Softwaretechnik. Prof. Dr. Rainer Koschke. Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Softwaretechnik. Prof. Dr. Rainer Koschke. Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen"

Transkript

1 Softwaretechnik Prof. Dr. Rainer Koschke Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen Wintersemester 2010/11 Überblick I Statistik bei kontrollierten Experimenten

2 Statistik bei kontrollierten Experimenten: Statistik bei kontrollierten Experimenten Statistik bei kontrollierten Experimenten Hypothesen und Stichproben Verteilungen Experimente mit einem Sample Experimente mit zwei Samples Verteilungsfreier U-Test Statistik bei kontrollierten Experimenten: Hypothese und statistischer Test Definition Statistische Hypothese: Aussage über eine statistische Population, die man auf Basis beobachteter Daten zu bestätigen oder zu falsifizieren versucht. Hypothese: Die durchschnittliche Länge von Methoden in Java ist größer als 50 [loc]

3 Statistik bei kontrollierten Experimenten: Vorgehen 1 Nimm an, dass die zu testende Hypothese wahr ist. 2 Untersuche die Konsequenzen dieser Annahme in Bezug auf die Sampling-Verteilung, die von der Wahrheit der Hypothese abhängt. 3 Falls die beobachteten Daten eine große Eintrittswahrscheinlichkeit haben, ist die Hypothese bestätigt. 4 Falls die beobachteten Daten eine sehr kleine Eintrittswahrscheinlichkeit haben, gilt die Hypothese als widerlegt. Signifikanzniveau α legt die Wahrscheinlichkeit fest, ab der die Hypothese als widerlegt betrachtet wird. Konvention: α = 0, 05 oder α = 0, 01 Statistik bei kontrollierten Experimenten: Nullhypothese und alternative Hypothese Definition Nullhypothese H 0 : die zu testende Hypothese. Alternative Hypothese H 1 : die Gegenthese zu H 0. Meist: H 1 ist das, woran der Experimenator wirklich glaubt. H 0 = Die durchschnittliche Länge von Java-Methoden ist 50 [loc]. H 1 = Die durchschnittliche Länge von Java-Methoden ist >50 [loc]. Experiment soll H 0 widerlegen.

4 Statistik bei kontrollierten Experimenten: Hypothesen und Stichproben Hypothesen und Stichproben Sample = Population absolute Wahrheit Sample Population? Problem: Jede Hypothesenüberprüfung liefert statistischen Kennwert (z.b. Durchschnitt) für ein bestimmtes Sample. Wiederholung mit anderen Subjects/Objects liefert wahrscheinlich nicht exakt denselben Kennwert. Kennwert ist Zufallsvariable 1 Feststellung, ob Kennwert extrem oder typisch ist, ist ohne Kenntnis der Verteilung der Zufallsvariablen unmöglich. 1 Funktion, die den Ergebnissen eines Zufallsexperiments Werte (so genannte Realisationen) zuordnet. Statistik bei kontrollierten Experimenten: Verteilungen Verteilungen Definition Verteilung einer Variablen: beschreibt, welche Werte die Variable annehmen kann und wie oft sie das tut. Gleichverteilung Normalverteilung

5 Statistik bei kontrollierten Experimenten: Verteilungen Häufige Kennwerte einer Verteilungen Gegeben: n Datenpunkte x 1, x 2,... x n einer Variablen X. Durchschnitt oder arithmetisches Mittel x = 1 n n i=1 x i Varianz s 2 x = 1 n 1 n i=1 (x i x) 2 Standardabweichung s x = s 2 x Statistik bei kontrollierten Experimenten: Verteilungen Varianz und Freiheitsgrad Varianz s 2 x = 1 n 1 n i=1 (x i x) 2 Warum Durchschnitt mit 1 n 1? n i=1 (x i x) = 0 (x n x) kann berechnet werden, wenn x 1, x 2,..., x n 1 bekannt sind nur n 1 Summanden in n i=1 (x i x) 2 können frei variieren n 1 ist der Freiheitsgrad

6 Statistik bei kontrollierten Experimenten: Experimente mit einem Sample Verteilung von Population und Sample H 0 : µ = 50 Gegeben: Populations-Verteilung: Kennwerteverteilung der Population P mit Durchschnitt µ und Standardabweichung σ Sample-Verteilung: Kennwerteverteilung der Stichproben X mit Durchschnitt x und Standardabweichung σ x Annahmen: σ ist bekannt P hat Normalverteilung Daraus folgt: X ist normalverteilt mit x = µ und σ x = σ n. Statistik bei kontrollierten Experimenten: Experimente mit einem Sample Verteilung von Population und Sample Warum gilt: x = µ? Sample-Größe ist n. Jeder beobachtete Wert x i (1 i n) ist eine Messung von einem zufällig ausgewählten Element aus P. Jede Einzelmessung ist eine Zufallsvariable X i, deren Verteilung der von P entspricht. x = 1 n (X 1 + X X n ) Wenn µ der Durchschnitt von P ist, dann ist µ der Durchschnitt der Verteilung jeder Beobachung X i. µ x = 1 n (µ X 1 + µ X µ Xn ) = 1 n (µ + µ +... µ) = µ

7 Statistik bei kontrollierten Experimenten: Experimente mit einem Sample Verteilung von Population und Sample Warum gilt: σ x = σ n? Regeln für Varianzen (a, b sind Konstante, X, Y Zufallsvariablen): Damit: σ 2 a+bx = b2 σ 2 X σ 2 X +Y = σ2 X + σ2 Y σ 2 x = σ 2 1 n (X 1+X X n ) = ( 1 n )2 (σ 2 X 1 + σ 2 X σ 2 X n ) Weil jede Einzelbeobachtung X i aus P stammt, gilt σx 2 i damit: = σ 2 und σ 2 x = ( 1 n )2 (σ 2 + σ σ 2 ) = σ2 n und σ x = σ 2 x = σ n Statistik bei kontrollierten Experimenten: Experimente mit einem Sample Verteilung von Population und Sample H 0 : µ = 50 Gegeben: Populations-Verteilung: Kennwerteverteilung der Population P mit Durchschnitt µ und Standardabweichung σ Sample-Verteilung: Kennwerteverteilung der Stichproben X mit Durchschnitt x und Standardabweichung σ x Annahmen: σ ist bekannt P hat Normalverteilung Daraus folgt: X ist normalverteilt mit x = µ und σ x = σ n.

8 Statistik bei kontrollierten Experimenten: Experimente mit einem Sample Beispiel H 0 : µ = 50. Sei tatsächlich beobachteter Wert (Messung) für x = 54 mit σ = 10 und Sample-Größe n = 25. Passt das noch zu H 0 mit Signifikanzniveau α = 0, 01? x ist normalverteilt mit µ = 50 und σ 2 x = = 2: N(50, 2) Die Standardnormalverteilung N(0, 1) ist tabelliert. Mit z-transformation kann jede Normalverteilung auf N(0, 1) zurückgeführt werden: z x = x µ σ x Statistik bei kontrollierten Experimenten: Experimente mit einem Sample Beispiel Wahrscheinlichkeit, einen Wert z x = 2 1, 41 oder größer in N(0, 1) zu finden = Flächeninhalt zwischen 1,41 und in N(0, 1) Laut Tabelle für N(0, 1): 1 0, 9207 = 0, 0793 > 0, 01 = α. H 0 wird abgelehnt

9 Statistik bei kontrollierten Experimenten: Experimente mit zwei Samples Beispieluntersuchung Hypothese: Pair-Programming führt zu niedriger durchschnittlicher Fehlerdichte, wobei durchschnittliche Fehlerdichte = #Fehler LOC Design: Object: Anforderungsspezifikation Subjects: 31 professionelle Entwickler Blocking: Treatment X: eine Gruppe (10 2) wendet Pair-Programming an Treatment Y: eine Gruppe (11 1) wendet Pair-Programming nicht an ein Faktor, zwei Treatments Statistik bei kontrollierten Experimenten: Experimente mit zwei Samples Experiment mit zwei Samples: t-test Gegeben: Zwei unabhängige Samples: X = x 1, x 2,... x n mit Durchschnitt x und Varianz s 2 x Y = y 1, y 2,... y m mit Durchschnitt ȳ und Varianz s 2 y H 0 : Mittelwerte von X und Y sind gleich: µ x µ y = 0. Annahmen: Population zu X ist normalverteilt mit Durchschnitt µ x und Varianz σ 2 x, Population zu Y ist normalverteilt mit Durchschnitt µ y und Varianz σ 2 y und σ 2 x = σ 2 y. Aber: Varianz σ 2 x von X und Y ist unbekannt.

10 Statistik bei kontrollierten Experimenten: Experimente mit zwei Samples Experiment mit zwei Samples: t-test Additionsregel für Mittelwerte und Mittelwert von jedem Messwert x ist der Mittelwert seiner Population µ Mittelwert von x ȳ ist gleich dem Mittelwert von µ x µ y Statistik bei kontrollierten Experimenten: Experimente mit zwei Samples Experiment mit zwei Samples: t-test Additionsregel für Varianzen und Mittelwert von jedem Messwert x ist der Mittelwert seiner Population µ Varianz von x ȳ ist: σx 2 n + σ2 y m

11 Statistik bei kontrollierten Experimenten: Experimente mit zwei Samples Experiment mit zwei Samples: t-test Satz: Die Differenz zweier unabhängiger normalverteilter Zufallsvariablen ist normalverteilt. Wenn beide Populationen normalverteilt sind, dann ist die Verteilung von x ȳ auch normalverteilt. z-transformation einer Zufallsvariable hat Standardnormalverteilung N(0, 1): z = ( x ȳ) (µ x µ y ) σx 2 n + σ2 y m Statistik bei kontrollierten Experimenten: Experimente mit zwei Samples Experiment mit zwei Samples: t-test Annahme war: beide Populationen haben gleiche Varianz σ 2 ɛ = σ 2 x = σ 2 y Varianz von σ 2 ɛ kann geschätzt werden durch zusammengelegte Varianzen s 2 p als gewichteter Durchschnitt: s 2 p = (n 1)s2 x + (m 1)s 2 y (n 1) + (m 1) Damit ist z-transformation für die Schätzung: t = ( x ȳ) (µ x µ y ) s 2 p n + s2 p m t folgt Students t-verteilung mit (n 1) + (m 1) = n + m 2 Freiheitsgraden (df)

12 Softwaretechnik Statistik bei kontrollierten Experimenten Experimente mit zwei Samples Experiment mit zwei Samples: t-test Experiment mit zwei Samples: t-test Annahme war: beide Populationen haben gleiche Varianz σɛ 2 = σx 2 = σy 2 Varianz von σɛ 2 kann geschätzt werden durch zusammengelegte Varianzen s 2 p als gewichteter Durchschnitt: s 2 p = (n 1)s2 x + (m 1)s 2 y (n 1) + (m 1) Damit ist z-transformation für die Schätzung: t = ( x ȳ) (µx µy ) s 2 p n + s2 p m t folgt Students t-verteilung mit (n 1) + (m 1) = n + m 2 Freiheitsgraden (df) Die Annahme ist, dass die Samples beide eine gemeinsame homogene Varianz haben. Dann kann diese geschätzt werden, indem die Informationen beider Samples gebündelt werden. Die Schätzung ist dann der gewichtete Durchschnitt der einzelnen Varianzen beider Sample-Varianzen. Die Gewichte hierfür sind die jeweiligen Freiheitsgrade n 1 und m 1. S p ist dann die gebündelte Varianz. Der Freiheitsgrad von S p ist (n 1) + (m 1) = n + m 2. Statistik bei kontrollierten Experimenten: Experimente mit zwei Samples Students t-verteilung (df = Freiheitsgrad)

13 Statistik bei kontrollierten Experimenten: Experimente mit zwei Samples Zusammenfassung des Vorgehens beim t-test Eingabe: Zwei unabhängige Samples x 1, x 2,... x n und y 1, y 2... y m Annahme: Populationen zu X und Y sind normalverteilt und haben gleiche Varianz H 0 : Mittelwerte von X und Y sind gleich: µ x µ y = 0 Transformation von H 0 : t 0 = wobei s p = (n 1)s 2 x +(m 1)s 2 y (n 1)+(m 1) x ȳ s p 1 n + 1 m und s 2 x und s 2 y sind die individuellen Sample-Varianzen t 0 folgt bei Gültigkeit von H 0 einer t-verteilung mit n + m 2 Freiheitsgraden Kriterium (zweiseitig, mit Signifikanzniveau α): H 0 ablehnen, wenn t 0 > t α/2,n+m 2 Statistik bei kontrollierten Experimenten: Experimente mit zwei Samples Beispielmessungen Treatment X = Pair-Programming, Treatment Y = kein Pair-Programming i Treatment X: x i Treatment Y: y i 1 3,24 3,44 2 2,71 4,97 3 2,84 4,76 4 1,85 4,96 5 3,22 4,10 6 3,48 3,05 7 2,68 4,09 8 4,30 3,69 9 2,49 4, ,54 4, ,49 n=10 m=11 x = 2, 835 ȳ = 4, 1055 Sx 2 = 0, 6312 Sy 2 = 0, 4112

14 Statistik bei kontrollierten Experimenten: Experimente mit zwei Samples Beispielauswertung mit t-test s p = = (n 1)s 2 x +(m 1)sy 2 (n 1)+(m 1) (10 1) 0,6312+(11 1) 0,4112 (10 1)+(11 1) = 0, 564 t 0 = = x ȳ 1 s p n + 1 m 2,835 4,1055 0, = 5, 642 Freiheitsgrade: df = = 19 t α/2,n+m 2 = t 0,05/2, = 2, 093 t 0 = 5, 642 > t 0,05/2, = 2, 093 H 0 ablehnen Softwaretechnik Statistik bei kontrollierten Experimenten Experimente mit zwei Samples Beispielauswertung mit t-test Beispielauswertung mit t-test sp = = (n 1)s 2 x +(m 1)sy 2 (n 1)+(m 1) (10 1) 0,6312+(11 1) 0,4112 (10 1)+(11 1) = 0, 564 t0 = = x ȳ 1 sp n + 1 m 2,835 4, , Freiheitsgrade: df = = 19 t α/2,n+m 2 = t 0,05/2, = 2, 093 = 5, 642 t0 = 5, 642 > t 0,05/2, = 2, 093 H0 ablehnen Siehe z.b. für eine Tabelle der Students t-verteilung.

15 Statistik bei kontrollierten Experimenten: Verteilungsfreier U-Test Exakter U-Test von Mann-Whitney Gegeben: zwei unabhängige Samples x 1, x 2,... x n und y 1, y 2,... y m mit Ordinalskalenniveau. Annahme: Beide Samples stammen von Populationen mit der gleichen Verteilung. Keine Annahme über diese Verteilung. 1 Daten beider Samples werden vereinigt und geordnet. 2 Jeder Wert x i wird mit jedem Wert y j verglichen: G i = Anzahl der y j < x i L i = Anzahl der y j > x i 3 Summiere: G = 1 i n G i L = 1 i n L i U = min(l, G) Statistik bei kontrollierten Experimenten: Verteilungsfreier U-Test Gruppe x i bzw. y i G i L i X X X X X X Y 3.05 X X Y 3.44 X Y 3.49 Y 3.69 Y 4.09 Y 4.10 Y 4.21 X Y 4.40 Y 4.76 Y 4.96 Y

16 Statistik bei kontrollierten Experimenten: Verteilungsfreier U-Test Exakter U-Test von Mann-Whitney Signifikanztest: Erwartungswert für U bei H o : µ U = (n + m)/2. Je weiter beobachtetes U vom Erwartungswert abweicht, desto unwahrscheinlicher ist H 0 Wahrscheinlichkeit des beobachteten U oder eines kleineren Werts ist die Anzahl z U aus den möglichen ( ) ( n+m m = n+m ) n Kombinationen, die einen U-Wert liefern, der nicht größer als U ist: P = (Z U + Z U 1 )/ ( ) n+m m Lehne H 0 ab, wenn P kleiner als Signifikanzniveau ist. Kritischer Wert (der zur Ablehnung von H 0 führt) kann in Tabelle des U-Tests für kleine Samples nachgeschlagen werden. Im Beispiel: kritischer Wert = 26 für α = 0, 05 H 0 wird abgelehnt wegen U > Softwaretechnik Statistik bei kontrollierten Experimenten Verteilungsfreier U-Test Exakter U-Test von Mann-Whitney Exakter U-Test von Mann-Whitney Signifikanztest: Erwartungswert für U bei Ho: µu = (n + m)/2. Je weiter beobachtetes U vom Erwartungswert abweicht, desto unwahrscheinlicher ist H0 Wahrscheinlichkeit des beobachteten U oder eines kleineren Werts ist die Anzahl zu aus den möglichen ( ) ( n+m m = n+m ) n Kombinationen, die einen U-Wert liefern, der nicht größer als U ist: P = (ZU + ZU 1)/ ( ) n+m m Lehne H0 ab, wenn P kleiner als Signifikanzniveau ist. Kritischer Wert (der zur Ablehnung von H0 führt) kann in Tabelle des U-Tests für kleine Samples nachgeschlagen werden. Im Beispiel: kritischer Wert = 26 für α = 0, 05 H0 wird abgelehnt wegen U > 26 Tabellen für den kritischen Wert bei gegebenem Signifikanzniveau für den U-Test lassen sich im Web finden, indem man nach den Stichwörtern table u test sucht. Z.B.: math.usask.ca/~laverty/s245/tables/wmw.pdf

17 Statistik bei kontrollierten Experimenten: Verteilungsfreier U-Test 1 Wohlin u. a Wohlin, Claes ; Runeson, Per ; Magnus C. Ohlsson, Martin H. und ; Regnell, Björn ; Wesslén, Anders: Experimentation in Software Engineering An Introduction. Kluwer Academic Publishers, ISBN

Softwaretechnik. Prof. Dr. Rainer Koschke. Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen

Softwaretechnik. Prof. Dr. Rainer Koschke. Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen Softwaretechnik Prof. Dr. Rainer Koschke Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen Wintersemester 2013/14 Überblick I Statistik bei kontrollierten Experimenten

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 9. Dezember 2010 1 Konfidenzintervalle Idee Schätzung eines Konfidenzintervalls mit der 3-sigma-Regel Grundlagen

Mehr

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Statistische Auswertungen mit R Universität Kassel, FB 07 Wirtschaftswissenschaften Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Beispiele 8. Sitzung Konfidenzintervalle, Hypothesentests > # Anwendungsbeispiel

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36)

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36) Statistik I Sommersemester 2009 Statistik I I (1/36) Wiederholung Grenzwertsatz Konfidenzintervalle Logik des 0.0 0.1 0.2 0.3 0.4 4 2 0 2 4 Statistik I I (2/36) Zum Nachlesen Agresti/Finlay: Kapitel 6+7

Mehr

Prüfgröße: Ist die durch eine Schätzfunktion zugeordnete reelle Zahl (etwa Mittelwert 7 C).

Prüfgröße: Ist die durch eine Schätzfunktion zugeordnete reelle Zahl (etwa Mittelwert 7 C). Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Aus praktischen Gründen

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 19. Januar 2011 1 Nichtparametrische Tests Ordinalskalierte Daten 2 Test für ein Merkmal mit nur zwei Ausprägungen

Mehr

e) Beim klassischen Signifikanztest muß die Verteilung der Prüfgröße unter der Nullhypothese

e) Beim klassischen Signifikanztest muß die Verteilung der Prüfgröße unter der Nullhypothese 9 Hypothesentests 1 Kapitel 9: Hypothesentests A: Übungsaufgaben: [ 1 ] Bei Entscheidungen über das Ablehnen oder Nichtablehnen von Hypothesen kann es zu Irrtümern kommen. Mit α bezeichnet man dabei die

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Lösungen zu den Übungsaufgaben in Kapitel 10

Lösungen zu den Übungsaufgaben in Kapitel 10 Lösungen zu den Übungsaufgaben in Kapitel 10 (1) In einer Stichprobe mit n = 10 Personen werden für X folgende Werte beobachtet: {9; 96; 96; 106; 11; 114; 114; 118; 13; 14}. Sie gehen davon aus, dass Mittelwert

Mehr

Hypothesentests mit SPSS. Beispiel für einen t-test

Hypothesentests mit SPSS. Beispiel für einen t-test Beispiel für einen t-test Daten: museum-f-v04.sav Hypothese: Als Gründe, in ein Museum zu gehen, geben mehr Frauen als Männer die Erweiterung der Bildung für Kinder an. Dies hängt mit der Geschlechtsrolle

Mehr

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.

Mehr

KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert

KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert 0. Das eigentliche Forschungsziel ist: Beweis der eigenen Hypothese H 1 Dafür muss Nullhypothese H 0 falsifiziert werden können Achtung!

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Biomathematik für Mediziner, Klausur SS 2001 Seite 1

Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Aufgabe 1: Von den Patienten einer Klinik geben 70% an, Masern gehabt zu haben, und 60% erinnerten sich an eine Windpockeninfektion. An mindestens einer

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Das Testen von Hypothesen Während die deskriptive Statistik die Stichproben nur mit Hilfe quantitativer Angaben charakterisiert,

Mehr

Übungsaufgaben zu Statistik II

Übungsaufgaben zu Statistik II Übungsaufgaben zu Statistik II Prof. Dr. Irene Prof. Dr. Albrecht Ungerer Die Kapitel beziehen sich auf das Buch: /Ungerer (2016): Statistik für Wirtschaftswissenschaftler Springer Gabler 4 Übungsaufgaben

Mehr

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie!

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie! Aufgabe 1 (3 + 3 + 2 Punkte) Ein Landwirt möchte das durchschnittliche Gewicht von einjährigen Ferkeln bestimmen lassen. Dies möchte er aus seinem diesjährigen Bestand an n Tieren schätzen. Er kann dies

Mehr

Chi-Quadrat Verfahren

Chi-Quadrat Verfahren Chi-Quadrat Verfahren Chi-Quadrat Verfahren werden bei nominalskalierten Daten verwendet. Die einzige Information, die wir bei Nominalskalenniveau zur Verfügung haben, sind Häufigkeiten. Die Quintessenz

Mehr

Statistik für SozialwissenschaftlerInnen II p.85

Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Ziel von Schätzverfahren: Ausgehend von Stichproben Aussagen über Populationskennwerte machen Kenntnis der Abweichung des

Mehr

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese:

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese: 2.4.1 Grundprinzipien statistischer Hypothesentests Hypothese: Behauptung einer Tatsache, deren Überprüfung noch aussteht (Leutner in: Endruweit, Trommsdorff: Wörterbuch der Soziologie, 1989). Statistischer

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße DAS THEMA: INFERENZSTATISTIK III INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße Inferenzstatistik für Lagemaße Standardfehler

Mehr

Mögliche Fehler beim Testen

Mögliche Fehler beim Testen Mögliche Fehler beim Testen Fehler. Art (Irrtumswahrscheinlichkeit α), Zusammenfassung: Die Nullhypothese wird verworfen, obwohl sie zutrifft. Wir haben uns blamiert, weil wir etwas Wahres abgelehnt haben.

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS Sommersemester 2009, Statistik mit SPSS 26. August 2009 26. August 2009 Statistik Dozentin: mit Anja SPSS Mays 1 Bivariate Datenanalyse, Überblick bis Freitag heute heute Donnerstag Donnerstag Freitag

Mehr

Biostatistik Erne Einfuhrung fur Biowissenschaftler

Biostatistik Erne Einfuhrung fur Biowissenschaftler Matthias Rudolf Wiltrud Kuhlisch Biostatistik Erne Einfuhrung fur Biowissenschaftler PEARSON Studium Inhaltsverzeichnis Vorwort xi Kapitel 1 Einfiihrung 1 1.1 Biostatistik als Bestandteil biowissenschafllicher

Mehr

Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill.

Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill. Statistik Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill. Maxwell, S.E. & Delaney, H.D. (2000). Designing Experiments and Analyzing Data. Mahwah, NJ: Erlbaum. Das Grundproblem

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Statistik-Übungsaufgaben

Statistik-Übungsaufgaben Statistik-Übungsaufgaben 1) Bei der Produktion eine Massenartikels sind erfahrungsgemäß 20 % aller gefertigten Erzeugnisse unbrauchbar. Es wird eine Stichprobe vom Umfang n =1000 entnommen. Wie groß ist

Mehr

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Hypothese: Die Beschäftigung mit Kunst ist vom Bildungsgrad abhängig. 1. Annahmen Messniveau: Modell: Die Skala zur Erfassung der

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Mittelwertvergleiche Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Hypothesentest, ein einfacher Zugang mit Würfeln

Hypothesentest, ein einfacher Zugang mit Würfeln R. Brinkmann http://brinkmann-du.de Seite 4..4 ypothesentest, ein einfacher Zugang mit Würfeln Von einem Laplace- Würfel ist bekannt, dass bei einmaligem Wurf jede einzelne der Zahlen mit der Wahrscheinlichkeit

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Test auf Varianzgleichheit (F-Test) (einseitiger Test!!)

Test auf Varianzgleichheit (F-Test) (einseitiger Test!!) T-Tests in Excel T-Tests in Excel Test auf Varianzgleichheit (F-Test) (einseitiger Test!!)! Annahmen:! Unabhängige Stichproben! Normalverteilte Grundgesamtheiten H0 : σx = σ y; H0 : σx > σ y Sx σ x F =

Mehr

Einführung in die statistische Testtheorie. Einführung in die statistische Testtheorie STATISTIK IST IRR-SINN! Ziel: Methoden:

Einführung in die statistische Testtheorie. Einführung in die statistische Testtheorie STATISTIK IST IRR-SINN! Ziel: Methoden: Nullhypothese H 0 Alternativhypothese H 1 H 0 : A B Fehler 1.Art p-wert H ( -Fehler) 0 : A B, H 0 : A zweiseitige Hypothesen B Signifikanzniveau. Niveau- -Test H 0 H 1 signifikant Fehler 2.Art Fehler 1.Art

Mehr

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie Webinar Induktive Statistik - Wahrscheinlichkeitsrechnung - Stichprobentheorie Wahrscheinlichkeitstheorie Aufgabe : Zwei Lieferanten decken den Bedarf eines PKW-Herstellers von 00.000 Einheiten pro Monat.

Mehr

Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung

Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung Abgaben: 92 / 234 Maximal erreichte Punktzahl: 7 Minimal erreichte Punktzahl: 1 Durchschnitt: 4 Frage 1 (Diese Frage haben ca. 0% nicht beantwortet.)

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp Datenanalyse (PHY31) Herbstsemester 015 Olaf Steinkamp 36-J- olafs@physik.uzh.ch 044 63 55763 Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung und

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Waldinventur und Fernerkundung

Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Waldinventur und Fernerkundung Systematische Stichprobe Rel. große Gruppe von Stichprobenverfahren. Allgemeines Merkmal: es existiert ein festes, systematisches Muster bei der Auswahl. Wie passt das zur allgemeinen Forderung nach Randomisierung

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Test auf einen Anteilswert (Binomialtest) Vergleich zweier Mittelwerte (t-test)

Test auf einen Anteilswert (Binomialtest) Vergleich zweier Mittelwerte (t-test) Spezielle Tests Test auf einen Anteilswert (Binomialtest) Vergleich zweier Anteilswerte Test auf einen Mittelwert (Ein-Stichproben Gauss bzw. t-test) Vergleich zweier Mittelwerte (t-test) Test auf einen

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

Univariates Datenmaterial

Univariates Datenmaterial Univariates Datenmaterial 1.6.1 Deskriptive Statistik Zufallstichprobe: Umfang n, d.h. Stichprobe von n Zufallsvariablen o Merkmal/Zufallsvariablen: Y = {Y 1, Y 2,..., Y n } o Realisationen/Daten: x =

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übungen für die kompetenzbasierte Abschlussprüfung 1. 60 Äpfel wurden gewogen und die Ergebnisse in einem Boxplot-Diagramm dargestellt. Ergänzen Sie die folgenden

Mehr

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08 Computergestützte Methoden Master of Science Prof. Dr. G. H. Franke WS 07/08 1 Seminarübersicht 1. Einführung 2. Recherchen mit Datenbanken 3. Erstellung eines Datenfeldes 4. Skalenniveau und Skalierung

Mehr

Aussagen hierzu sind mit einer unvermeidbaren Unsicherheit behaftet, die statistisch über eine Irrtumswahrscheinlichkeit bewertet wird.

Aussagen hierzu sind mit einer unvermeidbaren Unsicherheit behaftet, die statistisch über eine Irrtumswahrscheinlichkeit bewertet wird. Stichprobenumfang Für die Fragestellung auf Gleichheit von ein oder zwei Stichproben wird auf Basis von Hypothesentests der notwendige Stichprobenumfang bestimmt. Deshalb werden zunächst die Grundlagen

Mehr

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt?

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt? 341 i Metrische und kategoriale Merkmale An einer Beobachtungseinheit werden metrische und kategoriale Variable erhoben. Beispiel: Hausarbeit von Teenagern (Stunden/Woche) 25 15 STUNDEN 5-5 weiblich männlich?

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

Tag 7: Statistik. Themen: A) Standardfehler des Mittelwerts B) Median und Quantile C) Signifikanztest D) Hausaufgabe

Tag 7: Statistik. Themen: A) Standardfehler des Mittelwerts B) Median und Quantile C) Signifikanztest D) Hausaufgabe Tag 7: Statistik Themen: A) Standardfehler des Mittelwerts B) Median und Quantile C) Signifikanztest D) Hausaufgabe A) Standardfehler des Mittelwerts Die Berechnung von Mittelwert und Standardabweichung

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

Zeit zum Kochen [in min] [10, 20[ [20, 30[ [30, 40[ [40, 50[ [50,60[ [60, 100] Hi

Zeit zum Kochen [in min] [10, 20[ [20, 30[ [30, 40[ [40, 50[ [50,60[ [60, 100] Hi 1. Susi und Fritzi bereiten ein Faschingsfest vor, dazu gehört natürlich ein Faschingsmenü. Ideen haben sie genug, aber sie möchten nicht zu viel Zeit fürs Kochen aufwenden. In einer Zeitschrift fanden

Mehr

Bachelor BEE Statistik Übung: Blatt 1 Ostfalia - Hochschule für angewandte Wissenschaften Fakultät Versorgungstechnik Aufgabe (1.1): Gegeben sei die folgende Messreihe: Nr. ph-werte 1-10 6.4 6.3 6.7 6.5

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

Keine Panik vor Statistik!

Keine Panik vor Statistik! Markus Oestreich I Oliver Romberg Keine Panik vor Statistik! Erfolg und Spaß im Horrorfach nichttechnischer Studiengänge STUDIUM 11 VIEWEG+ TEUBNER Inhaltsverzeichnis 1 Erstmal locker bleiben: Es längt

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen einer Population anhand eines Merkmals mit zwei oder mehr

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Klausur Statistik I. Dr. Andreas Voß Wintersemester 2005/06

Klausur Statistik I. Dr. Andreas Voß Wintersemester 2005/06 Klausur Statistik I Dr. Andreas Voß Wintersemester 2005/06 Hiermit versichere ich, dass ich an der Universität Freiburg mit dem Hauptfach Psychologie eingeschrieben bin. Name: Mat.Nr.: Unterschrift: Bearbeitungshinweise:

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Scheinklausur Stochastik 1 für Studierende des Lehramts und der Diplom-Pädagogik

Scheinklausur Stochastik 1 für Studierende des Lehramts und der Diplom-Pädagogik Universität Karlsruhe (TH) Institut für Stochastik Dr. Bernhard Klar Dipl.-Math. oec. Volker Baumstark Name Vorname Matr.-Nr.: Scheinklausur Stochastik für Studierende des Lehramts und der Diplom-Pädagogik

Mehr

Grenzen für x -s-regelkarten

Grenzen für x -s-regelkarten Normalverteilte Fertigung: Stichproben aus der Fertigung: σ σ Eine normalverteilte Fertigung hat den Mittelwert µ und die Standardabweichung σ. Stichproben aus der Fertigung haben zufällig abweichende

Mehr

Vorlesung Wirtschaftsstatistik 2 (FK ) Wiederholungen deskriptive Statistik und Einleitung Normalverteilungsverfahren. Dipl.-Ing.

Vorlesung Wirtschaftsstatistik 2 (FK ) Wiederholungen deskriptive Statistik und Einleitung Normalverteilungsverfahren. Dipl.-Ing. Vorlesung Wirtschaftsstatistik 2 (FK 040637) Wiederholungen deskriptive Statistik und Einleitung Normalverteilungsverfahren Dipl.-Ing. Robin Ristl Wintersemester 2012/13 1 Vorlesungsinhalte Wiederholung:

Mehr

11 Tests zur Überprüfung von Mittelwertsunterschieden

11 Tests zur Überprüfung von Mittelwertsunterschieden 11 Tests zur Überprüfung von Mittelwertsunterschieden 11.1 Der z Test (t Test) für verbundene Stichproben 11.2 Der z Test (t Test) für unabhängige Stichproben 11.3 Fehler 1. Art und 2. Art 11.4 Typische

Mehr

SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben

SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben ÜBERSICHT: Testverfahren bei abhängigen (verbundenen) Stichproben parametrisch nicht-parametrisch 2 Gruppen t-test bei verbundenen

Mehr

Übungsbuch Statistik für Dummies

Übungsbuch Statistik für Dummies beborah Rumseif Übungsbuch Statistik für Dummies WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Inhaltsverzeichnis Über die Autorin 8 Über den Übersetzer 8 Einführung 15 Über dieses Buch 15 Törichte Annahmen

Mehr

Diskrete Wahrscheinlichkeitstheorie - Probeklausur

Diskrete Wahrscheinlichkeitstheorie - Probeklausur Diskrete Wahrscheinlichkeitstheorie - robeklausur Sommersemester 2007 - Lösung Name: Vorname: Matrikelnr.: Studiengang: Hinweise Sie sollten insgesamt Blätter erhalten haben. Tragen Sie bitte Ihre Antworten

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst.

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst. Aufgabe 1 (2 + 4 + 2 + 1 Punkte) Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen X und Y : { 2x + 2y für 0.5 x 0.5, 1 y 2 f(x, y) = 3 0 sonst. a) Berechnen

Mehr

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test 1/29 Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) Matthias Birkner http://www.staff.uni-mainz.de/birkner/biostatistik1516/ 11.12.2015 2/29 Inhalt 1 t-test

Mehr

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente... Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de lordsofthebortz.de lordsofthebortz.de/g+

Mehr

Medizinische Biometrie (L5)

Medizinische Biometrie (L5) Medizinische Biometrie (L5) Vorlesung III Wichtige Verteilungen Prof. Dr. Ulrich Mansmann Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie mansmann@ibe.med.uni-muenchen.de

Mehr

Stichprobenauslegung. für stetige und binäre Datentypen

Stichprobenauslegung. für stetige und binäre Datentypen Stichprobenauslegung für stetige und binäre Datentypen Roadmap zu Stichproben Hypothese über das interessierende Merkmal aufstellen Stichprobe entnehmen Beobachtete Messwerte abbilden Schluss von der Beobachtung

Mehr

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Von Prof. Hubert Weber Fachhochschule Regensburg 3., überarbeitete und erweiterte Auflage Mit zahlreichen Bildern, Tabellen sowie

Mehr

Prof. Dr. Günter Hellmig. Aufgabenskript Induktive Statistik

Prof. Dr. Günter Hellmig. Aufgabenskript Induktive Statistik rof. Dr. Günter Hellmig Aufgabenskript Induktive Statistik Inhalt:.Kombinatorik: Variation und Kombination, jeweils ohne Wiederholung 2.Rechnen mit Wahrscheinlichkeiten: Additions- und Multiplikationssätze

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

7.3 Chi-Quadrat-Streuungstest und F-Test

7.3 Chi-Quadrat-Streuungstest und F-Test 7.3 Chi-Quadrat-Streuungstest und F-Test Alle bisher besprochenen Statistischen Tests sind sog. Tests über die Mittelwerte; denn ihre Nullhypothesen handeln vom Vergleich entweder zweier Mittelwerte oder

Mehr

Inferenzstatistik (=schließende Statistik)

Inferenzstatistik (=schließende Statistik) Inferenzstatistik (=schließende Statistik) Grundproblem der Inferenzstatistik: Wie kann man von einer Stichprobe einen gültigen Schluß auf di Grundgesamtheit ziehen Bzw.: Wie groß sind die Fehler, die

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

Anleitung: Standardabweichung

Anleitung: Standardabweichung Anleitung: Standardabweichung So kann man mit dem V200 Erwartungswert und Varianz bzw. Standardabweichung bei Binomialverteilungen für bestimmte Werte von n, aber für allgemeines p nach der allgemeinen

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN

Mehr

6. Übung Statistische Tests Teil 1 (t-tests)

6. Übung Statistische Tests Teil 1 (t-tests) Querschnittsbereich 1: Epidemiologie, Medizinische iometrie und Medizinische Informatik - Übungsmaterial - Erstellt von Mitarbeitern des IMISE und des ZKS Leipzig 6. Übung Statistische Tests Teil 1 (t-tests)

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Kapitel 5: Einfaktorielle Varianzanalyse Durchführung einer einfaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 5 vorgestellten einfaktoriellen Varianzanalyse

Mehr

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Klausur Nr. 1 2014-02-06 Wahrscheinlichkeitsrechnung Pflichtteil Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche Darstellung,

Mehr

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen Kapitel 8 Schätzung von Parametern 8.1 Schätzmethoden Gegeben seien Beobachtungen Ü Ü ¾ Ü Ò die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen ¾ Ò auffassen. Die Verteilung

Mehr