Statistische Überlegungen: Eine kleine Einführung in das 1 x 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Statistische Überlegungen: Eine kleine Einführung in das 1 x 1"

Transkript

1 Statistische Überlegungen: Eine kleine Einführung in das 1 x 1 PD Dr. Thomas Friedl Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Ulm München,

2 Inhaltsübersicht Allgemeine Bemerkungen Begriffsklärungen: Testhypothesen, Prüfgröße, p-wert, Signifikanzniveau, Fehler 1. und 2. Art Fallzahlberechnung Beispiel einer einfachen Fallzahlberechnung Statistische Überlegungen: Inhaltsübersicht

3 Zu empfehlen: Statistische Überlegungen

4 Allgemeine Bemerkungen Statistische Tests machen meist Aussagen zum Vergleich zwischen zwei oder mehr Stichproben Diese Aussagen werden aufgrund der Daten der Stichproben getroffen, sollen aber für die Grundgesamtheiten gelten Stichprobe: Menge aller Beobachtungseinheiten, die im Versuch tatsächlich beobachtet werden Grundgesamtheit: Menge der Beobachtungseinheiten, über die anhand der Ergebnisse eines Versuchs Aussagen gemacht werden sollen Mit Hilfe der schließenden Statistik sollen anhand einer Stichprobe Aussagen über die Grundgesamtheit gemacht werden. Die berechneten Parameter der Stichprobe liefern dabei eine Schätzung für die wahre Verteilung in der Grundgesamtheit Statistische Überlegungen: Allgemeine Bemerkungen

5 Formulieren von Hypothesen Diejenige Hypothese, auf Grund derer eine Untersuchung überhaupt durchgeführt wird, bezeichnet man als Alternativhypothese H 1 (meist ein postulierter Unterschied bzw. Behandlungseffekt, welcher mit der Studie belegt werden soll) Die dazu komplementäre Hypothese (kein Unterschied, kein Behandlungseffekt) bezeichnet man als Nullhypothese H 0 Statistische Überlegungen: Formulieren von Hypothesen

6 Prüfgröße und p-wert Berechnen der Prüfgröße aus den vorliegenden Daten mit einem für die Fragestellung und die Daten geeigneten statistischen Test Bestimmung des durch die Prüfgröße gegebenen p-werts (anhand von Tabellen oder mit einer Statistiksoftware) p-wert Irrtumswahrscheinlichkeit (Die Wahrscheinlichkeit, mit der man einem Irrtum unterliegt, wenn man die Nullhypothese ablehnt) Statistische Überlegungen: Prüfgröße und p-wert

7 Signifikanzniveau α Legt fest, ab welchem p-wert (also ab welcher Irrtumswahrscheinlichkeit) die Nullhypothese abgelehnt werden kann ( Wenn die Wahrscheinlichkeit gering ist, mich zu irren, wenn ich die Nullhypothese ablehne, kann ich sie ablehnen und damit die Alternativhypothese annehmen. ) In Biologie und Medizin legt man normalerweise das Signifikanzniveau auf α = 0.05 (bzw. α = 5%) fest. das Risiko einer Fehlentscheidung bei der Ablehnung der Nullhypothese beträgt dann 5% Statistische Überlegungen: Signifikanzniveau α

8 Testentscheidung Wirklichkeit Testentscheidung H 0 richtig H 1 richtig für H 0 für H 1 Richtige Entscheidung 1 - α Falsch positiv Fehler 1. Art α Falsch negativ Fehler 2. Art β Richtige Entscheidung 1 - β Statistische Überlegungen: Testentscheidung

9 Fehler 1. und 2. Art Fehler 1. Art (α Fehler, falsch positive Entscheidung): Annahme der Alternativhypothese (d.h. Postulierung eines Unterschieds bzw. Effekts) wenn in Wirklichkeit die Nullhypothese richtig ist (also kein Unterschied bzw. Effekt existiert) Fehler 2. Art (β Fehler, falsch negative Entscheidung): Beibehaltung der Nullhypothese (kein Unterschied bzw. Effekt) obwohl in Wirklichkeit die Alternativhypothese richtig ist (also tatsächlich ein Unterschied bzw. Effekt existiert); Teststärke ( Power ) = 1 - β Statistische Überlegungen: Fehler 1. und 2. Art

10 Fallzahlberechnungen Internationale Standards zur Durchführung von klinischen Studien mit Medikamenten/Medizinprodukten schreiben Fallzahlplanungen vor. Gesucht wird jeweils die notwendige Fallzahl (= Stichprobengröße), um einen vorher bestimmten medizinisch relevanten Unterschied auf einem vorher bestimmten Signifikanzniveau (α) mit einer vorher bestimmten Teststärke (1 - β) nachweisen zu können. Statistische Überlegungen: Fallzahlberechnungen

11 Fallzahlberechnungen - Beispiel In einer zweiarmigen klinischen Studie soll an Patienten mit akutem Herzinfarkt eine neue Therapie mit der Standardtherapie verglichen werden (zwei unabhängigen Gruppen: Patienten mit Standardtherapie oder mit neuer Therapie) Zielkriterium ist die Hospitalmortalität nach 28 Tagen (dichotomes Merkmal gestorben ja / nein) χ 2 -Vierfelder-Test Statistische Überlegungen: Fallzahlberechnungen - Beispiel

12 Exkurs - Prinzip des χ 2 -Vierfelder-Tests: Vergleich der beobachteten Häufigkeiten mit den unter der Nullhypothese H 0 zu erwartenden Häufigkeiten Tod innerhalb von 28 Tagen ja nein Randsummen Standardtherapie a b n 1 = a + b Neue Therapie c d n 2 = c + d Randsummen a + c b + d n = a + b + c + d Statistische Überlegungen: Exkurs χ 2 -Vierfelder-Test

13 Statistische Überlegungen: Fallzahlberechnungen - Beispiel

14 Fallzahlberechnungen - Beispiel Mortalität unter Standardtherapie 20% P 2 = 0.2 Medizinisch relevanter Unterschied, den man mit der Studie nachweisen will: Senkung der Hospitalmortalität um 8% P 2 - P 1 = 0.08 P 1 = 0.12 Q 1 = 1 P 1 Q 1 = 0.88 Q 2 = 1 P 2 Q 2 = 0.8 P = (P 1 + P 2 )/2 P = 0.16 Q = 1 P Q = 0.84 Statistische Überlegungen: Fallzahlberechnungen - Beispiel

15 Fallzahlberechnungen - Beispiel Statistische Überlegungen: Fallzahlberechnungen - Beispiel

16 Fallzahlberechnungen - Beispiel Formulierung dieser Fallzahlkalkulation für das Studienprotokoll: Es wird angenommen, dass die Hospitalmortalität nach einem Herzinfarkt bei Behandlung mit der Standardtherapie bei etwa 20% liegt (Referenz). In dieser Studie soll mit einem vorgegebenen Signifikanzniveau von α = 5% eine Verringerung der Hospitalmortalität bei Behandlung mit der neuen Therapie um 8% auf 12% mit einer Teststärke von 80% entdeckt werden können. Zur Überprüfung der Hypothese mittels eines χ 2 -Vierfelder-Tests ist eine Fallzahl von ca. 328 Patienten pro Behandlungsarm erforderlich. Statistische Überlegungen: Fallzahlberechnungen - Beispiel

17 Fallzahlberechnungen Folgende Faktoren beeinflussen den Stichprobenumfang: Signifikanzniveau α: Je kleiner α desto größer n (meist α = 0.05 bzw. 0.01) Teststärke 1 - β: Je größer die Teststärke 1 - β desto größer n (meist 0.8 bzw. 0.9) Mittelwertsunterschied: je kleiner der klinisch relevante Unterschied desto größer n. Statistische Überlegungen: Fallzahlberechnungen

18 P1 (Wahrscheinlichkeit für Ereignis nach neuer Therapie) Fallzahlberechnungen P2 (Wahrscheinlichkeit für Ereignis nach Standardtherapie) Benötigtes n pro Gruppe Statistische Überlegungen: Fallzahlberechnungen

Mögliche Fehler beim Testen

Mögliche Fehler beim Testen Mögliche Fehler beim Testen Fehler. Art (Irrtumswahrscheinlichkeit α), Zusammenfassung: Die Nullhypothese wird verworfen, obwohl sie zutrifft. Wir haben uns blamiert, weil wir etwas Wahres abgelehnt haben.

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese:

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese: 2.4.1 Grundprinzipien statistischer Hypothesentests Hypothese: Behauptung einer Tatsache, deren Überprüfung noch aussteht (Leutner in: Endruweit, Trommsdorff: Wörterbuch der Soziologie, 1989). Statistischer

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Das Testen von Hypothesen Während die deskriptive Statistik die Stichproben nur mit Hilfe quantitativer Angaben charakterisiert,

Mehr

Aussagen hierzu sind mit einer unvermeidbaren Unsicherheit behaftet, die statistisch über eine Irrtumswahrscheinlichkeit bewertet wird.

Aussagen hierzu sind mit einer unvermeidbaren Unsicherheit behaftet, die statistisch über eine Irrtumswahrscheinlichkeit bewertet wird. Stichprobenumfang Für die Fragestellung auf Gleichheit von ein oder zwei Stichproben wird auf Basis von Hypothesentests der notwendige Stichprobenumfang bestimmt. Deshalb werden zunächst die Grundlagen

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

Chi-Quadrat Verfahren

Chi-Quadrat Verfahren Chi-Quadrat Verfahren Chi-Quadrat Verfahren werden bei nominalskalierten Daten verwendet. Die einzige Information, die wir bei Nominalskalenniveau zur Verfügung haben, sind Häufigkeiten. Die Quintessenz

Mehr

Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung

Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung Abgaben: 92 / 234 Maximal erreichte Punktzahl: 7 Minimal erreichte Punktzahl: 1 Durchschnitt: 4 Frage 1 (Diese Frage haben ca. 0% nicht beantwortet.)

Mehr

Lösungen zu den Übungsaufgaben in Kapitel 10

Lösungen zu den Übungsaufgaben in Kapitel 10 Lösungen zu den Übungsaufgaben in Kapitel 10 (1) In einer Stichprobe mit n = 10 Personen werden für X folgende Werte beobachtet: {9; 96; 96; 106; 11; 114; 114; 118; 13; 14}. Sie gehen davon aus, dass Mittelwert

Mehr

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.

Mehr

Biomathematik für Mediziner, Klausur SS 2001 Seite 1

Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Aufgabe 1: Von den Patienten einer Klinik geben 70% an, Masern gehabt zu haben, und 60% erinnerten sich an eine Windpockeninfektion. An mindestens einer

Mehr

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36)

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36) Statistik I Sommersemester 2009 Statistik I I (1/36) Wiederholung Grenzwertsatz Konfidenzintervalle Logik des 0.0 0.1 0.2 0.3 0.4 4 2 0 2 4 Statistik I I (2/36) Zum Nachlesen Agresti/Finlay: Kapitel 6+7

Mehr

Prüfgröße: Ist die durch eine Schätzfunktion zugeordnete reelle Zahl (etwa Mittelwert 7 C).

Prüfgröße: Ist die durch eine Schätzfunktion zugeordnete reelle Zahl (etwa Mittelwert 7 C). Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Aus praktischen Gründen

Mehr

TESTEN VON HYPOTHESEN

TESTEN VON HYPOTHESEN TESTEN VON HYPOTHESEN 1. Beispiel: Kann ein neugeborenes Küken Körner erkennen oder lernt es dies erst durch Erfahrung? Um diese Frage zu entscheiden, wird folgendes Experiment geplant: Sobald das Küken

Mehr

methodenlehre ll Grenzen des Signifikanztests methodenlehre ll Grenzen des Signifikanztests

methodenlehre ll Grenzen des Signifikanztests methodenlehre ll Grenzen des Signifikanztests Möglichkeiten und Grenzen des Signifikanztests Thomas Schäfer SS 29 1 Grenzen des Signifikanztests Sie haben zur Untersuchung Ihrer Fragestellung eine Experimental und eine Kontrollgruppe mit jeweils 2

Mehr

Chi Quadrat-Unabhängigkeitstest

Chi Quadrat-Unabhängigkeitstest Fragestellung 1: Untersuchung mit Hilfe des Chi-Quadrat-Unabhängigkeitstestes, ob zwischen dem Herkunftsland der Befragten und der Bewertung des Kontaktes zu den Nachbarn aus einem Anderen Herkunftsland

Mehr

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen einer Population anhand eines Merkmals mit zwei oder mehr

Mehr

1. rechtsseitiger Signifikanztest

1. rechtsseitiger Signifikanztest Testen von Hypothesen HM2 Seite Geschichte und ufgabe der mathematischen Statistik Stochastik ist die Kunst, im Falle von Ungewißheit auf geschickte Weise Vermutungen aufzustellen. Entwickelt wurde sie

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test 1 Der zweidimensionale Chi²-Test 4 Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen

Mehr

KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert

KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert 0. Das eigentliche Forschungsziel ist: Beweis der eigenen Hypothese H 1 Dafür muss Nullhypothese H 0 falsifiziert werden können Achtung!

Mehr

Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001

Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001 Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001 1. Sensitivität und Spezifität In einer medizinischen Ambulanz haben 30 % der Patienten eine akute Appendizitis. 80 % dieser Patienten haben

Mehr

Hypothesentest, ein einfacher Zugang mit Würfeln

Hypothesentest, ein einfacher Zugang mit Würfeln R. Brinkmann http://brinkmann-du.de Seite 4..4 ypothesentest, ein einfacher Zugang mit Würfeln Von einem Laplace- Würfel ist bekannt, dass bei einmaligem Wurf jede einzelne der Zahlen mit der Wahrscheinlichkeit

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

e) Beim klassischen Signifikanztest muß die Verteilung der Prüfgröße unter der Nullhypothese

e) Beim klassischen Signifikanztest muß die Verteilung der Prüfgröße unter der Nullhypothese 9 Hypothesentests 1 Kapitel 9: Hypothesentests A: Übungsaufgaben: [ 1 ] Bei Entscheidungen über das Ablehnen oder Nichtablehnen von Hypothesen kann es zu Irrtümern kommen. Mit α bezeichnet man dabei die

Mehr

Testentscheidungen. Worum geht es in diesem Modul? Kritische Werte p-wert

Testentscheidungen. Worum geht es in diesem Modul? Kritische Werte p-wert Testentscheidungen Worum geht es in diesem Modul? Kritische Werte p-wert Worum geht es in diesem Modul? Testentscheidungen: Annahme- und Ablehnbereich Bei der Durchführung eines statistischen Tests kommen

Mehr

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0 1.4 Der Binomialtest Mit dem Binomialtest kann eine Hypothese bezüglich der Wahrscheinlichkeit für das Auftreten einer Kategorie einer dichotomen (es kommen nur zwei Ausprägungen vor, z.b. 0 und 1) Zufallsvariablen

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 19. Januar 2011 1 Nichtparametrische Tests Ordinalskalierte Daten 2 Test für ein Merkmal mit nur zwei Ausprägungen

Mehr

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Statistische Auswertungen mit R Universität Kassel, FB 07 Wirtschaftswissenschaften Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Beispiele 8. Sitzung Konfidenzintervalle, Hypothesentests > # Anwendungsbeispiel

Mehr

Tutorial: Vergleich von Anteilen

Tutorial: Vergleich von Anteilen Tutorial: Vergleich von Anteilen Die Sicherung des Pensionssystems ist in vielen Ländern ein heikles Thema. Noch stärker als der Streit, wer wann welche Pension beziehen können soll, tobt ein Streit, welche

Mehr

Bivariate Zusammenhänge

Bivariate Zusammenhänge Bivariate Zusammenhänge Tabellenanalyse: Kreuztabellierung und Kontingenzanalyse Philosophische Fakultät Institut für Soziologie Berufsverläufe und Berufserfolg von Hochschulabsolventen Dozent: Mike Kühne

Mehr

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie!

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie! Aufgabe 1 (3 + 3 + 2 Punkte) Ein Landwirt möchte das durchschnittliche Gewicht von einjährigen Ferkeln bestimmen lassen. Dies möchte er aus seinem diesjährigen Bestand an n Tieren schätzen. Er kann dies

Mehr

Biometrische Planung von Versuchsvorhaben

Biometrische Planung von Versuchsvorhaben Biometrische Planung von Versuchsvorhaben Einführung in das Prinzip der Lehrstuhl für Mathematik VIII Statistik http://statistik.mathematik.uni-wuerzburg.de/~hain Ziel des Vortrags Im nachfolgenden Vortrag

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Rasch, Friese, Hofmann & Naumann (006). Quantitative Methoden. Band (. Auflage). Heidelberg: Springer. Kapitel 5: Einfaktorielle Varianzanalyse Berechnen der Teststärke a priori bzw. Stichprobenumfangsplanung

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Einführung in die statistische Testtheorie. Einführung in die statistische Testtheorie STATISTIK IST IRR-SINN! Ziel: Methoden:

Einführung in die statistische Testtheorie. Einführung in die statistische Testtheorie STATISTIK IST IRR-SINN! Ziel: Methoden: Nullhypothese H 0 Alternativhypothese H 1 H 0 : A B Fehler 1.Art p-wert H ( -Fehler) 0 : A B, H 0 : A zweiseitige Hypothesen B Signifikanzniveau. Niveau- -Test H 0 H 1 signifikant Fehler 2.Art Fehler 1.Art

Mehr

6. Übung Statistische Tests Teil 1 (t-tests)

6. Übung Statistische Tests Teil 1 (t-tests) Querschnittsbereich 1: Epidemiologie, Medizinische iometrie und Medizinische Informatik - Übungsmaterial - Erstellt von Mitarbeitern des IMISE und des ZKS Leipzig 6. Übung Statistische Tests Teil 1 (t-tests)

Mehr

Test auf einen Anteilswert (Binomialtest) Vergleich zweier Mittelwerte (t-test)

Test auf einen Anteilswert (Binomialtest) Vergleich zweier Mittelwerte (t-test) Spezielle Tests Test auf einen Anteilswert (Binomialtest) Vergleich zweier Anteilswerte Test auf einen Mittelwert (Ein-Stichproben Gauss bzw. t-test) Vergleich zweier Mittelwerte (t-test) Test auf einen

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test 1 Der zweidimensionale Chi²-Test 6 Alternativer Lösungsweg für SPSS Version 17 und älter 10 Alte Dialogfelder: Eindimensionaler Chi²-Test

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Biostatistik Erne Einfuhrung fur Biowissenschaftler

Biostatistik Erne Einfuhrung fur Biowissenschaftler Matthias Rudolf Wiltrud Kuhlisch Biostatistik Erne Einfuhrung fur Biowissenschaftler PEARSON Studium Inhaltsverzeichnis Vorwort xi Kapitel 1 Einfiihrung 1 1.1 Biostatistik als Bestandteil biowissenschafllicher

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathemati für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 22. Dezember 2010 1 Binomialtests Einseitiger unterer Binomialtest Zweiseitiger Binomialtest Beispiel BSE Normalapproximation

Mehr

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Klausur Nr. 1 2014-02-06 Wahrscheinlichkeitsrechnung Pflichtteil Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche Darstellung,

Mehr

Fehlerwahrscheinlichkeiten

Fehlerwahrscheinlichkeiten Fehlerwahrscheinlichkeiten Worum geht es in diesem Modul? Worum geht es in diesem Modul? Fehlentscheidungen beim Testen Ein statistischer Test wird eingesetzt um anhand einer Stichprobe Rückschlüsse auf

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Institut für Soziologie Werner Fröhlich. Methoden 2. Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest

Institut für Soziologie Werner Fröhlich. Methoden 2. Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest Institut für Soziologie Methoden 2 Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest Aufbau der Sitzung Was sind Kontingenztabellen? Wofür werden Kontingenztabellen verwendet? Aufbau und Interpretation

Mehr

Hypothesentests mit SPSS. Beispiel für einen t-test

Hypothesentests mit SPSS. Beispiel für einen t-test Beispiel für einen t-test Daten: museum-f-v04.sav Hypothese: Als Gründe, in ein Museum zu gehen, geben mehr Frauen als Männer die Erweiterung der Bildung für Kinder an. Dies hängt mit der Geschlechtsrolle

Mehr

Aufgaben zu Kapitel 9

Aufgaben zu Kapitel 9 Aufgaben zu Kapitel 9 Aufgabe 1 Für diese Aufgabe benötigen Sie den Datensatz Nominaldaten.sav. a) Sie arbeiten für eine Marktforschungsfirma und sollen überprüfen, ob die in diesem Datensatz untersuchte

Mehr

Bivariater Zusammenhang in der Mehrfeldertafel PEΣO

Bivariater Zusammenhang in der Mehrfeldertafel PEΣO Bivariater Zusammenhang in der Mehrfeldertafel PEΣO 9. November 2001 Bivariate Häufigkeitsverteilungen in Mehrfeldertabellen In der Mehrfeldertabelle werden im Gegensatz zur Vierfeldertabelle keine dichotomen

Mehr

Scheinklausur Stochastik 1 für Studierende des Lehramts und der Diplom-Pädagogik

Scheinklausur Stochastik 1 für Studierende des Lehramts und der Diplom-Pädagogik Universität Karlsruhe (TH) Institut für Stochastik Dr. Bernhard Klar Dipl.-Math. oec. Volker Baumstark Name Vorname Matr.-Nr.: Scheinklausur Stochastik für Studierende des Lehramts und der Diplom-Pädagogik

Mehr

an, anderfalls wird sie verworfen. Bestimmen Sie den Fehler 1. und 2. Art. Bestimmen Sie zu obigem Beispiel jeweils den Anahmebereich a 0; 1;...

an, anderfalls wird sie verworfen. Bestimmen Sie den Fehler 1. und 2. Art. Bestimmen Sie zu obigem Beispiel jeweils den Anahmebereich a 0; 1;... Hypothesentest ================================================================== Fehler 1. und 2.Art Ein Pilzsammler findet einen Pilz der giftig sein könnte. a) Welchen Fehler kann er bei der Überprüfung

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

Test auf Varianzgleichheit (F-Test) (einseitiger Test!!)

Test auf Varianzgleichheit (F-Test) (einseitiger Test!!) T-Tests in Excel T-Tests in Excel Test auf Varianzgleichheit (F-Test) (einseitiger Test!!)! Annahmen:! Unabhängige Stichproben! Normalverteilte Grundgesamtheiten H0 : σx = σ y; H0 : σx > σ y Sx σ x F =

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Übungsaufgaben zu Statistik II

Übungsaufgaben zu Statistik II Übungsaufgaben zu Statistik II Prof. Dr. Irene Prof. Dr. Albrecht Ungerer Die Kapitel beziehen sich auf das Buch: /Ungerer (2016): Statistik für Wirtschaftswissenschaftler Springer Gabler 4 Übungsaufgaben

Mehr

8. G*Power. power3/ 8. Stichprobenumfang, Effekt- und Teststärke

8. G*Power.  power3/ 8. Stichprobenumfang, Effekt- und Teststärke 8. G*Power http://www.psycho.uniduesseldorf.de/abteilungen/aap/g power3/ 8. Stichprobenumfang, Effekt- und Teststärke 8. Stichprobenumfangsplanung, Effektstärken und Teststärkenberechnung mit G*Power 3.0

Mehr

Statistik-Übungsaufgaben

Statistik-Übungsaufgaben Statistik-Übungsaufgaben 1) Bei der Produktion eine Massenartikels sind erfahrungsgemäß 20 % aller gefertigten Erzeugnisse unbrauchbar. Es wird eine Stichprobe vom Umfang n =1000 entnommen. Wie groß ist

Mehr

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende im Sommersemester 2012 Prof. Dr. H. Küchenhoff, J. Brandt, G. Schollmeyer, G. Walter Aufgabe 1 Betrachten

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

11 Tests zur Überprüfung von Mittelwertsunterschieden

11 Tests zur Überprüfung von Mittelwertsunterschieden 11 Tests zur Überprüfung von Mittelwertsunterschieden 11.1 Der z Test (t Test) für verbundene Stichproben 11.2 Der z Test (t Test) für unabhängige Stichproben 11.3 Fehler 1. Art und 2. Art 11.4 Typische

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Aufgaben zu Kapitel 7:

Aufgaben zu Kapitel 7: Aufgaben zu Kapitel 7: Aufgabe 1: In einer Klinik sollen zwei verschiedene Therapiemethoden miteinander verglichen werden. Zur Messung des Therapieerfolges werden die vorhandenen Symptome einmal vor Beginn

Mehr

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße DAS THEMA: INFERENZSTATISTIK III INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße Inferenzstatistik für Lagemaße Standardfehler

Mehr

Unterlagen zu Fisher s Exact Test, Vergleich von Anteilswerten und logistischer Regression. Robin Ristl. Wintersemester 2012/13

Unterlagen zu Fisher s Exact Test, Vergleich von Anteilswerten und logistischer Regression. Robin Ristl. Wintersemester 2012/13 Unterlagen zu Fisher s Exact Test, Vergleich von Anteilswerten und logistischer Regression Robin Ristl Wintersemester 2012/13 1 Exakter Test nach Fisher Alternative zum Chi-Quadrat Unabhängigkeitstest

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Stichprobenauslegung. für stetige und binäre Datentypen

Stichprobenauslegung. für stetige und binäre Datentypen Stichprobenauslegung für stetige und binäre Datentypen Roadmap zu Stichproben Hypothese über das interessierende Merkmal aufstellen Stichprobe entnehmen Beobachtete Messwerte abbilden Schluss von der Beobachtung

Mehr

Statistische Signifikanz versus Klinische Relevanz der Sch(l)uss von der Studie in die Realität

Statistische Signifikanz versus Klinische Relevanz der Sch(l)uss von der Studie in die Realität Institut für Medizinische Biometrie und Epidemiologie Statistische Signifikanz versus Klinische Relevanz der Sch(l)uss von der Studie in die Realität Zum Nacharbeiten Die TonoPen-Studie Dissertationsprojekt

Mehr

Tutorial: Rangkorrelation

Tutorial: Rangkorrelation Tutorial: Rangkorrelation In vielen Sportarten gibt es mehr oder weniger ausgefeilte Methoden, nicht nur die momentanen Leistungen (der jetzige Wettkampf, das jetzige Rennen, das jetzige Spiel,..) der

Mehr

Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill.

Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill. Statistik Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill. Maxwell, S.E. & Delaney, H.D. (2000). Designing Experiments and Analyzing Data. Mahwah, NJ: Erlbaum. Das Grundproblem

Mehr

Vorlesung L6: Statistische Tests

Vorlesung L6: Statistische Tests Vorlesung L6: Statistische Tests Verena Hoffmann Institut für medizinische Informationsverarbeitung, Biometrie und Epidemiologie LudwigMaximiliansUniversität Email: hoffmann@ibe.med.unimuenchen.de Lernziele

Mehr

Mammographie-Screening in der Diskussion um Nutzen und Schaden: Was glauben wir und was wissen wir über den Nutzen?

Mammographie-Screening in der Diskussion um Nutzen und Schaden: Was glauben wir und was wissen wir über den Nutzen? Urania Berlin 13.10. 2008 Mammographie-Screening in der Diskussion um Nutzen und Schaden: Was glauben wir und was wissen wir über den Nutzen? Dr. med. H.-J. Koubenec Mammasprechstunde im Immanuel Krankenhaus

Mehr

Zur Statistik im neuen Genehmigungsantrag

Zur Statistik im neuen Genehmigungsantrag Zur Statistik im neuen Genehmigungsantrag 21. Essener Informationstreffen, 12. März 2014 PD Dr. Nicole Heussen nheussen@ukaachen.de Institut für Medizinische Statistik RWTH Aachen Zur Statistik im neuen

Mehr

Das Konfidenzintervall (Confidence Interval CI) Vertrauen schaffen, Signifikanz erkennen Autor: Beat Giger

Das Konfidenzintervall (Confidence Interval CI) Vertrauen schaffen, Signifikanz erkennen Autor: Beat Giger QUALITY APPs Applikationen für das Qualitätsmanagement Testen und Anwenden Das Konfidenzintervall (Confidence Interval CI) Vertrauen schaffen, Signifikanz erkennen Autor: Beat Giger Das Konfidenzintervall

Mehr

Diskrete Wahrscheinlichkeitstheorie - Probeklausur

Diskrete Wahrscheinlichkeitstheorie - Probeklausur Diskrete Wahrscheinlichkeitstheorie - robeklausur Sommersemester 2007 - Lösung Name: Vorname: Matrikelnr.: Studiengang: Hinweise Sie sollten insgesamt Blätter erhalten haben. Tragen Sie bitte Ihre Antworten

Mehr

9. StatistischeTests. 9.1 Konzeption

9. StatistischeTests. 9.1 Konzeption 9. StatistischeTests 9.1 Konzeption Statistische Tests dienen zur Überprüfung von Hypothesen über einen Parameter der Grundgesamtheit (bei einem Ein-Stichproben-Test) oder über die Verteilung einer Zufallsvariablen

Mehr

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler DAS THEMA: INFERENZSTATISTIK II INFERENZSTATISTISCHE AUSSAGEN Standardfehler Konfidenzintervalle Signifikanztests Standardfehler der Standardfehler Interpretation Verwendung 1 ZUR WIEDERHOLUNG... Ausgangspunkt:

Mehr

12.1 Wie funktioniert ein Signifikanztest?

12.1 Wie funktioniert ein Signifikanztest? Sedlmeier & Renkewitz Kapitel 12 Signifikanztests 12.1 Wie funktioniert ein Signifikanztest? Zentrales Ergebnis eine Signifikanztests: Wie wahrscheinlich war es unter der Bedingung dass H0 gilt, diesen

Mehr

6. Faktorenanalyse (FA) von Tests

6. Faktorenanalyse (FA) von Tests 6. Faktorenanalyse (FA) von Tests 1 6. Faktorenanalyse (FA) von Tests 1 6.1. Grundzüge der FA nach der Haupkomponentenmethode (PCA) mit anschliessender VARIMAX-Rotation:... 2 6.2. Die Matrizen der FA...

Mehr

Forschungsmethodik II Mag.rer.nat. M. Kickmeier-Rust Karl-Franzens-Universität Graz. Lisza Gaiswinkler, Daniela Gusel, Tanja Schlosser

Forschungsmethodik II Mag.rer.nat. M. Kickmeier-Rust Karl-Franzens-Universität Graz. Lisza Gaiswinkler, Daniela Gusel, Tanja Schlosser Kolmogorov-Smirnov-Test Forschungsmethodik II Mag.rer.nat. M. Kickmeier-Rust Karl-Franzens-Universität Graz 1 Kolmogorov- Smirnov Test Andrei Nikolajewitsch Kolmogorov * 25.4.1903-20.10.1987 2 Kolmogorov-

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie Webinar Induktive Statistik - Wahrscheinlichkeitsrechnung - Stichprobentheorie Wahrscheinlichkeitstheorie Aufgabe : Zwei Lieferanten decken den Bedarf eines PKW-Herstellers von 00.000 Einheiten pro Monat.

Mehr

Statistik für SozialwissenschaftlerInnen II p.85

Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Ziel von Schätzverfahren: Ausgehend von Stichproben Aussagen über Populationskennwerte machen Kenntnis der Abweichung des

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Statistisches Testen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Übungsbuch Statistik für Dummies

Übungsbuch Statistik für Dummies beborah Rumseif Übungsbuch Statistik für Dummies WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Inhaltsverzeichnis Über die Autorin 8 Über den Übersetzer 8 Einführung 15 Über dieses Buch 15 Törichte Annahmen

Mehr

15 Wahrscheinlichkeitsrechnung und Statistik

15 Wahrscheinlichkeitsrechnung und Statistik 5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben

Mehr

Anhang 4. Bias durch Überdiagnose von papillären Mikrokarzinomen

Anhang 4. Bias durch Überdiagnose von papillären Mikrokarzinomen Anhang 4 Bias durch Überdiagnose von papillären Mikrokarzinomen Bias durch Überdiagnose von papillären Mikrokarzinomen H. Bertelsmann AG Epidemiologie und Medizinische Statistik Universität Bielefeld Dezember

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

Grenzen für x -s-regelkarten

Grenzen für x -s-regelkarten Normalverteilte Fertigung: Stichproben aus der Fertigung: σ σ Eine normalverteilte Fertigung hat den Mittelwert µ und die Standardabweichung σ. Stichproben aus der Fertigung haben zufällig abweichende

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Kapitel 5: Einfaktorielle Varianzanalyse Durchführung einer einfaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 5 vorgestellten einfaktoriellen Varianzanalyse

Mehr

Statistik II. Aufgabe 1

Statistik II. Aufgabe 1 Statistik II, SS 2004, Seite 1 von 7 Statistik II Hinweise zur Bearbeitung Hilfsmittel: - Taschenrechner (ohne Datenbank oder die Möglichkeit diesen zu programmieren) - Formelsammlung für Statistik II

Mehr

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Hypothese: Die Beschäftigung mit Kunst ist vom Bildungsgrad abhängig. 1. Annahmen Messniveau: Modell: Die Skala zur Erfassung der

Mehr