Scheinklausur Stochastik 1 für Studierende des Lehramts und der Diplom-Pädagogik

Größe: px
Ab Seite anzeigen:

Download "Scheinklausur Stochastik 1 für Studierende des Lehramts und der Diplom-Pädagogik"

Transkript

1 Universität Karlsruhe (TH) Institut für Stochastik Dr. Bernhard Klar Dipl.-Math. oec. Volker Baumstark Name Vorname Matr.-Nr.: Scheinklausur Stochastik für Studierende des Lehramts und der Diplom-Pädagogik 9. März 27 Diese Klausur hat bestanden, wer mindestens 4 Punkte erreicht. Als Hilfsmittel sind nur zwei selbst erstellte DIN A4 Seiten sowie ein nicht programmierbarer Taschenrechner zugelassen! Aufgabe (6) 2 (6) 3 (7) 4 (7) 5 (7) 6 (7) (4) Punkte Korrektor Gesamtpunktzahl Note

2 Aufgabe (6 Punkte) Die Keimfähigkeit einer Sorte einer gartenbaulichen Kultur sei 8%, es gelte also P ( Samen keimt ) =.8. Die Keimfähigkeit eines Samens ist unabhängig von der Keimung jedes anderen Samens. Es werden 4 (durchnummerierte) Samen untersucht. Berechnen Sie die Wahrscheinlichkeiten der folgenden Ereignisse: a) Alle 4 Samen keimen. b) Der. und der 2. Samen keimen, der 3. und der 4. Samen keimen nicht. c) Zwei Samen keimen und zwei keimen nicht. d) Ein Samen keimt und drei keimen nicht. e) Alle 4 Samen keimen nicht. f) Mindestens ein Samen keimt. g) Der. Samen keimt unter der Bedingung, dass mindestens ein Samen keimt. Lösung zu Aufgabe Wir definieren die Ereignisse A i = der i. Samen keimt, i =,..., 4. A, A 2, A 3, A 4 sind stochastisch unabhängig, und es gilt: P (A i ) =.8, P (A c i) =.8 =.2 (i =,..., 4). Bezeichnet X die Anzahl der keimenden Samen unter den 4, so gilt X Bin(4,.8). a) P (A A 2 A 3 A 4 ) = P (A ) P (A 2 ) P (A 3 ) P (A 4 ) = (.8) 4 =.496 b) P (A A 2 A c 3 Ac 4 ) = P (A ) P (A 2 ) ( P (A 3 )) ( P (A 4 )) =.256 c) P (X = 2) = ( 4) =.536 d) P (X = ) = ( 4) =.256 e) P (X = ) =.2 4 =.6.5 P f) P (X ) = P (X = ) = P g) P (A {X }) = P (A {X }) P (X ) = P (A ) P (X ) = =.82

3 Aufgabe 2 (6 Punkte) Tom will im Karlsruher Zoo zur Eisbärenanlage. Er kann hierfür nach rechts (richtiger Weg) oder nach links (falscher Weg) gehen. Fragt er einen Besucher des Zoos mit Tageskarte nach dem Weg dorthin, so erhält er mit Wahrscheinlichkeit 2/3 die richtige Antwort und mit Wahrscheinlichkeit /3 eine falsche Antwort. Fragt er einen Dauerkartenbesitzer nach dem Weg dorthin, so erhält er stets die richtige Antwort. Antworten und Eintrittskarten von verschiedenen Personen sind unabhängig. Die Wahrscheinlichkeit, dass eine zufällig angesprochene Person eine Dauerkarte besitzt, sei /. a) Zeichnen Sie das zu dem 2-stufigen Experiment gehörende Baumdiagramm, und tragen Sie die Start- und Übergangswahrscheinlichkeiten ein. b) Tom fragt einen Besucher B nach dem Weg zur Eisbärenanlage. Mit welcher Wahrscheinlichkeit erhält er eine richtige Antwort? c) Wie groß ist die bedingte Wahrscheinlichkeit, dass der Besucher B eine Dauerkarte besitzt, wenn er die richtige Antwort gegeben hat? d) Tom fragt einen weiteren Besucher B2 nach dem Weg zur Eisbärenanlage. Mit welcher Wahrscheinlichkeit geben B und B2 dieselbe Antwort? Lösung zu Aufgabe 2 a) D := Dauerkarte, T := Tageskarte, R := Antwort richtig, F := Antwort falsch,.5 P D Start R T R 6 3 F 3 b) Der Index beziehe sich auf B. Aus obigem Diagramm lesen wir ab P (R ) = P (D R ) + P (T R ) = + 6 = 7..5 P c) Unser Diagramm und Teil a) liefern P (D R ) = P (D R ) P (R ) = / 7/ = 7.

4 d) Der Index 2 beziehe sich auf B2. Es sei C das Ereignis, dass B und B2 dieselbe Antwort geben. Analog zu a) gilt P (R 2 ) = 7. Die gesuchte Wahrscheinlichkeit berechnet sich wegen der Unabhängigkeit von R und R 2 bzw. F und F 2 zu 2 P P (C) = P (R R 2 ) + P (F F 2 ) = P (R )P (R 2 ) + P (F )P (F 2 ) = ( ) 7 2 ( ) = = 58.

5 Aufgabe 3 (7 Punkte) Sei X exponentialverteilt mit Parameter λ >, d.h. X besitze die Dichte f(x) = λe λx, x >. a) Bestimmen Sie den Median von X. b) Berechnen Sie die Verteilungsfunktion und Dichte der Zufallsvariablen Y := e αx, α >. c) Berechnen Sie den Erwartungswert von Y im Fall < α < λ. Lösung zu Aufgabe 3 a) Die Verteilungsfunktion F von X ist gegeben durch F (x) = e λx, x >, 2 P und F (x) = für x. Wegen F (x) = 2 e λx = 2 λx = log 2 x = λ log 2 berechnet sich der Median von X zu log 2 λ. b) Wegen X > ist Y = e αx >. Für t > gilt ( P (Y t) = P (αx log t) = P X log t ) α ( = exp λ log t ) α = t λ/α. 3 P Eine Dichte für Y ist folglich durch gegeben. f(t) := dp (Y t) dt {t > } = λ α t λ/α {t > } c) Nach der Transformationsformel für Erwartungswerte gilt für < α < λ EY = e αx λe λx dx = λe (λ α)x dx = λ λ α. 2 P

6 Aufgabe 4 (7 Punkte) Es sei (U, W ) ein zweidimensionaler Zufallsvektor mit Dichte f(u, w) = u w 2 e u/w {u>,<w<}. a) Zeigen Sie, dass U Exp() und W U(, ) gilt. b) Berechnen Sie die Kovarianz C(U, W ) und den Korrelationskoeffizienten ρ(u, W ) zwischen U und W. Hinweis: Sie können ohne Beweis E(UW ) = 2/3 und V (U) = verwenden. c) Sind U und W unabhängig? Lösung zu Aufgabe 4 a) Die Dichte f W von W ergibt sich durch f W (w) = u w 2 e u w du = xe x dx =, w (, ), 2.5 P und f W (w) = sonst. Somit ist W auf (, ) gleichverteilt. Ferner gilt für u > f U (u) = u w 2 e u w dw = Somit ist U exponentialverteilt mit Parameter. b) Für U Exp() bzw. W U(, ) gilt u e x dx = e u. EU =, EW = P Ferner ist folglich Somit E(W 2 ) = w 2 dw = 3, V (W ) = E(W 2 ) (EW ) 2 = 3 4 = 2. C(U, W ) = E(UW ) EUEW = = 6 und ρ(u, W ) = C(U, W ) V (U)V (W ) = = 3. c) Aus C(U, W ) folgt, dass U und W nicht unabhängig sind.

7 Aufgabe 5 (7 Punkte) Die Zufallsvariablen X,..., X n seien unabhängig und identisch verteilt mit ( ) ( ) k + r r r ( ) µ k P (X = k) =, k N. k r + µ r + µ Dabei ist r N bekannt und µ > unbekannt. a) Zeigen Sie, dass ˆµ n = n der Maximum-Likelihood-Schätzer für µ ist, falls n i= X i > ist. b) Ist ˆµ n erwartungstreu für µ? c) Berechnen Sie die Varianz von ˆµ n und die mittlere quadratische Abweichung d) Ist die Folge (ˆµ n ) n N konsistent für µ? n i= X i MQAˆµn (µ) = E µ (ˆµ n µ) 2. Hinweis: Sie können ohne Beweis E µ X = µ und V µ (X ) = µ(µ + r) r benutzen. Lösung zu Aufgabe 5 a) Für x = (x,..., x n ), wobei x,..., x n N, gilt: Folglich und sowie L x (µ) = = n ( ) ( ) xi + r r r ( ) µ xi x i= i r + µ r + µ ( ) r nr ( ) P n µ i= x i n ( ) xi + r. r + µ r + µ x i= i }{{} =:c log L x (µ) = nr(log r log(µ + r)) + n x i (log µ log(r + µ)) + log c i= d dµ log L x(µ) = nr n ( µ + r + µ = nr µ + r d 2 d 2 µ log L x( x n ) = i= ( + x n µ = r µ(µ+r) {}}{ ) x i µ + r ) = µ = x n, nr ) ( x n + r xn <, 4 P

8 falls x n >. Folglich ist ˆµ n := X n = n der gesuchte Maximum-Likelihood-Schätzer, falls n i= X i > ist. b) Wegen E µ Xn = µ ist ˆµ n erwartungstreu. n i= X i c) Die mittlere quadratische Abweichung stimmt wegen der Erwartungstreue von ˆµ n mit V µ (ˆµ n ) überein und es gilt MAQˆµn (µ) = V µ (ˆµ n ) = V µ(x ) µ(r + µ) =. n nr d) Die Folge (ˆµ n ) n N ist konsistent: Für ε > folgt aus der Tschebyscheff-Ungleichung für n. P µ ( ˆµ n µ ε) V µ(ˆµ n ) µ(r + µ) ε 2 = nrε 2 Alternativ folgt die Konsistenz direkt aus dem Schwachen Gesetz großer Zahlen.

9 Aufgabe 6 (7 Punkte) In einer Studie soll gezeigt werden, dass bei trainierten Personen der mittlere systolische Blutdruck niedriger als der Normalwert von 8mmHG ist. Dazu wird bei n Sportlern der Blutdruck gemessen, wobei wir annehmen, dass die Blutdruckwerte als Realisierungen unabhängiger Zufallsvariablen mit gleicher Normalverteilung N(µ, 6) modelliert werden können. a) Formulieren Sie eine geeignete Hypothese und Alternative und geben Sie ein Testverfahren basierend auf der Testgröße T n = n( X n 8)/4 an, das geeignet ist, die obige Behauptung statistisch nachzuweisen. Wie muss dabei der kritische Wert gewählt werden, wenn der Stichprobenumfang n = 3 und das Signifikanzniveau α = % betragen soll? b) Was ist das Testergebnis, wenn bei den 3 Sportlern x 3 =78mmHG gemessen wurde. c) Mit welcher Wahrscheinlichkeit wird mit der in a) ermittelten Entscheidungsregel eine Fehlentscheidung getroffen, wenn im Fall n = 3 der mittlere systolische Blutdruck in Wirklichkeit 78mmHG beträgt? d) Was könnte der Leiter der Studie tun, um die Fehlerwahrscheinlichkeit in c) zu verringern? Einige Werte der Verteilungsfunktion Φ der Normalverteilung N(, ): t Φ(t) Lösung zu Aufgabe 6 a) Man muss als Hypothese H : ϑ 8 und als Alternative H : ϑ < 8 wählen. Nur dann ist bei Ablehnung von H die Aussage bei trainierten Personen ist der mittlere systolische Blutdruck niedriger als 8mmHG statistisch gesichert. Da kleine Werte von T n gegen H sprechen, und da T n unter H standardnormalverteilt ist, muss H zum Niveau α =. verworfen werden, wenn T n z. = Φ (.) = 2.33 ist. Andernfalls besteht kein Einwand gegen H. 2.5 P b) Wegen T 3 = 3( X 3 8)/4 = 2.74 < z. wird H wird auf dem % Niveau abgelehnt. c) Ist in Wirklichkeit µ = 78, so liegt eine Fehlentscheidung vor, wenn H nicht verworfen wird. ( ) n( Xn 8) P µ (Test verwirfth nicht) = P µ > z. 4 ( ) n( Xn 8) = P µ z. 4 ( ) 3( X3 78) 3(8 78) = P µ z = Φ( ) = Φ(.4) = P

10 d) Der Studienleiter könnte den Stichprobenumfang erhöhen, denn dann nimmt die Güte des Tests zu, es verringert sich also die Wahrscheinlichkeit, dass bei Vorliegen der Alternative die Hypothese H fälschlicherweise nicht abgelehnt wird. Eine weitere Möglichkeit wäre, den Fehler. Art anzuheben (etwa auf α = 5%).

Institut für Stochastik Prof. Dr. N. Henze Dipl.-Math. V. Riess

Institut für Stochastik Prof. Dr. N. Henze Dipl.-Math. V. Riess Institut für Stochastik Prof. Dr. N. Henze Dipl.-Math. V. Riess Name: Vorname: Matrikelnummer: Lösungsvorschlag zur Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik (Stochastik) Datum: 07.

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 003/004 Universität Karlsruhe 05. 04. 004 Prof. Dr. G. Last Klausur zur Vorlesung Stochastik II Dauer: 90 Minuten Name: Vorname: Matrikelnummer: Diese Klausur hat

Mehr

Zulassungsprüfung Stochastik,

Zulassungsprüfung Stochastik, Zulassungsprüfung Stochastik,..3 Wir gehen stets von einem Maßraum (Ω, A, µ) bzw. einem Wahrscheinlichkeitsraum (Ω,A,P) aus. Die Borel σ-algebra auf n wird mit B n bezeichnet, das Lebesgue Maß auf n wird

Mehr

Scheinklausur zur Vorlesung Stochastik II

Scheinklausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 2007/2008 Universität Karlsruhe 25. 02. 2008 Dr. B. Klar Scheinklausur zur Vorlesung Stochastik II Muster-Lösung Dauer: 90 Minuten Name: Vorname: Matrikelnummer:

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Stochastik Serie 11. ETH Zürich HS 2018

Stochastik Serie 11. ETH Zürich HS 2018 ETH Zürich HS 208 RW, D-MATL, D-MAVT Prof. Marloes Maathuis Koordinator Dr. Marvin Müller Stochastik Serie. Diese Aufgabe behandelt verschiedene Themenbereiche aus dem gesamten bisherigen Vorlesungsmaterial.

Mehr

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK Institut für Stochastik Prof. Dr. Daniel Hug Name: Vorname: Matr.-Nr.: Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK Datum: 08. Februar 0 Dauer:

Mehr

Zulassungsprüfung Stochastik,

Zulassungsprüfung Stochastik, Zulassungsprüfung Stochastik, 10.10.14 Wir gehen stets von einem Maßraum (Ω, A, µ) bzw. einem Wahrscheinlichkeitsraum (Ω,A,P) aus. Die Borel σ-algebra auf R n wird mit B n bezeichnet, das Lebesgue Maß

Mehr

Sammlung alter Klausuraufgaben zur Stochastik keine Abgabe keine Besprechung in den Tutorien

Sammlung alter Klausuraufgaben zur Stochastik keine Abgabe keine Besprechung in den Tutorien Sammlung alter Klausuraufgaben zur Stochastik keine Abgabe keine Besprechung in den Tutorien Prof. F. Merkl 23. Mai 2016 Zu Ihrer Information und als zusätzliches Übungsmaterial sind hier die Aufgaben

Mehr

i =1 i =2 i =3 x i y i 4 0 1

i =1 i =2 i =3 x i y i 4 0 1 Aufgabe (5+5=0 Punkte) (a) Bei einem Minigolfturnier traten 6 Spieler gegeneinander an. Die Anzahlen der von ihnen über das gesamte Turnier hinweg benötigten Schläge betrugen x = 24, x 2 = 27, x = 2, x

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Bühlmann ETH Zürich Sommer 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete

Mehr

Dr. W. Kuhlisch Dresden, Institut für Mathematische Stochastik

Dr. W. Kuhlisch Dresden, Institut für Mathematische Stochastik Dr. W. Kuhlisch Dresden, 12. 08. 2014 Institut für Mathematische Stochastik Klausur Statistik für Studierende der Fachrichtungen Hydrologie und Altlasten/Abwasser zugelassene Hilfsmittel: Taschenrechner

Mehr

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1 Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Stochastik WS 007/008 Universität Karlsruhe. 0. 008 r. B. Klar Klausur zur Vorlesung Stochastik II Muster-Lösung auer: 90 Minuten Name: Vorname: Matrikelnummer: iese Klausur hat bestanden,

Mehr

Nachklausur Wahrscheinlichkeitstheorie und Inferenz II Sommersemester Oktober 2011

Nachklausur Wahrscheinlichkeitstheorie und Inferenz II Sommersemester Oktober 2011 Nachklausur Wahrscheinlichkeitstheorie und Inferenz II Sommersemester 2011 28. Oktober 2011 Prof. Dr. Torsten Hothorn Institut für Statistik Nachname: Vorname: Matrikelnummer: Anmerkungen: ˆ Schreiben

Mehr

Statistik für Ingenieure Vorlesung 5

Statistik für Ingenieure Vorlesung 5 Statistik für Ingenieure Vorlesung 5 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 28. November 2017 3.4 Wichtige stetige Verteilungen 3.4.1 Exponentialverteilung Parameter:

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Mathematische Stochastik WS 2006/2007 Universität Karlsruhe 12. Februar 2007 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Aufgabe 1 (15 Punkte) Klausur zur Vorlesung Statistik für Biologen

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Rechenregeln für den Erwartungswert Ist f symmetrisch bzgl. a, so gilt E(X)

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2010 Karlsruher Institut für Technologie Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheinlichkeitstheorie und Statistik vom 14.9.2010 Musterlösungen Aufgabe 1: Gegeben sei eine Urliste

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. M. Maathuis ETH Zürich Winter 2010 Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Schreiben Sie für Aufgabe 2-4 stets alle Zwischenschritte und -rechnungen sowie Begründungen auf. Aufgabe

Mehr

Zulassungsprüfung Stochastik,

Zulassungsprüfung Stochastik, Zulassungsprüfung Stochastik, 5.5. Wir gehen stets von einem Maßraum (Ω, A, µ) bzw. einem Wahrscheinlichkeitsraum (Ω,A,P) aus. Die Borel σ-algebra auf R n wird mit B n bezeichnet, das Lebesgue Maß auf

Mehr

Nachklausur zur Vorlesung. Statistik für Studierende der Biologie

Nachklausur zur Vorlesung. Statistik für Studierende der Biologie Institut für Mathematische Stochastik WS 1999/2000 Universität Karlsruhe 11. Mai 2000 Dr. Bernhard Klar Nachklausur zur Vorlesung Statistik für Studierende der Biologie Bearbeitungszeit: 90 Minuten Name:

Mehr

Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom

Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom Institut für Stochastik WS 009/10 Karlsruher Institut für Technologie (KIT) Dr. B. Klar Klausur Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom 08.0.010 Musterlösungen Aufgabe

Mehr

Mathematische Statistik Aufgaben zum Üben. Schätzer

Mathematische Statistik Aufgaben zum Üben. Schätzer Prof. Dr. Z. Kabluchko Wintersemester 2016/17 Philipp Godland 14. November 2016 Mathematische Statistik Aufgaben zum Üben Keine Abgabe Aufgabe 1 Schätzer Es seien X 1,..., X n unabhängige und identisch

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion und σ > 0 heißt

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Aufgaben. d) Seien X und Y Poissonverteilt mit Parameter µ, X, Y P(µ). 2. Dann ist die Summe auch Poissonverteilt mit (X + Y ) P(2µ).

Aufgaben. d) Seien X und Y Poissonverteilt mit Parameter µ, X, Y P(µ). 2. Dann ist die Summe auch Poissonverteilt mit (X + Y ) P(2µ). Aufgaben 1. Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete Frage 1 Punkt und pro falsche Antwort 1/2 Punkt Abzug. Minimal erhält man für die gesamte

Mehr

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. P. Embrechts ETH Zürich Winter 2009 Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Schreiben Sie für Aufgabe 2-4 stets alle Zwischenschritte und -rechnungen sowie Begründungen auf. Aufgabe

Mehr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X

Mehr

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II Statistik II 1. Ergänzungen zur Wahrscheinlichkeitstheorie Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen Statistik II 1. Ergänzungen zur

Mehr

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60 WESTFÄLISCHE WILHELMS - UNIVERSITÄT MÜNSTER Wirtschaftswissenschaftliche Faktultät Prof. Dr. Bernd Wilfling Professur für VWL, insbesondere Empirische Wirtschaftsforschung Musterlösung zur Klausur im Fach

Mehr

Es sei x 1. Zeigen Sie mittles vollständiger Induktion, dass dann für jede natürliche Zahl n 0 gilt: n x k = 1 xn+1 1 x.

Es sei x 1. Zeigen Sie mittles vollständiger Induktion, dass dann für jede natürliche Zahl n 0 gilt: n x k = 1 xn+1 1 x. Aufgabe 1. (5 Punkte) Es sei x 1. Zeigen Sie mittles vollständiger Induktion, dass dann für jede natürliche Zahl n 0 gilt: n x k = 1 xn+1 k=0 1 x. Aufgabe 2. (7 Punkte) Bestimmen Sie das folgende Integral

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, May 29, 2017 Dr. Michael O. Distler

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Klausur zu Statistik II

Klausur zu Statistik II GOETHE-UNIVERSITÄT FRANKFURT FB Wirtschaftswissenschaften Statistik und Methoden der Ökonometrie Prof. Dr. Uwe Hassler Wintersemester 03/04 Klausur zu Statistik II Matrikelnummer: Hinweise Hilfsmittel

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Mathematische Stochastik WS 2004/2005 Universität Karlsruhe 14. Februar 2005 Dr. Bernhard Klar Sebastian Müller Aufgabe 1: (15 Punkte) Klausur zur Vorlesung Statistik für Biologen Musterlösungen

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 240/476 c Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 240/476 c Ernst W. Mayr 1.4.4 Laplace-Prinzip in kontinuierlichen Wahrscheinlichkeitsräumen Das folgende Beispiel zeigt, dass im kontinuierlichen Fall die Bedeutung von gleichwahrscheinlich nicht immer ganz klar sein muss. Bertrand

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests Nach Verteilungsannahmen: verteilungsabhängig: parametrischer [parametric] Test verteilungsunabhängig: nichtparametrischer [non-parametric] Test Bei parametrischen Tests

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Prof. Dr. Rainer Schwabe 08.07.2014 Otto-von-Guericke-Universität Magdeburg Institut für Mathematische Stochastik Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Name:, Vorname: Matr.-Nr.

Mehr

Aufgabe Punkte

Aufgabe Punkte Institut für Mathematik Freie Universität Berlin Carsten Hartmann, Stefanie Winkelmann Musterlösung für die Nachklausur zur Vorlesung Stochastik I im WiSe 20/202 Name: Matr.-Nr.: Studiengang: Mathematik

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. P. Embrechts ETH Zürich Winter 2012 Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Schreiben Sie für Aufgabe 2-4 stets alle Zwischenschritte und -rechnungen sowie Begründungen auf. Aufgabe

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Studiengang Schließende Statistik Sommersemester Namensschild

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Studiengang Schließende Statistik Sommersemester Namensschild Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Studiengang Schließende Statistik Sommersemester 2010 Namensschild Prof. Dr. Ralph Friedmann / Dr. Martin Becker Hinweise für die Klausurteilnehmer ˆ

Mehr

How To Find Out If A Ball Is In An Urn

How To Find Out If A Ball Is In An Urn Prof. Dr. P. Embrechts ETH Zürich Sommer 2012 Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Schreiben Sie für Aufgabe 2-4 stets alle Zwischenschritte und -rechnungen sowie Begründungen auf. Aufgabe

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

Finanzmathematische Modelle und Simulation

Finanzmathematische Modelle und Simulation Finanzmathematische Modelle und Simulation WS 9/1 Rebecca Henkelmann In meiner Ausarbeitung Grundbegriffe der Stochastik I, geht es darum die folgenden Begriffe für die nächsten Kapitel einzuführen. Auf

Mehr

Nachklausur Mathematik für Biologen WS 08/09

Nachklausur Mathematik für Biologen WS 08/09 Aufgabe 1: (5 Punkte) In einer diploiden Population beobachten wir die Ausprägung eines bestimmten Gens, das zwei Allele V und W annimmt. Somit besitzt jedes Individuum V V, V W oder W W als Genotyp. Die

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion f(x) =

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9.

7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9. 7. Übung: Aufgabe 1 b), c), e) Aufgabe a), c), e) Aufgabe 3 c), e) Aufgabe 4 b) Aufgabe 5 a) Aufgabe 6 b) Aufgabe 7 e) Aufgabe 8 c) Aufgabe 9 a), c), e) Aufgabe 10 b), d) Aufgabe 11 a) Aufgabe 1 b) Aufgabe

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Marcel Thoms Mathematik Online Herbst 211 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge

Mehr

Statistik II für Betriebswirte Vorlesung 1

Statistik II für Betriebswirte Vorlesung 1 Statistik II für Betriebswirte Vorlesung 1 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 16. Oktober 2017 Dr. Andreas Wünsche Statistik II für Betriebswirte Vorlesung 1 Version:

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Bühlmann ETH Zürich Winter 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete

Mehr

Statistik für Ingenieure Vorlesung 3

Statistik für Ingenieure Vorlesung 3 Statistik für Ingenieure Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 14. November 2017 3. Zufallsgrößen 3.1 Zufallsgrößen und ihre Verteilung Häufig sind

Mehr

Institut für Stochastik, SoSe K L A U S U R , 13:

Institut für Stochastik, SoSe K L A U S U R , 13: Institut für Stochastik, SoSe 2014 Mathematische Statistik Paravicini/Heusel 1. K L A U S U R 12.7.2014, 13:00-16.00 Name: Geburtsdatum: Vorname: Matrikelnummer: Übungsgruppe bei: Studiengang & angestrebter

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Beispiel für Gütefunktionen Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = 0.10

Beispiel für Gütefunktionen Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = 0.10 6 Hypothesentests Gauß-Test für den Mittelwert bei bekannter Varianz 6.3 Beispiel für Gütefunktionen Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = 0.10 G(µ) 0 α 0. 0.4 0.6 0.8 1 n = 10 n =

Mehr

Probeklausur Statistik II

Probeklausur Statistik II Prof. Dr. Chr. Müller PROBE-KLAUSUR 1 1 2 3 4 5 6 7 8 Gesamt: 15 8 16 16 7 8 15 15 100 Probeklausur Statistik II Name: Vorname: Fachrichtung: Matrikel-Nummer: Bitte beachten Sie folgendes: 1) Die Klausur

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 20. Januar 2011 1 Der F -Test zum Vergleich zweier Varianzen 2 Beispielhafte Fragestellung Bonferroni-Korrektur

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

TU DORTMUND Sommersemester 2018

TU DORTMUND Sommersemester 2018 Fakultät Statistik. April 08 Blatt Aufgabe.: Wir betrachten das Zufallsexperiment gleichzeitiges Werfen zweier nicht unterscheidbarer Würfel. Sei A das Ereignis, dass die Augensumme beider Würfel ungerade

Mehr

DWT 3.3 Warteprobleme mit der Exponentialverteilung 275/467 Ernst W. Mayr

DWT 3.3 Warteprobleme mit der Exponentialverteilung 275/467 Ernst W. Mayr Poisson-Prozess Wir hatten bei der Diskussion der geometrischen und der Poisson-Verteilung festgestellt: Wenn der zeitliche Abstand der Treffer geometrisch verteilt ist, so ist ihre Anzahl in einer festen

Mehr

Klausur zu,,einführung in die Wahrscheinlichkeitstheorie

Klausur zu,,einführung in die Wahrscheinlichkeitstheorie Institut für angewandte Mathematik Wintersemester 2009/10 Andreas Eberle, Matthias Erbar, Bernhard Hader Klausur zu,,einführung in die Wahrscheinlichkeitstheorie Bitte diese Felder in Druckschrift ausfüllen

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. M. Schweizer ETH Zürich Winter 2010/2011 Wahrscheinlichkeit und Statistik BSc D-INFK Name: Vorname: Stud. Nr.: Das Folgende bitte nicht ausfüllen! Aufg. Summe Kontr. Pkte.-Max. 1 10 2 10 3 15

Mehr

Studienbegleitende Prüfung Stochastik 2

Studienbegleitende Prüfung Stochastik 2 Universität Karlsruhe (TH) Institut für Stochastik Prof. Dr. N. Bäuerle Name: Vorname: Matr.-Nr.: Studienbegleitende Prüfung Stochastik 2 27. März 2007 Diese Klausur hat bestanden, wer mindestens 20 Punkte

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Stochastik für Mathematiker Teil 2: Wahrscheinlichkeitstheorie

Stochastik für Mathematiker Teil 2: Wahrscheinlichkeitstheorie Stochastik für Mathematiker Teil 2: Wahrscheinlichkeitstheorie Sommersemester 2018 Kapitel 8: Elemente der mathematischen Statistik Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 24/25 Universität Karlsruhe 7. März 25 Priv-Doz. Dr. D. Kadelka Klausur zur Vorlesung Stochastik II Dauer: 9 Minuten Name: Vorname: Matrikelnummer: Diese Klausur

Mehr

Musterlösung zu Serie 8

Musterlösung zu Serie 8 Dr. Markus Kalisch Statistik I für Biol./Pharm. Wiss./HST) FS 15 Musterlösung zu Serie 8 1. a) Damit fx) eine Dichte ist, muss die Fläche des Dreiecks gleich 1 sein. Es muss also gelten c = 1. Daraus folgt

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die

Mehr

f(x) = P (X = x) = 0, sonst heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X P o(λ). Es gilt x x! 1 Wahrscheinlichkeitsrechnung 212

f(x) = P (X = x) = 0, sonst heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X P o(λ). Es gilt x x! 1 Wahrscheinlichkeitsrechnung 212 1.6.2 Poisson Verteilung Eine weitere wichtige diskrete Verteilung ist die Poisson-Verteilung. Sie modelliert die Anzahl (eher seltener) Ereignisse in einem Zeitintervall (Unfälle, Todesfälle; Sozialkontakte,

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge der Elementarereignisse

Mehr

Übungen zur Vorlesung Statistische Methoden Kapitel 1-2

Übungen zur Vorlesung Statistische Methoden Kapitel 1-2 TECHNISCHE UNIVERSITÄT DORTMUND Sommersemester 2011 FAKULTÄT STATISTIK Dr. M. Arnold Dipl.-Stat. R. Walter Übungen zur Vorlesung Statistische Methoden Kapitel 1-2 Aufgabe 1: Gegeben ist eine diskrete Zufallsvariable

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Testverteilungen Chi-Quadrat-Verteilung Sind X 1,..., X n iid N(0; 1)-verteilte

Mehr

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL)

Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Prof. Dr. M. Schweizer ETH Zürich Winter 2018 Stochastik (BSc D-MAVT / BSc D-MATH / BSc D-MATL) Bitte... Lege deine Legi auf den Tisch. Trage deine Daten in dieses Deckblatt ein, und schreibe auf jedes

Mehr

Nachklausur zur Vorlesung

Nachklausur zur Vorlesung Institut für Mathematische Stochastik WS 003/004 Universität Karlsruhe 30. April 004 Priv.-Doz. Dr. D. Kadelka Nachklausur zur Vorlesung Statistik für Biologen Musterlösungen Aufgabe 1 Gemessen wurde bei

Mehr

Institut für Stochastik, SoSe K L A U S U R , 8:00-11:00. Aufgabe Punkte erreichte Punkte Korrektur

Institut für Stochastik, SoSe K L A U S U R , 8:00-11:00. Aufgabe Punkte erreichte Punkte Korrektur Institut für Stochastik, SoSe 2014 Mathematische Statistik Paravicini/Heusel 2. K L A U S U R 29.9.2014, 8:00-11:00 Name: Geburtsdatum: Vorname: Matrikelnummer: Übungsgruppe bei: Studiengang & angestrebter

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.

Mehr

Lösungen zum Aufgabenblatt 14

Lösungen zum Aufgabenblatt 14 Lösungen zum Aufgabenblatt 14 61. Das Gewicht von Brötchen (gemessen in g) sei zufallsabhängig und werde durch eine normalverteilte Zufallsgröße X N(µ, 2 ) beschrieben, deren Varianz 2 = 49 g 2 bekannt

Mehr

Statistik II. Version A. 1. Klausur Sommersemester 2011 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!

Statistik II. Version A. 1. Klausur Sommersemester 2011 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Statistik II Version A 1. Klausur Sommersemester 2011 Hamburg, 27.07.2011 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................

Mehr