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle. 10 Funktionen mit mehreren Variablen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung

Mehr

Lösungen zur Klausur zur Analysis 1, WiSe 2016/17

Lösungen zur Klausur zur Analysis 1, WiSe 2016/17 BERGISCHE UNIVERSITÄT WUPPERTAL..7 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Lösungen zur Klausur zur Analysis, WiSe 6/7 Klausureinsicht:

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Differenzierbarkeit und Taylor-Entwicklung Übungen, die mit einem Stern markiert sind, werden als besonders wichtig erachtet.. Jacobi-Matrix Man bestimme die Jacobi-Matrix

Mehr

Kompetenz: Verinnerlichung des Mittelwertsatzes Daraus ergibt sich leicht der wichtige Mittelwertsatz der Differentialrechnung:

Kompetenz: Verinnerlichung des Mittelwertsatzes Daraus ergibt sich leicht der wichtige Mittelwertsatz der Differentialrechnung: 16 Mittelwertsätze und Anwendungen 71 16 Mittelwertsätze und Anwendungen Lernziele: Konzepte: Konvexität und Konkavität Resultate: Mittelwertsätze der Differentialrechnung Methoden: Regeln von de l Hospital

Mehr

Anmerkung: Falls f(x) nicht ganz glatt ist, sondern nur stückweise stetig differenzierbar ist (d.h. Sprünge hat), gilt (Satz v.

Anmerkung: Falls f(x) nicht ganz glatt ist, sondern nur stückweise stetig differenzierbar ist (d.h. Sprünge hat), gilt (Satz v. Fourier-Reihen für periodische Funktionen Sei periodisch, mit Periode L: Auch für diesen Fall gilt die Fourier- Reihen-Darstellung (b.3), mit : (b.3) (und stückweise stetig differenzierbar) (c.5) Integral

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Janko Latschev Fachbereich Mathematik Universität Hamburg www.math.uni-hamburg.de/home/latschev Hamburg,

Mehr

2. Spezielle anwendungsrelevante Funktionen

2. Spezielle anwendungsrelevante Funktionen 2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr