Biostatistik, Winter 2011/12

Größe: px
Ab Seite anzeigen:

Download "Biostatistik, Winter 2011/12"

Transkript

1 Biostatistik, Winter 2011/12 : Binomial, Gauß Prof. Dr. Achim Klenke Vorlesung: /31 Inhalt 1 Einführung Binomialtest 2/31

2 Beispiel Einführung Bohnenlieferant liefert Säcke mit weißen und schwarzen (teuren) Bohnen. Lieferant behauptet: H 0 = Anteil schwarzer Bohnen θ = 1 4. Unser Verdacht: H 1 : θ < 1 4. Stichprobe: n Bohnen, daraus x schwarz. H 0 verwerfen, falls x K. H 0 beibehalten, falls x > K. Problem: Wie ist K zu wählen? 3/31 Beispiel Einführung Zwei Fehlermöglichkeiten 1 Fehler 1. Art H 0 ist wahr, aber (zufälligerweise) ist x K. [Falsches Verwerfen von H 0 ] 2 Fehler 2. Art H 0 ist falsch, aber (zufälligerweise) ist x > K. [Ungültigkeit von H 0 wird nicht erkannt.] Problem Wie sind n und K zu wählen, damit Wahrscheinlichkeiten für Fehler 1. und 2. Art klein sind? 4/31

3 Einführung Fahrplan für Testprobleme 1 Schranke α (0, 1) für die Wahrscheinlichkeit des Fehlers 1. Art festlegen (Niveau). Typisch: α = 0.05, α = n (möglichst groß) wählen (= Kosten). 3 K wählen, sodass Wahrscheinlichkeit(Fehler 1. Art) α. 5/31 Einführung Fahrplan für Testprobleme Variante: Fallzahlplanung 1 Schranke α (0, 1) für die Wahrscheinlichkeit des Fehlers 1. Art festlegen (Niveau). 2 Schranke β (0, 1) für die Wahrscheinlichkeit des Fehlers 2. Art festlegen. 3 Minimales n und optimales K berechnen, sodass Wahrscheinlichkeit (Fehler 1. Art) α Wahrscheinlichkeit (Fehler 2. Art) β. 6/31

4 Formales Testproblem Einführung Niveau α (0, 1) festlegen. X = Beobachtungsraum Θ = Parametermenge P ϑ Verteilung der zufälligen Beobachtung X (Werte in X), falls ϑ Θ wahrer Parameter. H 0 Θ : konservative Hypothese oder Nullhypothese. H 1 Θ \ H 0 : Gegenhypothese oder Alternative. 7/31 Definition: Test Einführung Ein Test für H 0 gegen H 1 ist eine Abbildung ϕ : X {0, 1}. ϕ(x) = 1 ϕ(x) = 0 H 0 verwerfen, H 0 bewahren. Gilt P ϑ [ϕ(x) = 1] α für jedes ϑ H 0, so hält ϕ das Niveau α ein. Für ϑ H 1 ist G ϑ (ϕ) := P ϑ [ϕ(x) = 1] die Schärfe. 8/31

5 Konstruktion von Einführung Gibt es eine Abbildung T : X R und eine Menge R R mit ϕ(x) = 1 T (x) R, so heißt T tatistik für ϕ mit Verwerfungsbereich R. 9/31 p-werte Einführung Gegeben: Testproblem mit tatistik T für jedes Niveau α einen Verwerfungsbereich R α es gelte R α R α, falls α α. Definition Für gegebene Beobachtung x X ist der p-wert p = p(x) die kleinste Zahl p, sodass T (x) R p. Mit anderen Worten: p(x) ist die kleinste Zahl, sodass der Test zum Niveau p die Hypothese gerade noch verworfen hätte. 10/31

6 Binomialtest Binomialtest Niveau α (0, 1). X = {0,..., n} Menge der möglichen Beobachtungen (die Anzahl der Erfolge ) Θ = [0, 1] oder Θ [0, 1] Menge der Erfolgswahrscheinlichkeiten, die in Betracht kommen. Verteilung P p = b n,p, p Θ Binomialverteilung. Hypothese H 0 = {p 0 } (p 0 ist unser Vorurteil) Gegenhypothese H 1 [0, p 0 ): linksseitige Alternative Gegenhypothese H 1 (p 0, 1]: rechtsseitige Alternative Gegenhypothese H 1 [0, 1] \ {p 0 }: beidseitige Alternative x p 0 n tatistik T (x) = p0 (1 p 0 )n 11/31 Verwerfungsregel Binomialtest x p 0 n Test verwirft H 0, wenn T (x) = von 0 stark p0 (1 p 0 )n abweicht. Linksseitige Alternative H 1 [0, p 0 ). H 0 verwerfen, falls T (x) z 1 α. z 1 α Quantil der Normalverteilung (Tabelle!). Rechtsseitige Alternative H 1 (p 0, 1]. H 0 verwerfen, falls T (x) z 1 α. Beidseitige Alternative H 1 [0, 1] \ {p 0 }. H 0 verwerfen, falls T (x) z 1 α/2. 12/31

7 Fallzahlplanung Binomialtest Gegenhypothese mit Lücke zu H 0. WSK für Fehler 2. Art soll kleiner als β sein. Einseitige Alternative H 1 = [0, p 1 ] für p 1 < p 0 oder H 1 = [p 1, 1] für p 1 > p 0. Kleinste Fallzahl: ( p1 (1 p 1 ) z 1 β + ) 2 p 0 (1 p 0 ) z 1 α n =. p 0 p 1 13/31 Beispiel Anteil der Knaben unter allen Neugeborenen p =? Hypothese H 0 : p = 1 2. Gegenhypothese H 1 : p > 1 2. Test zum Niveau α = 1%. Stichprobe n, darunter x Knaben. Verwirf H 0, falls T (x) z 0.99 = Stadt Düsseldorf 1999: n = 5234 Geburten, x = 2676 Knaben. T (x) = x p 0 n p0 (1 p 0 )n = = 1.63 < Fazit Der Test verwirft H 0 nicht.

8 Beispiel, p-werte Binomialtest Zu welchem Niveau hätte der Test die Hypothese verworfen? T (x) = α = 2%? z 0.98 = > T (x) : NEIN. α = 5%? z 0.95 = > T (x) : NEIN. α = 5.1%? z = > T (x) : NEIN. α = 5.2%? z = < T (x) : JA! Kleinster Wert von α, sodass der Test H 0 verwirft, heißt p-wert. Hier p-wert = 5.2%. Kleiner p-wert (< 1%): Test ist stark signifikant. Großer p-wert: Test liefert keine Aussage. 15/31 Beispiel Binomialtest Fallzahlplanung Gegenhypothese präzisieren: H 1 : p > p 1 = Grenze für Fehler 2. Art β = Minimale Fallzahl ( ) 2 p1 (1 p n = 1 ) z 1 β + p 0 (1 p 0 ) z 1 α p 0 p 1. ( z = z ) ( = ) = /31

9 , Problemstellung Merkmal (Messgröße) zufällig und normalverteilt. Erwartungswert µ R unbekannt. Varianz σ 2 > 0 bekannt. Hypothese H 0 = {µ 0 } für ein µ 0 R (Lehrmeinung). Alternative H 1. H 1 : H 1 : H 1 : µ < µ 0 linksseitig, µ > µ 0 rechtsseitig, µ µ 0 beidseitig. Test zum Niveau α (0, 1). 17/31 Linksseitige Alternative Verwerfungsregel Alternative H 1 (, µ 0 ). Stichprobe x 1,..., x n. tatistik T (x) = x µ 0 σ/ n. Verwirf H 0 zugunsten von H 1, falls T (x) z 1 α. p-wert p(x) = Φ(T (x)) = 1 Φ( T (x)). Φ Verteilungsfunktion der Normalverteilung (Tabelle!). 18/31

10 Linksseitige Alternative Fallzahlplanung für H 1 (, µ 1 ], µ 1 < µ 0. β = Schranke für Fehler 2. Art. Minimale Fallzahl ( ) 2 n = σ 2 z1 β + z 1 α. µ 0 µ 1 19/31 Rechtsseitige Alternative Verwerfungsregel Alternative H 1 (µ 0, ). Stichprobe x 1,..., x n. tatistik T (x) = x µ 0 σ/ n. Verwirf H 0 zugunsten von H 1, falls T (x) z 1 α. p-wert p(x) = Φ( T (x)) = 1 Φ(T (x)). 20/31

11 Rechtsseitige Alternative Fallzahlplanung für H 1 [µ 1, ), µ 1 > µ 0. β = Schranke für Fehler 2. Art. Minimale Fallzahl ( ) 2 n = σ 2 z1 β + z 1 α. µ 0 µ 1 21/31 Beidseitige Alternative Verwerfungsregel Alternative H 1 R \ {µ 0 }. Stichprobe x 1,..., x n. tatistik T (x) = x µ 0 σ/ n. Verwirf H 0 zugunsten von H 1, falls T (x) z 1 α/2. p-wert p(x) = 2 ( 1 Φ( T (x) ) ). 22/31

12 Beidseitige Alternative Fallzahlplanung für H 1 {µ : µ µ 0 d} für ein d > 0. β = Schranke für Fehler 2. Art. Minimale Fallzahl ( ) n = σ 2 z1 β + z 2 1 α/2. d 23/31 Beispiel: beidseitig Steinlaus (Petrophaga lorioti) Stichprobe mit n = 10. Test verwirft, falls Gewicht (in µg) normalverteilt mit σ 2 = 25. Lehrmeinung (H 0 ): Mittelwert µ = µ 0 = 80. Unser Verdacht: Das ist falsch! Testen zum Niveau α = 1%. T (x) := x µ 0 σ/ n = x 80 5/ 10 z 1 α/2 = z /31

13 Quantile der Normalverteilung β = 1 α/2 = 1 1%/2 = β z β β z β /31 Beispiel: beidseitig Steinlaus (Petrophaga lorioti) Stichprobe mit n = 10. Test verwirft, falls Gewicht (in µg) normalverteilt mit σ 2 = 25. Lehrmeinung (H 0 ): Mittelwert µ = µ 0 = 80. Unser Verdacht: Das ist falsch! Testen zum Niveau α = 1%. T (x) := x µ 0 σ/ n = x 80 5/ 10 z 1 α/2 = z = /31

14 Beispiel: beidseitig Daten und Auswertung x = 76.2, also i x i T (x) = x 80 5/ 10 = < Fazit Test verwirft H 0 nicht zum Niveau α = 1%. 27/31 Beispiel: beidseitig Daten und Auswertung Wir haben x = 76.2, also T (x) = x 80 5/ 10 = p-wert p(x) = 2 ( 1 Φ( T (x) ) ) = 2(1 Φ(2.403)) 28/31

15 Normalverteilung Φ x /31 Beispiel: beidseitig Daten und Auswertung Wir haben x = 76.2, also T (x) = x 80 5/ 10 = p-wert p(x) = 2 ( 1 Φ( T (x) ) ) = 2(1 Φ(2.403)) = 2( ) = Der p-wert ist also p(x) = 1.64%. 30/31

16 Beispiel: beidseitig Fallzahlplanung Niveau α = 1%. σ 2 = 25. Alternative spezifizieren: H 1 = µ < 77 oder µ > 83. Fehler 2. Art maximal β = 5%. Stichprobenumfang ist mindestens (mit d = 3) ) 2 ( n = σ 2 z1 β + z 1 α/2 d ( ) 2 z z = 25 3 ( ) = 25 = /31

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 / Übungsaufgaben Prof. Dr. Achim Klenke http://www.aklenke.de 13. Vorlesung: 10.02.2012 1/51 Aufgabe 1 Aufgabenstellung Übungsaufgaben Ein Pharmakonzern möchte ein neues Schlankheitsmedikament

Mehr

Überblick Hypothesentests bei Binomialverteilungen (Ac)

Überblick Hypothesentests bei Binomialverteilungen (Ac) Überblick Hypothesentests bei Binomialverteilungen (Ac) Beim Testen will man mit einer Stichprobe vom Umfang n eine Hypothese H o (z.b.p o =70%) widerlegen! Man geht dabei aus von einer Binomialverteilung

Mehr

Lösungen zum Aufgabenblatt 14

Lösungen zum Aufgabenblatt 14 Lösungen zum Aufgabenblatt 14 61. Das Gewicht von Brötchen (gemessen in g) sei zufallsabhängig und werde durch eine normalverteilte Zufallsgröße X N(µ, 2 ) beschrieben, deren Varianz 2 = 49 g 2 bekannt

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.6 und 4.7 besser zu verstehen. Auswertung und Lösung Abgaben: 59 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 4.78 1 Frage

Mehr

Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung

Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung Abgaben: 92 / 234 Maximal erreichte Punktzahl: 7 Minimal erreichte Punktzahl: 1 Durchschnitt: 4 Frage 1 (Diese Frage haben ca. 0% nicht beantwortet.)

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

4.1. Nullhypothese, Gegenhypothese und Entscheidung

4.1. Nullhypothese, Gegenhypothese und Entscheidung rof. Dr. Roland Füss Statistik II SS 8 4. Testtheorie 4.. Nullhypothese, Gegenhypothese und Entscheidung ypothesen Annahmen über die Verteilung oder über einzelne arameter der Verteilung eines Merkmals

Mehr

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x)

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x) 7. Hypothesentests Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang X habe die unbekannte VF F X (x) Interessieren uns für einen unbekannten Parameter θ der Verteilung von X 350 Bisher:

Mehr

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. M. Maathuis ETH Zürich Winter 2010 Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Schreiben Sie für Aufgabe 2-4 stets alle Zwischenschritte und -rechnungen sowie Begründungen auf. Aufgabe

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 3.2.2 bis 3.3 besser zu verstehen. Auswertung und Lösung Abgaben: 81 / 265 Maximal erreichte Punktzahl: 7 Minimal erreichte Punktzahl: 0 Durchschnitt: 4.28 Frage

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Konfidenzintervalle. Gesucht: U = U(X 1,..., X n ), O = O(X 1,..., X n ), sodass für das wahre θ gilt

Konfidenzintervalle. Gesucht: U = U(X 1,..., X n ), O = O(X 1,..., X n ), sodass für das wahre θ gilt Konfidenzintervalle Annahme: X 1,..., X n iid F θ. Gesucht: U = U(X 1,..., X n ), O = O(X 1,..., X n ), sodass für das wahre θ gilt P θ (U θ O) = 1 α, α (0, 1). Das Intervall [U, O] ist ein Konfidenzintervall

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:

Mehr

How To Find Out If A Ball Is In An Urn

How To Find Out If A Ball Is In An Urn Prof. Dr. P. Embrechts ETH Zürich Sommer 2012 Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Schreiben Sie für Aufgabe 2-4 stets alle Zwischenschritte und -rechnungen sowie Begründungen auf. Aufgabe

Mehr

3. Das Prüfen von Hypothesen. Hypothese?! Stichprobe Signifikanztests in der Wirtschaft

3. Das Prüfen von Hypothesen. Hypothese?! Stichprobe Signifikanztests in der Wirtschaft 3. Das Prüfen von Hypothesen Hypothese?! Stichprobe 3.1. Signifikanztests in der Wirtschaft Prüfung, ob eine (theoretische) Hypothese über die Verteilung eines Merkmals X und ihre Parameter mit einer (empirischen)

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/57 Biostatistik, Sommer 2017 : Gepaarter, Ungepaarter t-test, Welch Test Prof. Dr. Achim Klenke http://www.aklenke.de 12. Vorlesung: 07.07.2017 2/57 Inhalt 1 Gepaarter t-test Ungepaarter t-test Ungepaarter

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/51 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Verteilungen, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 8. Vorlesung: 09.06.2017 2/51 Inhalt 1 Verteilungen Normalverteilung Normalapproximation

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015 Hypothesentests für Erwartungswert und Median Statistik (Biol./Pharm./HST) FS 2015 Normalverteilung X N μ, σ 2 X ist normalverteilt mit Erwartungswert μ und Varianz σ 2 pdf: pdf cdf:??? cdf 1 Zentraler

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Testverteilungen Chi-Quadrat-Verteilung Sind X 1,..., X n iid N(0; 1)-verteilte

Mehr

Beispiel für Gütefunktionen Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = 0.10

Beispiel für Gütefunktionen Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = 0.10 6 Hypothesentests Gauß-Test für den Mittelwert bei bekannter Varianz 6.3 Beispiel für Gütefunktionen Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = 0.10 G(µ) 0 α 0. 0.4 0.6 0.8 1 n = 10 n =

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 10. Vorlesung - 017 Quantil der Ordnung α für die Verteilung des beobachteten Merkmals X ist der Wert z α R für welchen gilt z 1 heißt Median. P(X < z α ) α P(X z α ). Falls X stetige zufällige Variable

Mehr

1 wenn Erfolg im j-ten Versuch

1 wenn Erfolg im j-ten Versuch Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 5.1 Binomialverteilung - Alternative Darstellung n Versuche mit 2 möglichen Ausgängen. Setze Y j = 1 wenn Erfolg im j-ten Versuch 0 wenn

Mehr

Biostatistik, WS 2013/2014 Konfidenzintervalle

Biostatistik, WS 2013/2014 Konfidenzintervalle 1/41 Biostatistik, WS 2013/2014 Konfidenzintervalle Matthias Birkner http://www.mathematik.uni-mainz.de/~birkner/biostatistik1314/ 17.1.2014 Beispiel: Carapaxlänge des Springkrebses 4/41 Beispiel: Springkrebs

Mehr

Hypothesentests für Erwartungswert und Median. für D-UWIS, D-ERDW, D-USYS und D-HEST SS15

Hypothesentests für Erwartungswert und Median. für D-UWIS, D-ERDW, D-USYS und D-HEST SS15 Hypothesentests für Erwartungswert und Median für D-UWIS, D-ERDW, D-USYS und D-HEST SS15 Normalverteilung X N(μ, σ 2 ) : «X ist normalverteilt mit Erwartungswert μ und Varianz σ 2» pdf: f x = 1 2 x μ exp

Mehr

Biostatistik. Lösung

Biostatistik. Lösung Prof. Dr. Achim Klenke Fridolin Kielisch 13. Übung zur Vorlesung Biostatistik im Sommersemester 2015 Lösung Aufgabe 1: a) Ich führe einen zweiseitigen Welch-Test durch, weil ich annehme, dass die Daten

Mehr

Wahrscheinlichkeitsrechnung und Statistik. 11. Vorlesung /2019

Wahrscheinlichkeitsrechnung und Statistik. 11. Vorlesung /2019 Wahrscheinlichkeitsrechnung und Statistik 11. Vorlesung - 2018/2019 Quantil der Ordnung α für die Verteilung des beobachteten Merkmals X ist der Wert z α R für welchen gilt z 1 2 heißt Median. P(X < z

Mehr

Serie 9, Musterlösung

Serie 9, Musterlösung WST www.adams-science.org Serie 9, Musterlösung Klasse: 4U, 4Mb, 4Eb Datum: FS 18 1. Mädchen vs. Knaben 442187 Unter 3000 in einer Klinik neugeborenen Kindern befanden sich 1578 Knaben. Testen Sie mit

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Statistik-Notfallkit für Schüler und Lehrer

Statistik-Notfallkit für Schüler und Lehrer Statistik-Notfallkit für Schüler und Lehrer Jan Kallsen Christian-Albrechts-Universität zu Kiel 3. Dezember 2018 Zusammenfassung Schließende Statistik ist konzeptionell nicht einfach. Hier sind einige

Mehr

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. M. Schweizer ETH Zürich Winter 2018 Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Bitte... Lege deine Legi auf den Tisch. Trage deine Daten in dieses Deckblatt ein, und schreibe auf jedes

Mehr

Stochastik Serie 11. ETH Zürich HS 2018

Stochastik Serie 11. ETH Zürich HS 2018 ETH Zürich HS 208 RW, D-MATL, D-MAVT Prof. Marloes Maathuis Koordinator Dr. Marvin Müller Stochastik Serie. Diese Aufgabe behandelt verschiedene Themenbereiche aus dem gesamten bisherigen Vorlesungsmaterial.

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Mathematische Stochastik WS 2006/2007 Universität Karlsruhe 12. Februar 2007 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Aufgabe 1 (15 Punkte) Klausur zur Vorlesung Statistik für Biologen

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Bühlmann ETH Zürich Winter 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Bemerkung 3.34: Die hier betrachteten Konfidenzintervalle für unbekannte Erwartungswerte sind umso schmaler, je größer der Stichprobenumfang n ist, je kleiner die (geschätzte) Standardabweichung σ (bzw.

Mehr

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. P. Embrechts ETH Zürich Winter 2012 Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Schreiben Sie für Aufgabe 2-4 stets alle Zwischenschritte und -rechnungen sowie Begründungen auf. Aufgabe

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/39 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Gesetz der großen Zahl, Zentraler Grenzwertsatz Schließende Statistik: Grundlagen Prof. Dr. Achim Klenke http://www.aklenke.de 9. Vorlesung: 16.06.2017

Mehr

1 Dichte- und Verteilungsfunktion

1 Dichte- und Verteilungsfunktion Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen Yannick.Schroer@rub.de 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die

Mehr

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests ue biostatistik: hypothesen, fehler 1. und. art, power 1/8 h. lettner / physik Hypothesen: Fehler 1. und. Art, Power eines statistischen Tests Die äußerst wichtige Tabelle über die Zusammenhänge zwischen

Mehr

Biostatistik, Sommer Nichtparametrische Statistik: Mediantest, Rangsummentest, χ 2 -Test. Prof. Dr. Achim Klenke.

Biostatistik, Sommer Nichtparametrische Statistik: Mediantest, Rangsummentest, χ 2 -Test. Prof. Dr. Achim Klenke. 1/52 Biostatistik, Sommer 2017 Nichtparametrische Statistik: Mediantest, Rangsummentest, χ 2 -Test Prof. Dr. Achim Klenke http://www.aklenke.de 13. Vorlesung: 14.07.2017 Entwurf 2/52 Inhalt 1 Nichtparametrische

Mehr

Statistik II für Betriebswirte Vorlesung 1

Statistik II für Betriebswirte Vorlesung 1 Statistik II für Betriebswirte Vorlesung 1 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 16. Oktober 2017 Dr. Andreas Wünsche Statistik II für Betriebswirte Vorlesung 1 Version:

Mehr

5. Seminar Statistik

5. Seminar Statistik Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation

Mehr

Grundlagen der schließenden Statistik

Grundlagen der schließenden Statistik Grundlagen der schließenden Statistik Schätzer, Konfidenzintervalle und Tests 1 46 Motivation Daten erhoben (Umfrage, Messwerte) Problem: Bei Wiederholung des Experiments wird man andere Beobachtungen

Mehr

Hypothesentest. Ablehnungsbereich. Hypothese Annahme, unbewiesene Voraussetzung. Anzahl Kreise

Hypothesentest. Ablehnungsbereich. Hypothese Annahme, unbewiesene Voraussetzung. Anzahl Kreise Hypothesentest Ein Biologe vermutet, dass neugeborene Küken schon Körner erkennen können und dies nicht erst durch Erfahrung lernen müssen. Er möchte seine Vermutung wissenschaftlich beweisen. Der Biologe

Mehr

Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert.

Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert. XV. Testen von Hypothesen ================================================================== 15.1 Alternativtest ------------------------------------------------------------------------------------------------------------------

Mehr

Stochastik Musterlösung 10

Stochastik Musterlösung 10 ETH Zürich HS 2018 RW, D-MATL, D-MAVT Prof. Marloes H. Maathuis Koordinator Dr. Marvin S. Müller Stochastik Musterlösung 10 1. Die Zeitschrift Gemüsetest testet den Wahrheitsgehalt der folgenden Werbeaussagen:

Mehr

Mathematik 2 Dr. Thomas Zehrt

Mathematik 2 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum 1 Universität Basel Mathematik Dr. Thomas Zehrt Testen Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere Kapitel

Mehr

Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung

Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung Induktive Statistik Prof. Dr. W.-D.

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Hypothesentesten, Fehlerarten und Güte 2 Literatur Kreyszig: Statistische Methoden und ihre Anwendungen, 7.

Mehr

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X Hypothesentests Bisher betrachtet: Punkt- bzw. Intervallschätzung des unbekannten Mittelwerts Hierzu: Verwendung der 1 theoretischen Information über Verteilung von X empirischen Information aus Stichprobenrealisation

Mehr

Statistik Zusätzliche Beispiele SS 2018 Blatt 3: Schließende Statistik

Statistik Zusätzliche Beispiele SS 2018 Blatt 3: Schließende Statistik Statistik Zusätzliche Beispiele SS 2018 Blatt 3: Schließende Statistik 1. I Ein Personalchef führt so lange Vorstellungsgespräche durch bis der erste geeignete Bewerber darunter ist und stellt diesen an.

Mehr

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 4.1 4. Statistische Entscheidungsverfahren Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Beispiel:

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

3) Testvariable: T = X µ 0

3) Testvariable: T = X µ 0 Beispiel 4.9: In einem Molkereibetrieb werden Joghurtbecher abgefüllt. Der Sollwert für die Füllmenge dieser Joghurtbecher beträgt 50 g. Aus der laufenden Produktion wurde eine Stichprobe von 5 Joghurtbechern

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. M. Schweizer ETH Zürich Sommer 2018 Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Bitte... Lege deine Legi auf den Tisch. Trage deine Daten in dieses Deckblatt ein, und schreibe auf jedes

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

Teil X. Hypothesentests für eine Stichprobe. Woche 8: Hypothesentests für eine Stichprobe. Lernziele. Statistische Hypothesentests

Teil X. Hypothesentests für eine Stichprobe. Woche 8: Hypothesentests für eine Stichprobe. Lernziele. Statistische Hypothesentests Woche 8: Hypothesentests für eine Stichprobe Teil X Patric Müller Hypothesentests für eine Stichprobe ETHZ WBL 17/19, 19.06.2017 Wahrscheinlichkeit und Statistik Patric

Mehr

Prüfung. Wahrscheinlichkeit und Statistik. ETH Zürich HS 2015 Prof. Dr. P. Embrechts Januar Nachname. Vorname. Legi Nummer

Prüfung. Wahrscheinlichkeit und Statistik. ETH Zürich HS 2015 Prof. Dr. P. Embrechts Januar Nachname. Vorname. Legi Nummer ETH Zürich HS 25 Prof. Dr. P. Embrechts Januar 26 Prüfung Wahrscheinlichkeit und Statistik BSc INFK Nachname Vorname Legi Nummer Das Folgende bitte nicht ausfüllen! Aufgabe Max. Punkte Summe Kontrolle

Mehr

Stellen Sie den Sachverhalt durch eine geeignete Vierfeldertafel mit relativen Häufigkeiten

Stellen Sie den Sachverhalt durch eine geeignete Vierfeldertafel mit relativen Häufigkeiten Bei der Bearbeitung der Aufgabe dürfen alle Funktionen des Taschenrechners genutzt werden. Aufgabe 4: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein.

Mehr

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. P. Embrechts ETH Zürich Winter 2009 Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Schreiben Sie für Aufgabe 2-4 stets alle Zwischenschritte und -rechnungen sowie Begründungen auf. Aufgabe

Mehr

Allgemeines zu Tests. Statistische Hypothesentests

Allgemeines zu Tests. Statistische Hypothesentests Statistische Hypothesentests Allgemeines zu Tests Allgemeines Tests in normalverteilten Grundgesamtheiten Asymptotische Tests Statistischer Test: Verfahren Entscheidungsregel), mit dem auf Basis einer

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Induktive Statistik Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung

Induktive Statistik Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung Induktive Statistik Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de

Mehr

Kapitel III: Einführung in die schließende Statistik

Kapitel III: Einführung in die schließende Statistik Kapitel III: Einführung in die schließende Statistik Das zweite Kapitel beschäftigte sich mit den Methoden der beschreibenden Statistik. Im Mittelpunkt der kommenden Kapitel stehen Verfahren der schließenden

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 9. Dezember 2010 1 Konfidenzintervalle Idee Schätzung eines Konfidenzintervalls mit der 3-sigma-Regel Grundlagen

Mehr

Praktikum zur Statistik

Praktikum zur Statistik mit R Institut für Mathematische Statistik Universität Münster 7. Oktober 2010 Gliederung 1 Testtheorie: Ziel und Überblick Testtheorie Andere Entscheidungsprobleme 2 3 4 p-wert, Binomialtest Mittelwertvergleiche:

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. M. Schweizer ETH Zürich Sommer 4 Wahrscheinlichkeit und Statistik BSc D-INFK. a (iii b (ii c (iii d (i e (ii f (i g (iii h (iii i (i j (ii. a Die Anzahl der bestellten Weine in einem Monat kann

Mehr

6.2 Approximation der Binomialverteilung

6.2 Approximation der Binomialverteilung 56 6.2 Approximation der Binomialverteilung Im Beispiel auf den Seiten 52 53 haben wir gesehen, dass die Wahrscheinlichkeiten P 50 (k) der dort betrachteten Binomialverteilung durch die Werte der Funktion

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Pantelis Christodoulides & Karin Waldherr 4. Juni 2014 Christodoulides / Waldherr Einführung in Quantitative Methoden 1/35 Ein- und Zweiseitige Hypothesen H 0 : p =

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Schließende Statistik Wintersemester 2012/13. Namensschild. Dr.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Schließende Statistik Wintersemester 2012/13. Namensschild. Dr. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Schließende Statistik Wintersemester 2012/13 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer ˆ Kleben Sie bitte sofort Ihr Namensschild

Mehr

Mathematische Statistik Aufgaben zum Üben. Schätzer

Mathematische Statistik Aufgaben zum Üben. Schätzer Prof. Dr. Z. Kabluchko Wintersemester 2016/17 Philipp Godland 14. November 2016 Mathematische Statistik Aufgaben zum Üben Keine Abgabe Aufgabe 1 Schätzer Es seien X 1,..., X n unabhängige und identisch

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 20. Januar 2011 1 Der F -Test zum Vergleich zweier Varianzen 2 Beispielhafte Fragestellung Bonferroni-Korrektur

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Bühlmann ETH Zürich Sommer 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete

Mehr

Nachklausur zur Vorlesung

Nachklausur zur Vorlesung Institut für Mathematische Stochastik WS 003/004 Universität Karlsruhe 30. April 004 Priv.-Doz. Dr. D. Kadelka Nachklausur zur Vorlesung Statistik für Biologen Musterlösungen Aufgabe 1 Gemessen wurde bei

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 17.3.21 Grundlagen zum Hypothesentest Einführung: Wer Entscheidungen zu treffen hat, weiß oft erst im nachhinein ob seine Entscheidung richtig war. Die Unsicherheit

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. M. Schweizer ETH Zürich Sommer Wahrscheinlichkeit und Statistik BSc D-INFK. a) (iii) b) (ii) c) (i) d) (ii) e) (ii) f) (iii) g) (ii) h) (i) i) (ii) j) (i). Für ein heruntergeladenes Dokument

Mehr

Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests

Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests Kapitel 10 Mittelwert-Tests 10.1 Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests 10.1 Einstichproben- Mittelwert-Tests 10.1.1 Einstichproben- Gauß-Test Dichtefunktion der Standard-Normalverteilung

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Schließende Statistik: Hypothesentests (Forts.)

Schließende Statistik: Hypothesentests (Forts.) Mathematik II für Biologen 15. Mai 2015 Testablauf (Wdh.) Definition Äquivalente Definition Interpretation verschiedener e Fehler 2. Art und Macht des Tests Allgemein im Beispiel 1 Nullhypothese H 0 k

Mehr

P n (k) f(k) = 1 σ 2π e ) 2. σ 2π

P n (k) f(k) = 1 σ 2π e ) 2. σ 2π 53 Allgemein gilt der folgende Satz. Satz 6.1 (Lokaler Grenzwertsatz von de Moivre und Laplace) Die Wahrscheinlichkeit P n (k) einer Binomialverteilung (mit der Erfolgswahrscheinlichkeit p im Einzelexperiment)

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften Modul 207 Testen von Hypothesen 1 Hans Walser: Modul 207, Testen von Hypothesen 1 ii Inhalt 1 Testen von Hypothesen... 1 1.1 Knabengeburten... 1 1.2 Wirkt

Mehr

das Kleingedruckte...

das Kleingedruckte... Gepaarte t-tests das Kleingedruckte... Datenverteilung ~ Normalverteilung QQ-plot statistischer Test (Shapiro-Wilk, Kolmogorov-Smirnov) wenn nicht : nicht-parametrische Tests gleiche Varianz (2-Proben

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

Kapitel 10: Testtheorie

Kapitel 10: Testtheorie Kapitel 10: Testtheorie Statistische Tests In vielen praktischen Situationen sind keine Schätzwerte gefragt, sondern es müssen JA-NEIN-Entscheidungen getroffen werden, z.b. über Medikamentenzulassung.

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun http://blog.ruediger-braun.net Heinrich-Heine-Universität Düsseldorf 16. Januar 2015 1 Verteilungsfunktionen Definition Binomialverteilung 2 Stetige Zufallsvariable,

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg 2 R. 06-206 (Persike) R. 06-214 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Wahrscheinlichkeit 1-α: richtige Entscheidung - wahrer Sachverhalt stimmt mit Testergebnis überein. Wahrscheinlichkeit α: falsche Entscheidung -

Wahrscheinlichkeit 1-α: richtige Entscheidung - wahrer Sachverhalt stimmt mit Testergebnis überein. Wahrscheinlichkeit α: falsche Entscheidung - wahrer Sachverhalt: Palette ist gut Palette ist schlecht Entscheidung des Tests: T K; Annehmen von H0 ("gute Palette") positive T > K; Ablehnen von H0 ("schlechte Palette") negative Wahrscheinlichkeit

Mehr

Erstellen Sie eine Vierfeldertafel, die diese Situation wiedergibt.

Erstellen Sie eine Vierfeldertafel, die diese Situation wiedergibt. Bei der Bearbeitung der Aufgabe dürfen alle Funktionen des Taschenrechners genutzt werden. Aufgabe 4: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein.

Mehr