Biomathematik für Mediziner, Klausur SS 2001 Seite 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Biomathematik für Mediziner, Klausur SS 2001 Seite 1"

Transkript

1 Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Aufgabe 1: Von den Patienten einer Klinik geben 70% an, Masern gehabt zu haben, und 60% erinnerten sich an eine Windpockeninfektion. An mindestens einer der beiden Infektionen waren 90% der Patienten erkrankt. Wie groß ist die Wahrscheinlichkeit, dass ein zufällig ausgewählter Patient sowohl an Masern als auch an Windpocken erkrankt war? (1) 0.30 (2) 0.42 (3) 0.20 (4) 0.40 (5) 0.90 Aufgabe 2: Jede achtzigste Kanüle eines Herstellers ist nicht einwandfrei. Wie wahrscheinlich ist es, dass unter den nach einem Einsatz verbliebenen letzten vier Kanülen auf einem Rettungswagen genau zwei sind, die nicht einwandfrei sind? (1) (2) (3) (4) (5) Aufgabe 3: Nach einer Behandlung wegen Krebs war die Überlebensdauer von neun Patienten 5, 3, 10, 4, 7, 6, 3, 14 und 4 Monate. Der Median der Überlebensdauer in Monaten dieser Gruppe beträgt (1) 5 (2) 4 (3) 4.5 (4) 6 (5) keine dieser Antworten Aufgabe 4: In der Bevölkerung sei der Kreatininwert normalverteilt mit µ = 78 und σ = 8. Wieviel Prozent der Bevölkerung hat einen Kreatininwert zwischen 72 und 74? (1) 2.3% (2) 22.7% (3) 2.6% (4) 6.9% (5) 8.2%

2 Biomathematik für Mediziner, Klausur SS 2001 Seite 2 Aufgabe 5: Die Erwartungswerte zweier Verteilungen sollen verglichen werden. Dazu werden zwei zufällige Stichproben mit jeweils 11 Daten gezogen. Getestet wird mit dem Zweistichproben t - Test für unverbundene Stichproben bei zweiseitiger Alternativhypothese und einer Irrtumswahrscheinlichkeit α = Als Prüfgröße ergibt sich t = Die Schlussfolgerung lautet: (1) Die Erwartungswerte unterscheiden sich bei α = 0.05 nicht signifikant. (2) Die Gleichheit der Erwartungswerte ist signifikant. (3) Mit Wahrscheinlichkeit 0.95 sind die Erwartungswerte gleich. (4) Mit Wahrscheinlichkeit 0.95 sind die Erwartungswerte nicht gleich. (5) Da die Anzahl der Freiheitsgrade nicht bekannt ist, ist keine Schlussfolgerung möglich. Aufgabe 6: Beim zweiseitigen Einstichproben t - Test, der mit Irrtumswahrscheinlichkeit α = 0.05 für den Fehler 1. Art und n = 5 Daten durchgeführt werden soll, benötigt man zur Entscheidung, ob die Nullhypothese verworfen werden muss oder nicht verworfen werden kann, das Quantil (1) t 4, 0.95 (2) t 4, (3) t 5, 0.95 (4) t 5, (5) t 6, 0.95 Aufgabe 7: Beim Würfeln mit zwei Würfeln hat die Augensumme 9 eine Wahrscheinlichkeit von 1/9. Welche der folgenden Augensummen fällt mit größerer Wahrscheinlichkeit als die 9? (1) 12 (2) 11 (3) 10 (4) 6 (5) 3 Aufgabe 8: Sie führen einen χ 2 - Test in einer Tafel mit k Spalten und l Zeilen durch und benutzen dabei das χ 2 12, Quantil. Welche der Angaben zur Anzahl der Zeilen und Spalten der Ausgangstabelle führt zu diesem Quantil? (1) k = 3, l = 6 (2) k = 4, l = 3 (3) k = 6, l = 2 (4) k = 5, l = 4 (5) k = 2, l = 12

3 Biomathematik für Mediziner, Klausur SS 2001 Seite 3 Aufgabe 9: Drei von sieben Pflaumen in einer Schüssel sind von einem Wurm bewohnt. Sie wählen zwei Pflaumen aus. Wie groß ist die Wahrscheinlichkeit, dass beide wurmfrei sind? (1) 5/21 (2) 7/21 (3) 2/7 (4) 14/42 (5) 16/49 Aufgabe 10: Bei einem neuen Kopfschmerzmittel treten in 3% der Fälle leichte Nebenwirkungen auf. Das Mittel wird von 100 Patienten eingenommen. Wie groß ist die Wahrscheinlichkeit, dass höchstens bei einem Patienten Nebenwirkungen auftreten? (1) 1.24 (2) 0.3 (3) (4) (5) Aufgabe 11: Wenn sich König Artus mit seinen 8 Paladinen traf, saßen sie gemeinsam an der Tafelrunde. Wie viele Möglichkeiten gibt es für seine Paladine, sich zu ihm zu setzen? (1) (2) (3) (4) (5) Aufgabe 12: Bei einer Meinungsumfrage zum Thema Aktien waren 40% der Befragten im Alter zwischen 18 und 25, 35% zwischen 25 und 50 und alle anderen über 50 Jahre alt (Minderjährige wurden nicht befragt). Dabei ergab sich, dass 60% der unter 25- jährigen, 45% der zwischen jährigen und 25% der über 50-jährigen Personen eine positive Meinung zu Aktien als Anlageform hatten. Wie groß ist der Anteil unter allen Befragten, die eine negative Meinung zu Aktien haben? (1) 0.4 (2) 0.54 (3) 1.05 (4) 0.36 (5) 0.49 Aufgabe 13: In einer amerikanischen Studie wurde zwischen der Körpergröße von Müttern und Töchtern ein Korrelationskoeffizient von 0.69 gefunden. Ein deutscher Wissenschaftler transformiert die in ft gemessenen Originaldaten in cm (1ft=30.5cm). Wie lautet der Korrelationskoeffizient jetzt? (1) 30.5 / 0.69 (2) 0.69 * 30.5 (3) 0.69 (4) 0.69 / 30.5 (5)

4 Biomathematik für Mediziner, Klausur SS 2001 Seite 4 Aufgabe 14: Bei einer Infektionskrankheit verlaufen 60% der Fälle stumm. A bezeichne das Ereignis, dass von neun infizierten Personen höchstens 4 Personen manifest erkranken und B bezeichne das Ereignis, dass von elf infizierten Personen mindestens 6 Personen manifest erkranken. Welche Aussage ist richtig? (1) P(A) = P(B) (2) P(A) = ½ (3) P(B) = ½ (4) P(A) < P(B) (5) P(A) > P(B) Aufgabe 15: Von den 24 Mitgliedern einer Übungsgruppe sind 4 verheiratet und 18 weiblich. Wie viele Studentinnen sind nicht verheiratet, wenn in dieser Übungsgruppe die Merkmale ''Geschlecht'' und ''Familienstand'' unabhängig sind? (1) 3 (2) 6 (3) 9 (4) 12 (5) 15 Aufgabe 16: Die Wahrscheinlichkeit, dass H 0 richtig ist, wenn die Durchführung eines statistischen Tests nicht zur Ablehnung der Nullhypothese führt, ist stets >= 1 - α weil die Wahrscheinlichkeit für einen Fehler 2. Art stets kleiner als die Wahrscheinlichkeit für einen Fehler 1. Art ist. (1) Aussage 1 richtig, Aussage 2 richtig, Verknüpfung richtig (2) Aussage 1 richtig, Aussage 2 richtig, Verknüpfung falsch (3) Aussage 1 richtig, Aussage 2 falsch (4) Aussage 1 falsch, Aussage 2 richtig (5) Aussage 1 falsch, Aussage 2 falsch Aufgabe 17: In der 1. Fußball - Bundesliga spielen 18 Mannschaften. Pro Saison spielt jede Mannschaft gegen jede andere Mannschaft (Hin- und Rückspiel). Wie viele Spiele werden in der 1. Fußball Bundes-liga pro Saison gespielt? (1) 18 x 18 (2) 18 x 17 (3) 18 x 17 x 2 (4) 17 x 17 x 2 (5) 17 x 17

5 Biomathematik für Mediziner, Klausur SS 2001 Seite 5 Aufgabe 18: Wie heißt das Maß des linearen Zusammenhangs zwischen zwei stetigen Variablen? (1) Kontingenzkoeffizient (2) Korrelationskoeffizient (3) Regressionskoeffizient (4) Rekreationskoeffizient (5) keine der obigen Antworten ist richtig. Aufgabe 19: Für eine binomialverteilte (Zufalls-)Variable gilt: (1) Ihre Verteilungsfunktion ist stetig. (2) Ihre Verteilungsfunktion ist symmetrisch. (3) Ihre Dichtefunktion ist symmetrisch. (4) Die Werte der Wahrscheinlichkeitsfunktion sind immer kleiner als 0.5. (5) Die (Zufalls-)Variable nimmt nur nicht-negative Werte an. Aufgabe 20: Ein statistischer Test dient (1) zur Absicherung einer vorher getroffenen Entscheidung. (2) zur Berechnung der Irrtumswahrscheinlichkeit. (3) zur Berechnung des Mittelwertunterschiedes. (4) zum Prüfen einer Hypothese. (5) zur Ermittlung einer Signifikanz. Aufgabe 21: Der Logarithmus (zur Basis 10) eines Laborparameters sei normalverteilt mit Erwartungswert µ = 5 [lg(mg)] und der Standardabweichung σ = 1.5 [lg(mg)]. In welchem Bereich liegen die oberen 25% der Original-Werte dieses Laborparameters? (1) im Bereich ab ca. 100 mg (2) im Bereich ab ca mg (3) im Bereich ab ca mg (4) im Bereich ab ca mg (5) im Bereich ab ca mg.

6 Biomathematik für Mediziner, Klausur SS 2001 Seite 6 Aufgabe 22: Was bedeutet es, dass ein Test eine Sensitivität von 98% aufweist? (1) 98% der positiv Getesteten haben tatsächlich die Krankheit, für die der Test ausgelegt ist. (2) 98% der Kranken haben ein positives Testergebnis. (3) 2% der Kranken haben ein positives Testergebnis. (4) 98% der Gesunden haben ein negatives Testergebnis. (5) 2% der Gesunden haben ein positives Testergebnis. Aufgabe 23: Wieviele quantitativ stetige Merkmale enthält folgende Liste: Geschlecht, Schuhgröße, Gewicht, Kinderzahl, Größe. (1) 0 (2) 4 (3) 1 (4) 2 (5) 3 Aufgabe 24: In 2 Gruppen mit n 1 = 20 und n 2 = 10 wird ein Medikament mittels Blutproben vor und nach der Applikation auf seine Bioverfügbarkeit untersucht. Für die Auswertung mit einem t - Test muß folgender Freiheitsgrad eingesetzt werden: (1) 29 (2) 28 (3) 20 (4) 10 (5) 9 Aufgabe 25: Welche Aussage trifft zu? Die Wahrscheinlichkeit, dass in einer Familie mit 3 Kindern alle Kinder das gleiche Geschlecht haben, beträgt annähernd (1) 0 (2) 1/8 (3) ¼ (4) ½ (5) 2/3 Aufgabe 26: Die Verteilungsfunktion F(a) gibt zu jedem Wert die Wahrscheinlichkeit an, dass die Zufallsvariable X einen Wert annimmt, der (1) kleiner als a ist (2) kleiner oder gleich a ist (3) gleich a ist (4) größer oder gleich a ist (5) größer als a ist

7 Biomathematik für Mediziner, Klausur SS 2001 Seite 7 Aufgabe 27: Welche Aussage trifft zu? Die Wahrscheinlichkeit α für den Fehler 1. Art muß bei jedem Test grundsätzlich (1) nach der Testdurchführung festgelegt werden. (2) während der Versuchsplanung festgelegt werden. (3) aus den Daten berechnet werden. (4) in Tabellen nachgeschlagen werden. (5) keine der oben genannten Aussagen trifft zu. Aufgabe 28: Bei der Auswertung einer Klausur mit 30 Fragen, an der 70 Studentinnen und Studenten teilnahmen, ergab sich, dass 50% der Fragen immer richtig beantwortet wurden. Wie viele Klausurteilnehmer haben alle 30 Fragen richtig beantwortet? (1) 15 (2) 25 (3) 35 (4) 50 (5) Die Anzahl lässt sich aus diesen Angaben nicht berechnen. Aufgabe 29: Bei 200 Familien wurden folgende Anzahlen von Personen pro Familie festgestellt: Personen pro Familie Häufigkeit Wie groß ist die Spannweite dieser Daten? (1) 4.5 (2) 6.5 (3) 9 (4) 10 (5) 45 Aufgabe 30: Wie groß ist die Wahrscheinlichkeit, mit einem idealen Würfel in zwei Würfen genau einmal eine 6 zu würfeln? (1) 1/3 (2) 11/36 (3) 13/36 (4) 10/36 (5) 2/36

Biomathematik für Mediziner, Klausur WS 2003/2004 Seite 1

Biomathematik für Mediziner, Klausur WS 2003/2004 Seite 1 Biomathematik für Mediziner, Klausur WS 2003/2004 Seite 1 Aufgabe 1: Prüfe, welche der folgenden Merkmale qualitativ sind: (a) Blutgruppe (b) Pulsfrequenz (c) Erkrankung an Scharlach (d) Teilnahme an einem

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Grundlage: Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Die Testvariable T = X µ 0 S/ n genügt der t-verteilung mit n 1 Freiheitsgraden. Auf der Basis

Mehr

Hypothesentest, ein einfacher Zugang mit Würfeln

Hypothesentest, ein einfacher Zugang mit Würfeln R. Brinkmann http://brinkmann-du.de Seite 4..4 ypothesentest, ein einfacher Zugang mit Würfeln Von einem Laplace- Würfel ist bekannt, dass bei einmaligem Wurf jede einzelne der Zahlen mit der Wahrscheinlichkeit

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 15 009 FernUniversität in Hagen Alle Rechte vorbehalten Fachbereich Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

Wiederholung der Hauptklausur STATISTIK

Wiederholung der Hauptklausur STATISTIK Name, Vorname: Matrikel-Nr. Die Klausur enthält zwei Typen von Aufgaben: Teil A besteht aus Fragen mit mehreren vorgegebenen Antwortvorschlägen, von denen mindestens eine Antwort richtig ist und von denen

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 24.2.214 Grundlagen zum Hypothesentest Einführung: Wer Entscheidungen zu treffen hat, weiß oft erst im nachhinein ob seine Entscheidung richtig war. Die Unsicherheit

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 7.9. Lösungen zum Hypothesentest II Ausführliche Lösungen: A A Aufgabe Die Firma Schlemmerland behauptet, dass ihre Konkurrenzfirma Billigfood die Gewichtsangabe,

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Klausur zu Statistik II

Klausur zu Statistik II GOETHE-UNIVERSITÄT FRANKFURT FB Wirtschaftswissenschaften Statistik und Methoden der Ökonometrie Prof. Dr. Uwe Hassler Wintersemester 03/04 Klausur zu Statistik II Matrikelnummer: Hinweise Hilfsmittel

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Testen von Hypothesen:

Testen von Hypothesen: Testen von Hypothesen: Ein Beispiel: Eine Firma produziert Reifen. In der Entwicklungsabteilung wurde ein neues Modell entwickelt, das wesentlich ruhiger läuft. Vor der Markteinführung muss aber auch noch

Mehr

Chi-Quadrat Verfahren

Chi-Quadrat Verfahren Chi-Quadrat Verfahren Chi-Quadrat Verfahren werden bei nominalskalierten Daten verwendet. Die einzige Information, die wir bei Nominalskalenniveau zur Verfügung haben, sind Häufigkeiten. Die Quintessenz

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001

Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001 Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001 1. Sensitivität und Spezifität In einer medizinischen Ambulanz haben 30 % der Patienten eine akute Appendizitis. 80 % dieser Patienten haben

Mehr

Konkretes Durchführen einer Inferenzstatistik

Konkretes Durchführen einer Inferenzstatistik Konkretes Durchführen einer Inferenzstatistik Die Frage ist, welche inferenzstatistischen Schlüsse bei einer kontinuierlichen Variablen - Beispiel: Reaktionszeit gemessen in ms - von der Stichprobe auf

Mehr

Glossar Biometrie / Statistik. Auszug für Fragebogen Fallzahlberechnung/-begründung

Glossar Biometrie / Statistik. Auszug für Fragebogen Fallzahlberechnung/-begründung Glossar Biometrie / Statistik A Äquivalenztest Der Äquivalenztest beurteilt die Gleichwertigkeit von Therapien. Beim Äquivalenztest werden als Hypothesen formuliert: Nullhypothese H 0 : Die Präparate sind

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert.

Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert. XV. Testen von Hypothesen ================================================================== 15.1 Alternativtest ------------------------------------------------------------------------------------------------------------------

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Epidemiologie / Biometrie

Epidemiologie / Biometrie Wintersemester 2004 / 2005 Epidemiologie / Biometrie Robert Hochstrat 14. März 2005 Zusammenschrift der Übung zur Vorlesung aus dem WS 04/05 Rückfragen, Ergänzungen und Korrekturen an robert hochstrat@web.de

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

(8 + 2 Punkte) = = 0.75

(8 + 2 Punkte) = = 0.75 Aufgabe 1 (8 + 2 Punkte) Von 20 Teilnehmern einer Bergwanderung geben 8 Personen an Knieschmerzen zu haben. 6 Teilnehmer leiden an Sonnenbrand. 8 Teilnehmer blieben unversehrt. a) Wie groß ist die Wahrscheinlichkeit,

Mehr

Anpassungstests VORGEHENSWEISE

Anpassungstests VORGEHENSWEISE Anpassungstests Anpassungstests prüfen, wie sehr sich ein bestimmter Datensatz einer erwarteten Verteilung anpasst bzw. von dieser abweicht. Nach der Erläuterung der Funktionsweise sind je ein Beispiel

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Mathematik IV für Maschinenbau und Informatik Stochastik Universität Rostock, Institut für Mathematik Sommersemester 007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie Termin: 9. Juni 007 Aufgabe 3 Punkte

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

Statistik-Übungsaufgaben

Statistik-Übungsaufgaben Statistik-Übungsaufgaben 1) Bei der Produktion eine Massenartikels sind erfahrungsgemäß 20 % aller gefertigten Erzeugnisse unbrauchbar. Es wird eine Stichprobe vom Umfang n =1000 entnommen. Wie groß ist

Mehr

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei

Mehr

Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet.

Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet. 11.01.2012 Prof. Dr. Ingo Klein Klausur zur VWA-Statistik Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet. Aufgabe 1:

Mehr

Lösungen zu den Übungsaufgaben in Kapitel 10

Lösungen zu den Übungsaufgaben in Kapitel 10 Lösungen zu den Übungsaufgaben in Kapitel 10 (1) In einer Stichprobe mit n = 10 Personen werden für X folgende Werte beobachtet: {9; 96; 96; 106; 11; 114; 114; 118; 13; 14}. Sie gehen davon aus, dass Mittelwert

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive

Mehr

Statistik für Naturwissenschaftler

Statistik für Naturwissenschaftler Hans Walser Statistik für Naturwissenschaftler 9 t-verteilung Lernumgebung Hans Walser: 9 t-verteilung ii Inhalt 1 99%-Vertrauensintervall... 1 2 95%-Vertrauensintervall... 1 3 Akkus... 2 4 Wer ist der

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 15 Statistische Testverfahren 15.1. Arten statistischer Test Klassifikation von Stichproben-Tests Einstichproben-Test Zweistichproben-Test - nach der Anzahl der Stichproben - in Abhängigkeit von

Mehr

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests ue biostatistik: hypothesen, fehler 1. und. art, power 1/8 h. lettner / physik Hypothesen: Fehler 1. und. Art, Power eines statistischen Tests Die äußerst wichtige Tabelle über die Zusammenhänge zwischen

Mehr

3 Evaluation als Beschreibung von Zuständen

3 Evaluation als Beschreibung von Zuständen Evaluation als Beschreibung von Zuständen 1 Sind die folgenden Aussagen richtig oder falsch? 1.1 In einer Klumpenstichprobe werden systematisch anfallende Cluster von Personen vollständig untersucht. Die

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am 5..201 von 10:00 bis 11:00 Uhr Bearbeiten Sie zwei der drei folgenden Aufgaben! Sätze aus der Vorlesung und den Übungen dürfen Sie ohne

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

1 Dichte- und Verteilungsfunktion

1 Dichte- und Verteilungsfunktion Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen Yannick.Schroer@rub.de 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.7 und 4.8 besser zu verstehen. Auswertung und Lösung Abgaben: 71 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 5.65 Frage 1

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

Übungsblatt 9. f(x) = e x, für 0 x

Übungsblatt 9. f(x) = e x, für 0 x Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

Übungsaufgaben zu Kapitel 5

Übungsaufgaben zu Kapitel 5 Übungsaufgaben zu Kapitel 5 Lösungen zu den Übungsaufgaben ab Seite 9. Aufgabe 9 Bei der Herstellung von Schokoladentafeln interessiert a) das durchschnittliche Abfüllgewicht einer Tafel Schokolade. b)

Mehr

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese:

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese: 2.4.1 Grundprinzipien statistischer Hypothesentests Hypothese: Behauptung einer Tatsache, deren Überprüfung noch aussteht (Leutner in: Endruweit, Trommsdorff: Wörterbuch der Soziologie, 1989). Statistischer

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

Vertiefung der. Wirtschaftsmathematik. und Statistik (Teil Statistik)

Vertiefung der. Wirtschaftsmathematik. und Statistik (Teil Statistik) Selbstkontrollarbeit 1 Vertiefung der Wirtschaftsmathematik und Statistik (Teil Statistik) 18. Januar 2011 Aufgaben Aufgabe 1 Gegeben sei eine binomialverteilte Zufallsvariablen X mit den Parametern N

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übungen für die kompetenzbasierte Abschlussprüfung 1. 60 Äpfel wurden gewogen und die Ergebnisse in einem Boxplot-Diagramm dargestellt. Ergänzen Sie die folgenden

Mehr

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie Webinar Induktive Statistik - Wahrscheinlichkeitsrechnung - Stichprobentheorie Wahrscheinlichkeitstheorie Aufgabe : Zwei Lieferanten decken den Bedarf eines PKW-Herstellers von 00.000 Einheiten pro Monat.

Mehr

Statistik II: Signifikanztests /1

Statistik II: Signifikanztests /1 Medien Institut : Signifikanztests /1 Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Noch einmal: Grundlagen des Signifikanztests 2. Der chi 2 -Test 3. Der t-test

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 19. Januar 2011 1 Nichtparametrische Tests Ordinalskalierte Daten 2 Test für ein Merkmal mit nur zwei Ausprägungen

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer

Mehr

Tutorial: Anpassungstest

Tutorial: Anpassungstest Tutorial: Anpassungstest An einem Institut gibt es vier UniversitätslehrerInnen, die auch Diplomarbeiten betreuen. Natürlich erfordert die Betreuung einer Diplomarbeit einiges an Arbeit und Zeit und vom

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Das Testen von Hypothesen Während die deskriptive Statistik die Stichproben nur mit Hilfe quantitativer Angaben charakterisiert,

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik Die schließende Statistik befasst sich mit dem Rückschluss von einer Stichprobe auf die Grundgesamtheit (Population). Die Stichprobe muss repräsentativ für die Grundgesamtheit sein.

Mehr

e) Beim klassischen Signifikanztest muß die Verteilung der Prüfgröße unter der Nullhypothese

e) Beim klassischen Signifikanztest muß die Verteilung der Prüfgröße unter der Nullhypothese 9 Hypothesentests 1 Kapitel 9: Hypothesentests A: Übungsaufgaben: [ 1 ] Bei Entscheidungen über das Ablehnen oder Nichtablehnen von Hypothesen kann es zu Irrtümern kommen. Mit α bezeichnet man dabei die

Mehr

Regression und Korrelation

Regression und Korrelation Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandeltdie VerteilungeinerVariablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem dagegen

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 4B a.) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Mit "Deskriptive Statistiken", "Kreuztabellen " wird die Dialogbox "Kreuztabellen" geöffnet. POL wird in das Eingabefeld von

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

P-Test Motivation: Einsatz des Tests auf p im Krankenhausmanagement Theorie zum Test auf p

P-Test Motivation: Einsatz des Tests auf p im Krankenhausmanagement Theorie zum Test auf p P-Test Motivation: Einsatz des Tests auf p im Krankenhausmanagement Theorie zum Test auf p Test A: Beispiel zur Erfolgsmessung von Therapien Test B: Beispiel zur Überwachung des Patientenanteils mit zu

Mehr

Chi Quadrat-Unabhängigkeitstest

Chi Quadrat-Unabhängigkeitstest Fragestellung 1: Untersuchung mit Hilfe des Chi-Quadrat-Unabhängigkeitstestes, ob zwischen dem Herkunftsland der Befragten und der Bewertung des Kontaktes zu den Nachbarn aus einem Anderen Herkunftsland

Mehr

Mögliche Fehler beim Testen

Mögliche Fehler beim Testen Mögliche Fehler beim Testen Fehler. Art (Irrtumswahrscheinlichkeit α), Zusammenfassung: Die Nullhypothese wird verworfen, obwohl sie zutrifft. Wir haben uns blamiert, weil wir etwas Wahres abgelehnt haben.

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

3. Das Prüfen von Hypothesen. Hypothese?! Stichprobe Signifikanztests in der Wirtschaft

3. Das Prüfen von Hypothesen. Hypothese?! Stichprobe Signifikanztests in der Wirtschaft 3. Das Prüfen von Hypothesen Hypothese?! Stichprobe 3.1. Signifikanztests in der Wirtschaft Prüfung, ob eine (theoretische) Hypothese über die Verteilung eines Merkmals X und ihre Parameter mit einer (empirischen)

Mehr

Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung

Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung Abgaben: 92 / 234 Maximal erreichte Punktzahl: 7 Minimal erreichte Punktzahl: 1 Durchschnitt: 4 Frage 1 (Diese Frage haben ca. 0% nicht beantwortet.)

Mehr

Ein- und Zweistichprobentests

Ein- und Zweistichprobentests (c) Projekt Neue Statistik 2003 - Lernmodul: Ein- Zweistichprobentests Ein- Zweistichprobentests Worum geht es in diesem Modul? Wiederholung: allgemeines Ablaufschema eines Tests Allgemeine Voraussetzungen

Mehr

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden.

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. Normalverteilung und Standardnormalverteilung als Beispiel einer theoretischen Verteilung - Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. - Stetige (kontinuierliche),

Mehr

Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests

Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests Kapitel 10 Mittelwert-Tests 10.1 Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests 10.1 Einstichproben- Mittelwert-Tests 10.1.1 Einstichproben- Gauß-Test Dichtefunktion der Standard-Normalverteilung

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Prof. Dr. Rainer Schwabe 08.07.2014 Otto-von-Guericke-Universität Magdeburg Institut für Mathematische Stochastik Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Name:, Vorname: Matr.-Nr.

Mehr

a. P(t) = t P(8.5) = 11.55

a. P(t) = t P(8.5) = 11.55 .S. a. Die Wohnungspreise für gut ausgestattete Wohnungen in Graz-Stadt (Mittlere Monatsmieten in Euro/Quadratmeter) erhöhen sich im Schnitt jedes Jahr um 30 -Cent. Mit. Jänner 2000 lag der Preis bei 9.

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

FF Düsseldorf WS 2007/08 Prof. Dr. Horst Peters. Vorlesung Quantitative Methoden 1B im Studiengang Business Administration (Bachelor) Seite 1 von 6

FF Düsseldorf WS 2007/08 Prof. Dr. Horst Peters. Vorlesung Quantitative Methoden 1B im Studiengang Business Administration (Bachelor) Seite 1 von 6 Vorlesung Quantitative Methoden 1B im Studiengang Business Administration (Bachelor) Seite 1 von 6 (Konfidenzintervalle, Gauß scher Mittelwerttest) 1. Bei einem bestimmten Großraumflugzeug sei die Auslastung

Mehr

Statistik 2 RE Statistik f. Soziologen Klausur MÄRZ 2009 LÖSUNGSVORSCHLAG

Statistik 2 RE Statistik f. Soziologen Klausur MÄRZ 2009 LÖSUNGSVORSCHLAG 1. Familie Feuerstein kauft sich ein neues Auto, vorher aber lassen sie ihr altes verschrotten. Auf dem Weg dorthin werden sie in einer Wohnstrasse, wo nur 30 km/h erlaubt sind, geblitzt. Als sie ihre

Mehr

Standardnormalverteilung

Standardnormalverteilung Standardnormalverteilung 1720 erstmals von Abraham de Moivre beschrieben 1809 und 1816 grundlegende Arbeiten von Carl Friedrich Gauß 1870 von Adolphe Quetelet als "ideales" Histogramm verwendet alternative

Mehr

Übung zur Vorlesung Statistik I WS Übungsblatt 9

Übung zur Vorlesung Statistik I WS Übungsblatt 9 Übung zur Vorlesung Statistik I WS 2012-2013 Übungsblatt 9 17. Dezember 2012 Aufgabe 26 (4 Punkte): In einer Studie mit n = 10 Patienten soll die Wirksamkeit eines Medikaments gegen Bluthochdruck geprüft

Mehr

Statistische Tests zu ausgewählten Problemen

Statistische Tests zu ausgewählten Problemen Einführung in die statistische Testtheorie Statistische Tests zu ausgewählten Problemen Teil 4: Nichtparametrische Tests Statistische Testtheorie IV Einführung Beschränkung auf nichtparametrische Testverfahren

Mehr

P n (k) f(k) = 1 σ 2π e ) 2. σ 2π

P n (k) f(k) = 1 σ 2π e ) 2. σ 2π 53 Allgemein gilt der folgende Satz. Satz 6.1 (Lokaler Grenzwertsatz von de Moivre und Laplace) Die Wahrscheinlichkeit P n (k) einer Binomialverteilung (mit der Erfolgswahrscheinlichkeit p im Einzelexperiment)

Mehr

Aufgabe 5: Stochastik (WTR)

Aufgabe 5: Stochastik (WTR) Abitur Mathematik: Originalprüfung Aufgabe 5: Stochastik (WTR) Nordrhein-Westfalen 2014 GK Das Produkt Fußball Bundesliga ist ein Erfolgsmodell. Die Zuschauerzahlen erreichten in der Saison 2011/12 einen

Mehr

Vorzeichentest. Motivation: Vorzeichentests in der Erfolgskontrolle von Medikamenten

Vorzeichentest. Motivation: Vorzeichentests in der Erfolgskontrolle von Medikamenten Vorzeichentest Motivation: Vorzeichentests in der Erfolgskontrolle von Medikamenten Theorie zum Vorzeichentest Test A: Test eines neuen Kraftstoffs Test B: Test von Lebenszeiten bei Rauchern und Nichtrauchern

Mehr

Test auf den Erwartungswert

Test auf den Erwartungswert Test auf den Erwartungswert Wir interessieren uns für den Erwartungswert µ einer metrischen Zufallsgröße. Beispiele: Alter, Einkommen, Körpergröße, Scorewert... Wir können einseitige oder zweiseitige Hypothesen

Mehr

Statistik-Klausur vom

Statistik-Klausur vom Statistik-Klausur vom 27.09.2010 Bearbeitungszeit: 60 Minuten Aufgabe 1 Ein international tätiges Unternehmen mit mehreren Niederlassungen in Deutschland und dem übrigen Europa hat seine überfälligen Forderungen

Mehr

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden?

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden? 1. Aufgabe: Eine Bank will die jährliche Sparleistung eines bestimmten Kundenkreises untersuchen. Eine Stichprobe von 12 Kunden ergab folgende Werte: 825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170

Mehr

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind:

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind: Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0 1.4 Der Binomialtest Mit dem Binomialtest kann eine Hypothese bezüglich der Wahrscheinlichkeit für das Auftreten einer Kategorie einer dichotomen (es kommen nur zwei Ausprägungen vor, z.b. 0 und 1) Zufallsvariablen

Mehr