Mathematik 2 Dr. Thomas Zehrt

Größe: px
Ab Seite anzeigen:

Download "Mathematik 2 Dr. Thomas Zehrt"

Transkript

1 Wirtschaftswissenschaftliches Zentrum 1 Universität Basel Mathematik Dr. Thomas Zehrt Testen Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere Kapitel 11,,(Punkt)schätzen und Kapitel 1,,Testen Inhaltsverzeichnis 1 Grundbegriffe der Testtheorie 1.1 Übersicht Parametrische Testprobleme Wichtige parametrische Tests 6.1 Der einfache Gaußtest Weitere Tests *Nichtparametrische Tests* Anpassungstests Der χ -Anpassungstest Der Kolmogorov-Smirnov Anpassungstest Übungsaufgaben 18

2 1 Grundbegriffe der Testtheorie 1.1 Übersicht Test parametrischer Test bekannter Verteilungstyp mit unbekanntem Parameter, Hypothese betrifft diesen Parameter nichtparametrischer Test unbekannte Verteilung(en) Einstichproben problem Zweistichproben problem Anpassungs test wie gut passt die beobachtete zur hypothetischen Verteilung Homogenitäts test Verteilung zweier Zufallsvariablen wird verglichen 1. Parametrische Testprobleme Sei X eine Zufallsvariable mit den möglichen Verteilungen { } Hypothesenraum: Ω = = P θ (X = x) : θ Θ P θ Bei einem (parametrischen) Testproblem wird der Hypothesenraum in zwei Teilmengen aufgeteilt: die zu testende Nullhypothese H 0 : θ Θ 0 und die Alternative H 1 : θ Θ 1 entscheiden soll. Die Nullhypothese H 0 ist diejenige Hypothese, welche auf ihren Wahrheitsgehalt hin überprüft werden soll. Sie beinhaltet den Zustand des Parameters der Grundgesamtheit, der bis zum jetzigen Zeitpunkt bekannt ist oder als allgemein akzeptiert gilt. Die Alternativhypothese H 1 ist ein Teil der zur Nullhypothese entgegengesetzten Aussage. Sie ist die eigentliche Forschungshypothese und drückt aus, was mittels der statistischen Untersuchung gezeigt werden soll. Es gilt stets: Θ 0 Θ 1 = und bei Signifikanztests (die wir im weiteren ausschliesslich behandeln werden) auch Θ 0 Θ 1 = Θ. Die typischen Situationen dabei sind: H 0 H 1 1. H 0 : θ = θ 0 H 1 : θ = θ 1, θ 0 θ 1 einfache Hypothese. H 0 : θ = θ 0 H 1 : θ θ 0 zweiseitigen Fragestellung 3. H 0 : θ θ 0 H 1 : θ > θ 0 einseitige Fragestellung 4. H 0 : θ θ 0 H 1 : θ < θ 0 einseitige Fragestellung

3 3 Eine Funktion T (X) = T (X 1,..., X n ) der Stichprobenvariablen X = (X 1,..., X n ) heisst Testgrösse. Für die konkrete Stichprobe (x 1,..., x n ) ergibt sich t = T (x 1,..., x n ) als Realisierung der Testgösse. Der Wertebereich der Zufallsgrösse T (X) wird in folgende zwei Teile zerlegt: Verwerfungsbereich (oder auch kritischer Bereich bzw. Ablehnbereich) R Annahmebereich R = R c. Aufgrund der Realisierung (x 1,..., x n ) wird dann folgende Testentscheidung getroffen: H 0 ablehnen, falls t = T (x 1,..., x n ) R H 0 beibehalten, falls t = T (x 1,..., x n ) R = R c Innerhalb des gewählten Modells gibt es nun vier Möglichkeiten, wie die Realität und die Testentscheidung zusammentreffen können. Realität H 0 ist richtig H 0 ist falsch Testentscheidung H 0 Fehler. Art, beibehalten ok β-fehler H 0 Fehler 1. Art, verwerfen α-fehler ok Bei der Testkonstruktion gibt man die Wahrscheinlichkeit α eines Fehlers 1. Art vor. Diese Schranke bezeichnet man als Signifikanzniveau und der Test heisst Signifikanztest zum Niveau α. Der kritische Bereich R wird dann so konstruiert, dass die Wahrscheinlichkeit eines Fehlers 1. Art nicht grösser als α wird: P (H 0 verwerfen H }{{} 0 richtig ) α T (X) R Dabei sollte aber die Wahrscheinlichkeit eines Fehlers. Art P (H 0 beibehalten H 0 falsch ) nicht zu gross werden.

4 4 Beim Testen wird nur die Wahrscheinlichkeit eines Fehlers 1. Art durch α kontrolliert. Wenn also H 0 wirklich gilt, werden wir sicher nur in α 100% der durchführten Tests für H 1 entscheiden. Die Entscheidung für H 1 ist somit statistisch gesichert und wir sprechen dann von einem signifikanten Ergebnis. Die Wahrscheinlichkeit für einen Fehler. Art wird dagegen nicht kontrolliert und die Entscheidung H 0 beizubehalten ist statistisch nicht abgesichert. Es spricht nur nichts gegen H 0. Allgemeines Vorgehen: 1. Verteilungsannahme über die Zufallsvariable X (bzw. über deren Verteilungsfunktion F ) machen. Formulieren der Nullhypothese und der Alternative. 3. Vorgabe der Irrtumswahrscheinlichkeit α 4. Konstruktion einer geeigneten Testgrösse T (X) = T (X 1,..., X n ) als Funktion der Stichprobenvariablen X, deren Verteilung unter der Nullhypothese vollständig bekannt sein muss. 5. Wahl eines kritischen Bereichs R aus dem möglichen Wertebereich von T (X), so dass P (T (X) R H 0 richtig ) α gilt. 6. Bestimmung der Realisierung t = T (x 1,..., x n ) der Testgrösse T (X) anhand einer konkreten Stichprobe. 7. Entscheidungsregel: Liegt t in R, so wird die Nullhypothese abgelehnt, sonst beibehalten.

5 5 Der p-wert Beim Einsatz von Statistiksoftware zum Hypothesentest wird der kritische Bereich meist nicht angezeigt. Stattdessen wird der konkrete Wert t der Stichprobe zusammen mit dem zugehörigen p-wert angezeigt. Definition 1.1 Der p-wert ist definiert als die Wahrscheinlichkeit unter Gültigkeit von H 0, dass die Testgrösse T den konkreten Wert t oder einen im Sinne der Alternativhypothese noch extremeren Wert annimmt. Konkret bedeutet das: rechtsseitiger Test: p-wert = P ( T t H 0 stimmt ) linksseitiger Test: p-wert = P ( T t H 0 stimmt ) zweiseitiger Test: p-wert = P ( T t H 0 stimmt ) Der p-wert kann ebenfalls als Entscheidungskriterium für das Verwerfen der Nullhypothese genutzt werden. Je kleiner der p-wert ist, desto stärker sprechen die Daten gegen die Nullhypothese und damit für die Alternativhypothese. Gebräuchliche Grenzen sind: p-wert > : schwache Beweislast gegen H < p-wert : mässige Beweislast gegen H < p-wert : moderate Beweislast gegen H < p-wert : starke Beweislast gegen H 0

6 6 Wichtige parametrische Tests.1 Der einfache Gaußtest Prüfen des Mittelwertes bei bekannter Varianz (einfacher Gaußtest) Gegeben: X N(µ, σ ) mit σ = σ0 bekannt Zu prüfen: Besitzt µ (unbekannt) einen bestimmten Wert µ = µ 0? 1. Verteilungsannahme: X N(µ, σ 0). Festlegen von H 0 und H 1 I: H 0 : µ = µ 0 gegen H 1 : µ µ 0 II: H 0 : µ µ 0 gegen H 1 : µ > µ 0 III: H 0 : µ µ 0 gegen H 1 : µ < µ 0 3. Vorgabe von α: α = Konstruktion der Testgrösse: Stichprobenmittelwert X = 1 n n i=1 H X 0 i N(µ0, σ0/n) Standardisierung T (X) = X µ 0 σ 0 n H 0 N(0, 1) 5. Kritischer Bereich: H 0 H 1 R I: µ = µ 0 µ µ 0 (, z 1 α ) (z 1 α, ) II: µ µ 0 µ > µ 0 (z 1 α, ) III: µ µ 0 µ < µ 0 (, z α ) 6. Realisierung der Testgrösse: Aus einer konkreten Stichprobe x 1,..., x n wird der Stichprobenmittelwert x = 1 n n i=1 x i und daraus die Realisierung der Testgrösse ermittelt t = x µ 0 n σ 0 7. Testentscheidung: Liegt t in R, so muss die Nullhypothese verworfen werden. Daraus folgt insgesamt: Lehne H 0 ab, wenn I. t > z 1 α II. t > z 1 α III. t < z 1 α = z α

7 7 Beispiel.1 Für den zweiseitigen Test H 0 : µ = µ 0 und H 1 : µ µ 0 wissen wir also, dass die Testgrösse T unter der Nullhypothese standardnormalverteilt ist. Wir kennen also die Wahrscheinlichkeiten, mit denen T bestimmte Werte realisiert. Natürlich werden wir die Nullhypothese µ = µ 0 verwerfen, wenn der Stichprobenmittelwert X (der den Erwartungswert µ 0 hat) viel kleiner oder viel grösser als µ 0 ist. Das ist gleichbedeutend damit, dass die Testgrösse T einen zu kleinen oder einen zu grossen Wert realisiert. Zu klein bedeutet dabei, dass t < z 1 α, zu gross bedeutet t > z 1 α Wegen der Symmetrie der Standardglockenkurve gilt auch noch: z 1 α = z α

8 8 Aufgabe.1 Bei der Produktion von Bolzen beträgt der Sollwert für den Duchmesser 10 mm. Der Bolzendurchmesser X sei dabei normalverteilt mit dem unbekannten Erwartungswert µ und der durch die Konstruktion der Maschine festgelegten Standardabweichung σ = 0.5 mm. Zur Überprüfung der Einstellung werden 100 Teile entnommen und daraus der mittlere Duchmesser x = mm berechnet. Prüfen Sie die Hypothese H 0 : µ = 10 mm mit der Irrtumswahrscheinlichkeit α = Lösung: 1. H 0 : µ = 10 = µ 0. H 1 : µ Test(Name): Gauss-Test 4. T (allgemein): T = X µ 0 n σ 0 5. t (speziell): t = = vollständiger Verwerfungsbereich: R = (, z 1 α 1 α, ) = (, z ) (z 0.975, ) = (, 1.96) (1.96, ) 7. Entscheidung: H 0 ablehnen, da 3 R

9 9. Weitere Tests Signifikanztests für µ und σ einer normalverteilten Grundgesamtheit (Signifikanzniveau α) Hypothesen Voraussetzungen Testgrösse T Verteilung von T Kritischer Bereich H 0 H 1 Gauß-Test µ = µ 0 µ µ 0 t > z 1 α µ µ 0 µ > µ 0 σ = σ0 bekannt X µ 0 n N(0, 1)-Verteilung t > z1 α σ 0 µ µ 0 µ < µ 0 t < z 1 α Einfacher t-test µ = µ 0 µ µ 0 t > t n 1;1 α µ µ 0 µ > µ 0 σ unbekannt X µ 0 n S X tn 1 -Verteilung t > t n 1;1 α µ µ 0 µ < µ 0 t < t n 1;1 α χ -Streuungstest σ = σ 0 σ σ 0 t > χ n 1;1 α oder t < χ n 1; α σ σ0 σ > σ0 (n 1) SX µ unbekannt σ0 χ n 1 -Verteilung t > χ n 1;1 α σ σ0 σ < σ0 t < χ n 1;α Ergänzung (nicht prüfungsrelevant) σ = σ0 σ σ0 t > χ n;1 α σ σ0 σ > σ0 n SX µ bekannt σ0 χ n-verteilung t > χ n;1 α σ σ0 σ < σ0 t < χ n;α oder t < χ n; α

10 10 Signifikanztests zum Vergleich zweier Erwartungswerte µ X und µ Y und Varianzen σx und σ Y von normalverteilten Grundgesamtheiten (Signifikanzniveau α) Hypothesen Voraussetzungen Testgrösse T Verteilung von T Kritischer Bereich H 0 H 1 Doppelter t-test µ X = µ Y µ X µ Y (X 1,.., X n1 ), (Y 1,.., Y n ) unabh. Stichproben X Y S n1 n n 1 + n mit t > t n1 +n ;1 α µ X µ Y µ X > µ Y σ X = σ Y S = t n1 +n -Verteilung t > t n1 +n ;1 α µ X µ Y µ X < µ Y X N(µ X, σx ) (n 1 1)S X +(n 1)S Y n 1 +n Y N(µ Y, σy ) t < t n1 +n ;1 α Welch-Test µ X = µ Y µ X µ Y (X 1,.., X n1 ), (Y 1,.., Y n ) X Y S X n1 t m-verteilung t > t m;1 α + S Y n unabh. Stichproben m = µ X µ Y µ X > µ Y σ X σ Y ( (SX /n 1+SY /n ) ) t > t m;1 α (S X /n 1 ) + (S Y /n ) n 1 1 n 1 µ X µ Y µ X < µ Y X N(µ X, σx ) ganzzahlig gerundet t < t m;1 α Y N(µ Y, σy ) F-Test σx = σ Y σx σ Y (X 1,.., X n1 ), (Y 1,.., Y n ) SX /S Y F n1 1,n 1-Verteilung t > F n1 1,n 1;1 α oder unabh. Stichproben t < F n1 1,n 1; α σ X σ Y σ X > σ Y µ X, µ Y unbekannt S X /S Y F n1 1,n 1-Verteilung t > F n1 1,n 1;1 α σx σ Y σx < σ Y X N(µ X, σx ) S Y /S X F n 1,n 1 1-Verteilung t > F n 1,n 1 1;1 α Y N(µ Y, σy ) Beachte: Gilt X F m,n, so ist 1/X F n,m und für die Quantile folgt F m,n;α = 1 F n,m;1 α.

11 11 Hypothesen Voraussetzungen Testgrösse T Verteilung von T Kritischer Bereich H 0 H 1 paired t-test µ X = µ Y µ X µ Y (X 1,.., X n), (Y 1,.., Y n) (verbundene) Stichproben D S D n mit t > tn 1;1 α µ X µ Y µ X > µ Y D = X Y N(0, σ D ) S D = 1 n 1 n (D i D) t n 1 -Verteilung t > t n 1;1 α µ X µ Y µ X < µ Y t < t n 1;1 α i=1

12 1 Aufgabe. Zur Überprüfung einer Produktionsanlage, die Kilotüten mit Mehl abfüllt, werden 0 Tüten entnommen, gewogen und daraus das mittlere Gewicht x = g und die Standardabweichung s = g berechnet. Es kann davon ausgegangen werden, dass das Gewicht normalverteilt ist. Prüfen Sie, ob die Anlage im Mittel wesentlich weniger (α = 0.05) als 1000 g abfüllt. Lösung: 1. H 0 :. H 1 : 3. Test(Name): 4. T (allgemein): 5. t (speziell): 6. vollständiger Verwerfungsbereich: 7. Entscheidung: (H 0 wird abgelehnt, denn t = 6.58 < 1.73 = t 19;0.95 )

13 13 Aufgabe.3 Zur Überprüfung einer Produktionsanlage, die Kilotüten mit Mehl abfüllt, werden 0 Tüten entnommen, gewogen und daraus das mittlere Gewicht x = g und die Standardabweichung s = g berechnet. Es kann davon ausgegangen werden, dass das Gewicht normalverteilt ist. Unterscheidet sich die empirische Streuung s wesentlich (α = 0.05) von σ 0 = 0.3 (g ) Lösung: 1. H 0 :. H 1 : 3. Test(Name): 4. T (allgemein): 5. t (speziell): 6. vollständiger Verwerfungsbereich: 7. Entscheidung: (H 0 wird abgelehnt, denn t = > 3.85 = χ 19;0.975)

14 14 Aufgabe.4 In einer landwirtschaftlichen Versuchsanstalt erhielten 9 von Masttieren (Gruppe I) Grünfutterzumischungen, während die übrigen 13 Tiere (Gruppe II) ausschliesslich mit dem proteinhaltigen Mastfutter gefüttert wurden. Nach einer gewissen Zeit wurden folgende Gewichtszunahmen in kg bei den Tieren festgestellt. Gruppe I: 7.0, 11.8, 10.1, 8.5, 10.7, 13., 9.4, 7.9, 11.1 und Gruppe II: 13.4, 14.6, 10.4, 11.9, 1.7, 16.1, 10.7, 8.3, 13., 10.3, 11.3, 1.9, 9.7 Testen Sie die Nullhypothese σ I = σ II Lösung: 1. H 0 : mit Hilfe des F-Tests (für α = 0.1).. H 1 : 3. Test(Name): 4. T (allgemein): 5. t (speziell): 6. vollständiger Verwerfungsbereich: 7. Entscheidung: (H 0 wird nicht abgelehnt)

15 15 3 *Nichtparametrische Tests* 3.1 Anpassungstests Bei einem Anpassungstest wird untersucht, wie gut sich eine beobachtete Verteilung der hypothetischen Verteilung,,anpasst. Die Nullhypothese ist hier stets die Vermutung, dass eine ganz bestimmte (hypothetische) Verteilung vorliegt. Es kann also (statistisch) nur bewiesen werden, dass dieser bestimmte Verteilungstyp nicht vorliegt Der χ -Anpassungstest Gegeben: Zufallsvariable X (ordinal oder stetig) Zu prüfen: Besitzt X die Verteilungsfunktion F 0? 1. Verteilungsannahme: X hat die Verteilungsfunktion F 0. Festlegen von H 0 und H 1 H 0 :,,Die Verteilungsfunktion F einer Stichprobe stimmt mit F 0 überein: F (x) = F 0 (x) H 1 : F (x) F 0 (x) 3. Vorgabe von α: α = Konstruktion der Testgrösse: Eine Stichprobe X = (X 1,..., X n ) wird in k Klassen eingeteilt: Klasse 1... k Total Anz. Beobacht. n 1 n... n k n T (X) = k i=1 (N i n p i ) n p i H 0 χ k 1 r N i absolute Häufigkeit der Stichprobe für die Klasse i (das sind Zufallsvariablen mit den Realisierungen n i ) p i die mit Hilfe der (hypothetischen) Verteilungsfunktion F 0 berechneten Wahrscheinlichkeiten dafür, dass X einen Wert in der Klasse i annimmt n p i die unter H 0 erwartete Häufigkeit in der Klasse i r Anzahl Parameter von F 0 5. Kritischer Bereich: (χ k 1 r;1 α, ) Testentscheidung: Lehne H 0 ab, wenn t > χ k 1 r;1 α

16 16 Aufgabe 3.1 Eine Versuchsreihe mit n = 50 Würfen einer belgischen 1-Euromünze zeigt 140-mal den (massigen) Kopf des belgischen Königs Albert und nur 110-mal die Zahl. Entscheiden Sie mittels χ -Anpassungstest (und mit α = 0.05), ob die Münze fair ist. Lösung: 1. Verteilungsannahme: Ausgang 1 sei,,kopf und Ausgang sei,,zahl, dann ist X (Anzahl,,Kopf ) gleichverteilt mit p(x = 1) = p(x = ) = 1/. H 0 : Verteilung der Stichprobe entspricht der Gleichverteilung 3. Vorgabe von α: α = /6. k = Verteilung von T : χ 1 0 = χ 1 Klasse 1 Anz. Beobacht. n 1 = 140 n = 110 t = i=1 (n i n p i ) n p i = ( /) 50 1/ + ( /) 50 1/ = Kritischer Bereich: Es gilt c 1;0.95 = 3.84 also K = (3.84, ) 7. Testentscheidung: t = 3.6 < χ 1;0.95 = 3.84 also kann die Nullhypothese nicht verworfen werden.

17 Der Kolmogorov-Smirnov Anpassungstest Ein Nachteil beim χ -Anpassungstest ist die (willkürliche) Klasseneinteilung, die (insbesondere bei kleinen Stichproben) das Testergebnis beeinflusst. Hier ist der Kolmogorov- Smirnov Anpassungstest besser geeignet! Gegeben: Zufallsvariable X (ordinal oder stetig) Zu prüfen: Besitzt X die Verteilungsfunktion F 0? 1. Verteilungsannahme: X hat die Verteilungsfunktion F 0. Festlegen von H 0 und H 1 H 0 :,,Die Verteilungsfunktion F einer Stichprobe stimmt mit F 0 überein: F (x) = F 0 (x) H 1 : F (x) F 0 (x) 3. Vorgabe von α: α = Konstruktion der Testgrösse: Eine Stichprobe (x 1,..., x n ) wird geordnet x (1)... x (n) und die Verteilungsfunktion konstruiert. Testgrösse: 0 für < x < x (1) ˆF (x) := i/n für x (i) x < x (i+1) 1 für x (n) x < D = sup x R F 0 (x) ˆF (x) 5. Kritischer Bereich: (d n;1 α, ) wobei 6. - n d n;1 α n > 40 d n;1 α / n 7. Testentscheidung: Lehne H 0 ab, wenn t > d n;1 α gilt.

18 18 4 Übungsaufgaben 1. In einem verregneten Land beträgt die Regenwahrscheinlichkeit in den Herbstmonaten 50%. Jeden Morgen im Herbst fragt sich Susi, ob sie einen Regenschirm mitnehmen soll oder nicht. Um zu einer Entscheidung zu kommen, wirft sie eine faire Münze. Wirft sie Kopf, nimmt sie einen Regenschirm mit, ansonsten lässt sie den Schirm zu Hause. (a) Betrachten Sie die Situation wie einen statistischen Test. Wie müssen die Hypothesen gewählt werden, damit der Fehler 1.Art die schlimmere Auswirkung darstellt? (b) Bestimmen Sie die Wahrscheinlichkeit für den Fehler 1. Art.. Bei der Produktion von Bolzen beträgt der Sollwert für den Durchmesser 10 mm. Der Bolzendurchmesser X sei dabei normalverteilt mit dem unbekannten Erwartungswert µ und der durch die Konstruktion der Maschine festgelegten Standardabweichung σ = 0.5 mm. Zur Überprüfung der Einstellung werden 100 Teile entnommen und daraus der mittlere Duchmesser x = mm berechnet. Prüfen Sie die Hypothese H 0 : µ = 10 mm mit der Irrtumswahrscheinlichkeit α = Zur Überprüfung einer Produktionsanlage, die Kilotüten mit Mehl abfüllt, werden 0 Tüten entnommen, gewogen und daraus das mittlere Gewicht x = g und die Standardabweichung s = g berechnet. Es kann davon ausgegangen werden, dass das Gewicht normalverteilt ist. Prüfen Sie, ob die Anlage im Mittel wesentlich weniger (α = 0.05) als 1000 g abfüllt. 4. Zur Überprüfung einer Produktionsanlage, die Kilotüten mit Mehl abfüllt, werden 0 Tüten entnommen, gewogen und daraus das mittlere Gewicht x = g und die Standardabweichung s = g berechnet. Es kann davon ausgegangen werden, dass das Gewicht normalverteilt ist. Unterscheidet sich die empirische Streuung s wesentlich (α = 0.05) von σ 0 = 0.3 (g )? 5. In einer landwirtschaftlichen Versuchsanstalt erhielten 9 von Masttieren (Gruppe I) Grünfutterzumischungen, während die übrigen 13 Tiere (Gruppe II) ausschliesslich mit dem proteinhaltigen Mastfutter gefüttert wurden. Nach einer gewissen Zeit wurden folgende Gewichtszunahmen in kg bei den Tieren festgestellt. Gruppe I: 7.0, 11.8, 10.1, 8.5, 10.7, 13., 9.4, 7.9, 11.1 und Gruppe II: 13.4, 14.6, 10.4, 11.9, 1.7, 16.1, 10.7, 8.3, 13., 10.3, 11.3, 1.9, 9.7 Testen Sie die Nullhypothese σi = σ II mit Hilfe des F-Tests (für α = 0.1).

19 19 Lösungen einiger Übungsaufgaben 1. (a) Testproblem: Regen oder kein Regen Entscheidungsregel: Ich glaube, dass es regnen wird, wenn Münzwurf,Kopf, zeigt. Entscheidung / Realität Regen kein Regen,,Kopf Regen Schirm trocken Schirm umsonst,,zahl kein Regen kein Schirm nass trocken Mögliche Fehler: Schirm umsonst mitgenommen bzw. nass werden(ist wohl die schlimmere Konsequenz) Damit der Fehler 1. Art die schlimmere Konsequenz darstellt, müssen die Hypothesen wie folgt gewählt werden: H 0 : Regen H 1 : kein Regen (b) P ( H 0 verworfen H 0 stimmt ) = = t > z = 1.96, H 0 wird abgelehnt = t < t 19;0.95 = 1.73, H 0 wird abgelehnt = t > χ 19;0.975 = 3.85, H 0 wird abgelehnt 5. t = und.85, H 0 wird nicht abgelehnt

Statistik II für Betriebswirte Vorlesung 1

Statistik II für Betriebswirte Vorlesung 1 Statistik II für Betriebswirte Vorlesung 1 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 16. Oktober 2017 Dr. Andreas Wünsche Statistik II für Betriebswirte Vorlesung 1 Version:

Mehr

4.1. Nullhypothese, Gegenhypothese und Entscheidung

4.1. Nullhypothese, Gegenhypothese und Entscheidung rof. Dr. Roland Füss Statistik II SS 8 4. Testtheorie 4.. Nullhypothese, Gegenhypothese und Entscheidung ypothesen Annahmen über die Verteilung oder über einzelne arameter der Verteilung eines Merkmals

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests Nach Verteilungsannahmen: verteilungsabhängig: parametrischer [parametric] Test verteilungsunabhängig: nichtparametrischer [non-parametric] Test Bei parametrischen Tests

Mehr

Motivation. Benötigtes Schulwissen. Wirtschaftswissenschaftliches Zentrum 12 Universität Basel. Statistik

Motivation. Benötigtes Schulwissen. Wirtschaftswissenschaftliches Zentrum 12 Universität Basel. Statistik Wirtschaftswissenschaftliches Zentrum 1 Universität Basel Statisti Dr. Thomas Zehrt Testen von Hypothesen Motivation Bei einem Testverfahren wird die aus einer Stichprobe gewonnene Information dazu verwendet,

Mehr

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x)

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x) 7. Hypothesentests Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang X habe die unbekannte VF F X (x) Interessieren uns für einen unbekannten Parameter θ der Verteilung von X 350 Bisher:

Mehr

Konfidenzintervalle. Gesucht: U = U(X 1,..., X n ), O = O(X 1,..., X n ), sodass für das wahre θ gilt

Konfidenzintervalle. Gesucht: U = U(X 1,..., X n ), O = O(X 1,..., X n ), sodass für das wahre θ gilt Konfidenzintervalle Annahme: X 1,..., X n iid F θ. Gesucht: U = U(X 1,..., X n ), O = O(X 1,..., X n ), sodass für das wahre θ gilt P θ (U θ O) = 1 α, α (0, 1). Das Intervall [U, O] ist ein Konfidenzintervall

Mehr

Hypothesentests. Hypothese Behauptung eines Sachverhalts, dessen Überprüfung noch aussteht.

Hypothesentests. Hypothese Behauptung eines Sachverhalts, dessen Überprüfung noch aussteht. Hypothese Behauptung eines Sachverhalts, dessen Überprüfung noch aussteht. Wissenschaftliche Vorgehensweise beim Hypothesentest Forscher formuliert eine Alternativhypothese H 1 (die neue Erkenntnis, die

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 15 Statistische Testverfahren 15.1. Arten statistischer Test Klassifikation von Stichproben-Tests Einstichproben-Test Zweistichproben-Test - nach der Anzahl der Stichproben - in Abhängigkeit von

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

3) Testvariable: T = X µ 0

3) Testvariable: T = X µ 0 Beispiel 4.9: In einem Molkereibetrieb werden Joghurtbecher abgefüllt. Der Sollwert für die Füllmenge dieser Joghurtbecher beträgt 50 g. Aus der laufenden Produktion wurde eine Stichprobe von 5 Joghurtbechern

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Testverteilungen Chi-Quadrat-Verteilung Sind X 1,..., X n iid N(0; 1)-verteilte

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 15 009 FernUniversität in Hagen Alle Rechte vorbehalten Fachbereich Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese:

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese: 2.4.1 Grundprinzipien statistischer Hypothesentests Hypothese: Behauptung einer Tatsache, deren Überprüfung noch aussteht (Leutner in: Endruweit, Trommsdorff: Wörterbuch der Soziologie, 1989). Statistischer

Mehr

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X Hypothesentests Bisher betrachtet: Punkt- bzw. Intervallschätzung des unbekannten Mittelwerts Hierzu: Verwendung der 1 theoretischen Information über Verteilung von X empirischen Information aus Stichprobenrealisation

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 : Binomial, Gauß Prof. Dr. Achim Klenke http://www.aklenke.de 10. Vorlesung: 20.01.2012 1/31 Inhalt 1 Einführung Binomialtest 2/31 Beispiel Einführung Bohnenlieferant liefert

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 Statistik II für Betriebswirte Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 26. Oktober 2016 Prof. Dr. Hans-Jörg Starkloff Statistik II für Betriebswirte Vorlesung

Mehr

Allgemeines zu Tests. Statistische Hypothesentests

Allgemeines zu Tests. Statistische Hypothesentests Statistische Hypothesentests Allgemeines zu Tests Allgemeines Tests in normalverteilten Grundgesamtheiten Asymptotische Tests Statistischer Test: Verfahren Entscheidungsregel), mit dem auf Basis einer

Mehr

2. Formulieren von Hypothesen. Nullhypothese: H 0 : µ = 0 Gerät exakt geeicht

2. Formulieren von Hypothesen. Nullhypothese: H 0 : µ = 0 Gerät exakt geeicht 43 Signifikanztests Beispiel zum Gauß-Test Bei einer Serienfertigung eines bestimmten Typs von Messgeräten werden vor der Auslieferung eines jeden Gerätes 10 Kontrollmessungen durchgeführt um festzustellen,

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 10. Vorlesung - 017 Quantil der Ordnung α für die Verteilung des beobachteten Merkmals X ist der Wert z α R für welchen gilt z 1 heißt Median. P(X < z α ) α P(X z α ). Falls X stetige zufällige Variable

Mehr

Lösungen zum Aufgabenblatt 14

Lösungen zum Aufgabenblatt 14 Lösungen zum Aufgabenblatt 14 61. Das Gewicht von Brötchen (gemessen in g) sei zufallsabhängig und werde durch eine normalverteilte Zufallsgröße X N(µ, 2 ) beschrieben, deren Varianz 2 = 49 g 2 bekannt

Mehr

Kapitel 13. Grundbegriffe statistischer Tests

Kapitel 13. Grundbegriffe statistischer Tests Kapitel 13 Grundbegriffe statistischer Tests Oft hat man eine Vermutung über die Verteilung einer Zufallsvariablen X. Diese Vermutung formuliert man als Hypothese H 0.Sokönnte man daran interessiert sein

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 5.5.2006 1 Ausgangslage Wir können Schätzen (z.b. den Erwartungswert) Wir können abschätzen, wie zuverlässig unsere Schätzungen sind: In welchem Intervall

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

Wahrscheinlichkeit 1-α: richtige Entscheidung - wahrer Sachverhalt stimmt mit Testergebnis überein. Wahrscheinlichkeit α: falsche Entscheidung -

Wahrscheinlichkeit 1-α: richtige Entscheidung - wahrer Sachverhalt stimmt mit Testergebnis überein. Wahrscheinlichkeit α: falsche Entscheidung - wahrer Sachverhalt: Palette ist gut Palette ist schlecht Entscheidung des Tests: T K; Annehmen von H0 ("gute Palette") positive T > K; Ablehnen von H0 ("schlechte Palette") negative Wahrscheinlichkeit

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Beispiel für Gütefunktionen Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = 0.10

Beispiel für Gütefunktionen Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = 0.10 6 Hypothesentests Gauß-Test für den Mittelwert bei bekannter Varianz 6.3 Beispiel für Gütefunktionen Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = 0.10 G(µ) 0 α 0. 0.4 0.6 0.8 1 n = 10 n =

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 20. Januar 2011 1 Der F -Test zum Vergleich zweier Varianzen 2 Beispielhafte Fragestellung Bonferroni-Korrektur

Mehr

Statistik II für Betriebswirte Vorlesung 1

Statistik II für Betriebswirte Vorlesung 1 Statistik II für Betriebswirte Vorlesung 1 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 19. Oktober 2016 Prof. Dr. Hans-Jörg Starkloff Statistik II für Betriebswirte Vorlesung

Mehr

3. Das Prüfen von Hypothesen. Hypothese?! Stichprobe Signifikanztests in der Wirtschaft

3. Das Prüfen von Hypothesen. Hypothese?! Stichprobe Signifikanztests in der Wirtschaft 3. Das Prüfen von Hypothesen Hypothese?! Stichprobe 3.1. Signifikanztests in der Wirtschaft Prüfung, ob eine (theoretische) Hypothese über die Verteilung eines Merkmals X und ihre Parameter mit einer (empirischen)

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Die Abfüllmenge ist gleich dem Sollwert 3 [Deziliter].

Die Abfüllmenge ist gleich dem Sollwert 3 [Deziliter]. Eine Methode, um anhand von Stichproben Informationen über die Grundgesamtheit u gewinnen, ist der Hypothesentest (Signifikantest). Hier wird erst eine Behauptung oder Vermutung (Hypothese) über die Parameter

Mehr

Statistische Tests Version 1.2

Statistische Tests Version 1.2 Statistische Tests Version 1.2 Uwe Ziegenhagen ziegenhagen@wiwi.hu-berlin.de 7. Dezember 2006 1 Einführung Ein statistischer Test dient der Überprüfung einer statistischen Hypothese. Mithilfe des Tests

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 16. Januar 2013 1 Allgemeine Hypothesentests Nullhypothese und Alternative Beispiel: Blutdrucksenker Testverfahren

Mehr

7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9.

7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9. 7. Übung: Aufgabe 1 b), c), e) Aufgabe a), c), e) Aufgabe 3 c), e) Aufgabe 4 b) Aufgabe 5 a) Aufgabe 6 b) Aufgabe 7 e) Aufgabe 8 c) Aufgabe 9 a), c), e) Aufgabe 10 b), d) Aufgabe 11 a) Aufgabe 1 b) Aufgabe

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

5. Seminar Statistik

5. Seminar Statistik Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation

Mehr

Stochastik Praktikum Testtheorie

Stochastik Praktikum Testtheorie Stochastik Praktikum Testtheorie Thorsten Dickhaus Humboldt-Universität zu Berlin 11.10.2010 Definition X: Zufallsgröße mit Werten in Ω, (Ω, F, (P ϑ ) ϑ Θ ) statistisches Modell Problem: Teste H 0 : ϑ

Mehr

Modul 141 Statistik. 1. Studienjahr 11. Sitzung Signifikanztests

Modul 141 Statistik. 1. Studienjahr 11. Sitzung Signifikanztests Modul 141 Statistik 1. Studienjahr 11. Sitzung Signifikanztests Inhalt der 11. Sitzung 1. Parametrische Signifikanztests 2. Formulierung der Hypothesen 3. Einseitige oder zweiseitige Fragestellung 4. Signifikanzniveau

Mehr

Wahrscheinlichkeitsrechnung und Statistik. 11. Vorlesung /2019

Wahrscheinlichkeitsrechnung und Statistik. 11. Vorlesung /2019 Wahrscheinlichkeitsrechnung und Statistik 11. Vorlesung - 2018/2019 Quantil der Ordnung α für die Verteilung des beobachteten Merkmals X ist der Wert z α R für welchen gilt z 1 2 heißt Median. P(X < z

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 12. Januar 2011 1 Vergleich zweier Erwartungswerte Was heißt verbunden bzw. unverbunden? t-test für verbundene Stichproben

Mehr

11. Parametrische Tests 11.1 Konzeption von statistischen Tests

11. Parametrische Tests 11.1 Konzeption von statistischen Tests 11. Parametrische Tests 11.1 Konzeption von statistischen Tests Statistische Tests dienen zur Überprüfung von Hypothesen über die Grundgesamtheit auf der Basis der vorliegenden Beobachtungen einer Stichprobe.

Mehr

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Grundlage: Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Die Testvariable T = X µ 0 S/ n genügt der t-verteilung mit n 1 Freiheitsgraden. Auf der Basis

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 17.3.21 Grundlagen zum Hypothesentest Einführung: Wer Entscheidungen zu treffen hat, weiß oft erst im nachhinein ob seine Entscheidung richtig war. Die Unsicherheit

Mehr

Kapitel XIV - Anpassungstests

Kapitel XIV - Anpassungstests Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIV - Anpassungstests Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh 2. Grundannahme:

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

Softwaretechnik. Prof. Dr. Rainer Koschke. Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen

Softwaretechnik. Prof. Dr. Rainer Koschke. Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen Softwaretechnik Prof. Dr. Rainer Koschke Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen Wintersemester 2010/11 Überblick I Statistik bei kontrollierten Experimenten

Mehr

Schließende Statistik: Hypothesentests (Forts.)

Schließende Statistik: Hypothesentests (Forts.) Mathematik II für Biologen 15. Mai 2015 Testablauf (Wdh.) Definition Äquivalente Definition Interpretation verschiedener e Fehler 2. Art und Macht des Tests Allgemein im Beispiel 1 Nullhypothese H 0 k

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Bemerkung 3.34: Die hier betrachteten Konfidenzintervalle für unbekannte Erwartungswerte sind umso schmaler, je größer der Stichprobenumfang n ist, je kleiner die (geschätzte) Standardabweichung σ (bzw.

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,

Mehr

Bereiche der Statistik

Bereiche der Statistik Bereiche der Statistik Deskriptive / Exploratorische Statistik Schließende Statistik Schließende Statistik Inferenz-Statistik (analytische, schließende oder konfirmatorische Statistik) baut auf der beschreibenden

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 24.2.214 Grundlagen zum Hypothesentest Einführung: Wer Entscheidungen zu treffen hat, weiß oft erst im nachhinein ob seine Entscheidung richtig war. Die Unsicherheit

Mehr

THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ

THEMA: STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN TORSTEN SCHOLZ WEBINAR@LUNCHTIME THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ EINLEITENDES BEISPIEL SAT: Standardisierter Test, der von Studienplatzbewerbern an amerikanischen Unis gefordert

Mehr

KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert

KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert 0. Das eigentliche Forschungsziel ist: Beweis der eigenen Hypothese H 1 Dafür muss Nullhypothese H 0 falsifiziert werden können Achtung!

Mehr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr Die so genannte Gütefunktion g gibt allgemein die Wahrscheinlichkeit an, mit der ein Test die Nullhypothese verwirft. Für unser hier entworfenes Testverfahren gilt ( ) k np g(n, p) = Pr p [T K] = Pr p

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 22 Übersicht Weitere Hypothesentests in der Statistik 1-Stichproben-Mittelwert-Tests 1-Stichproben-Varianz-Tests 2-Stichproben-Tests Kolmogorov-Smirnov-Test

Mehr

Biomathematik für Mediziner

Biomathematik für Mediziner Institut für Medizinische Biometrie, Informatik und Epidemiologie der Universität Bonn (Direktor: Prof. Dr. Max P. Baur) Biomathematik für Mediziner Klausur SS 2002 Aufgabe 1: Franz Beckenbauer will, dass

Mehr

Je genauer und sicherer, desto größer muss der Stichprobenumfang sein

Je genauer und sicherer, desto größer muss der Stichprobenumfang sein 2.3 Intervallschätzung 2.3.5 Bestimmung des Stichprobenumfangs Eine große praktische Bedeutung haben Konfidenzintervalle auch für die Stichprobenplanung. Sie werden herangezogen, um den benötigten Stichprobenumfang

Mehr

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/453

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/453 fru@hephy.oeaw.ac.at VO 142.090 http://tinyurl.com/tu142090 Februar 2010 1/453 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung

Mehr

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments 73 Hypothesentests 73.1 Motivation Bei Hypothesentests will man eine gewisse Annahme über eine Zufallsvariable darauf hin überprüfen, ob sie korrekt ist. Beispiele: ( Ist eine Münze fair p = 1 )? 2 Sind

Mehr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X

Mehr

Mathematik 2 Probeprüfung 1

Mathematik 2 Probeprüfung 1 WWZ Wirtschaftswissenschaftliche Fakultät der Universität Basel Dr. Thomas Zehrt Bitte in Druckbuchstaben ausfüllen: Name Vorname Mathematik 2 Probeprüfung 1 Zeit: 90 Minuten, Maximale Punktzahl: 72 Zur

Mehr

Stochastik Musterlösung 10

Stochastik Musterlösung 10 ETH Zürich HS 2018 RW, D-MATL, D-MAVT Prof. Marloes H. Maathuis Koordinator Dr. Marvin S. Müller Stochastik Musterlösung 10 1. Die Zeitschrift Gemüsetest testet den Wahrheitsgehalt der folgenden Werbeaussagen:

Mehr

Test auf den Erwartungswert

Test auf den Erwartungswert Test auf den Erwartungswert Wir interessieren uns für den Erwartungswert µ einer metrischen Zufallsgröße. Beispiele: Alter, Einkommen, Körpergröße, Scorewert... Wir können einseitige oder zweiseitige Hypothesen

Mehr

Statistik II. Version A. 1. Klausur Sommersemester 2011 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!

Statistik II. Version A. 1. Klausur Sommersemester 2011 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Statistik II Version A 1. Klausur Sommersemester 2011 Hamburg, 27.07.2011 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................

Mehr

Ablaufschema beim Testen

Ablaufschema beim Testen Ablaufschema beim Testen Schritt 1 Schritt 2 Schritt 3 Schritt 4 Schritt 5 Schritt 6 Schritt 7 Schritt 8 Schritt 9 Starten Sie die : Flashanimation ' Animation Ablaufschema Testen ' siehe Online-Version

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 / Übungsaufgaben Prof. Dr. Achim Klenke http://www.aklenke.de 13. Vorlesung: 10.02.2012 1/51 Aufgabe 1 Aufgabenstellung Übungsaufgaben Ein Pharmakonzern möchte ein neues Schlankheitsmedikament

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. M. Maathuis ETH Zürich Winter 2010 Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Schreiben Sie für Aufgabe 2-4 stets alle Zwischenschritte und -rechnungen sowie Begründungen auf. Aufgabe

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik SIGNIFIKANZ UND HYPOTHESENTESTS 12.02.2018 HOLGER WUSCHKE BEURTEILENDE STATISTIK 1 12.02.2018 HOLGER WUSCHKE BEURTEILENDE STATISTIK 2 12.02.2018 HOLGER WUSCHKE BEURTEILENDE STATISTIK

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 13 2010 FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

Statistik II für Studierende der Soziologie und Nebenfachstudierende

Statistik II für Studierende der Soziologie und Nebenfachstudierende 2.4.3 Typische Tests I: Tests auf Lageparameter Hier werden exemplarisch nur wenige, ausgewählte Test, die typisch sind, besprochen. Das Grundprinzip ist bei anderen Tests analog. Aufgabe: Konstruiere

Mehr

2. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017

2. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017 . Lösung weitere Übungsaufgaben Statistik II WiSe 016/017 1. Aufgabe: Bei der Produktion eines Werkstückes wurde die Bearbeitungszeit untersucht. Für die als normalverteilt angesehene zufällige Bearbeitungszeit

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik Die schließende Statistik befasst sich mit dem Rückschluss von einer Stichprobe auf die Grundgesamtheit (Population). Die Stichprobe muss repräsentativ für die Grundgesamtheit sein.

Mehr

Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung

Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung Induktive Statistik Prof. Dr. W.-D.

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Mathematische Stochastik WS 2006/2007 Universität Karlsruhe 12. Februar 2007 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Aufgabe 1 (15 Punkte) Klausur zur Vorlesung Statistik für Biologen

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Bühlmann ETH Zürich Sommer 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete

Mehr

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Bühlmann ETH Zürich Winter 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete

Mehr

1. Grundbegri e der Stochastik

1. Grundbegri e der Stochastik Wiederholung von Grundwissen der Stochastik. Grundbegri e der Stochastik Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt

Mehr