Bivariate Zusammenhänge

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Bivariate Zusammenhänge"

Transkript

1 Bivariate Zusammenhänge Tabellenanalyse: Kreuztabellierung und Kontingenzanalyse Philosophische Fakultät Institut für Soziologie Berufsverläufe und Berufserfolg von Hochschulabsolventen Dozent: Mike Kühne SS 2007 Martin Otto, Robert Pelz

2 Gliederung 1. Kreuztabellen 2. Tabellenanalyse Chi-Quadrat Chi-Quadrat-Unabhängigkeitstest Zusammenhangsmaße für nominale Daten Zusammenfassung Quellen

3 Die Kreuztabelle (Kontingenztabelle) i x j Kreuztabelle Merkmal 2 Ausprägung Zeilensummen Merkmal j Ausprägung 1 n 11 n n 1j n 1. Ausprägung 2 n 21 n n 2j n 2. Ausprägung 3 n 31 n n 3j n Ausprägung i n i1 n i2... n ij n i. Spaltensumme n. 1 n n. j n.. Tabelle 1

4 Vorteile der Kreuztabelle Übersichtliche Darstellung Einfache Auswertung Variablen unterschiedlicher Skalenniveaus können einfach auf ihren Zusammenhang untersucht werden

5 Beispiel: Analyse der Produktpräferenzen (absolute Werte) Bevorzugter Brotaufstrich Wohnort Margarine Butter ländlich städtisch Tabelle 2

6 Wohnort ländlich städtisch Margarine 21,7% 78,3% 100% Butter 60% 40% 100% Tabelle 3: Darstellung mit Spaltenprozenten Wohnort Margarine Butter ländlich 33,8% 66,2% 100% städtisch 73,5% 26,5% 100% Tabelle 4: Darstellung mit Zeilenprozenten

7 Nachteile Drittvariableneinflüsse sind nicht erkennbar Tabellendesign kann Zusammenhänge verdecken Unübersichtlich bei vielen Ausprägungen

8 Tabellenanalyse Besteht eine Abhängigkeit zwischen den beobachteten Variablen? Wie ist die Stärke der Abhängigkeit messbar?

9 Abhängigkeit? Bevorzugter Brotaufstrich Wohnort Margarine Butter ländlich 12,7% 24,9% 37,6% städtisch 45,9% 16,5% 62,4% 58,6% 41,4% 100% Tabelle 5 Gibt es einen Zusammenhang zwischen den Variablen Wohnort und Brotaufstrich?

10 Unabhängigkeit Bevorzugter Brotaufstrich Wohnort Margarine Butter ländlich 37,6% städtisch 62,4% 58,6% 41,4% 100% Tabelle 5 Angenommen, es besteht kein Zusammenhang zwischen Brotaufstrich und Wohnort, dann müssten sich diese Verhältnisse in jeder Zeile bzw. Spalte widerspiegeln.

11 erwartete Werte Werte bei unterstellter Unabhängigkeit Über die Randhäufigkeiten lassen sich die erwarteten Werte errechnen. Erwarteter Wert = Zeilensumme Spaltensumme Gesamtsumme

12 beobachtete / erwartete Werte Bevorzugter Brotaufstrich Wohnort Margarine Butter ländlich 23 / / städtisch 83 / / Tabelle 6

13 a) Chi - Quadrat χ 2 χ 2 = i,j (n ij - ñ ij ) 2 ñ ij Maß für den Unterschied zwischen beobachteten und erwarteten Werten χ 2 = 0, Variablen X und Y sind unabhängig

14 b) χ 2 - Unabhängigkeitstest Aufstellen der Hypothesen: H 0 : Wohnort und Brotaufstrich sind unabhängig. H A : Brotaufstrich ist abhängig vom Wohnort Irrtumswahrscheinlichkeit festlegen: Signifikanzniveau: α = 0,05 Berechnung

15 b) χ 2 -Unabhängigkeitstest χ 2 = (23 40) (45 28) (83 66) (30 47) ,47 χ 2 0, d.h. eine Abhängigkeit ist zu vermuten

16 b) χ 2 -Unabhängigkeitstest χ 2 0, d.h. eine Abhängigkeit ist zu vermuten Vergleichswert bei Signifkanzniveau α = 0,05 ist 3,84 (Bestimmung über χ 2 - Tabelle) χ 2 = 27,47 > 3,84, d.h. H 0 ist mit einer Irrtumswahrscheinlichkeit von 5% abzulehnen

17 b) χ 2 -Unabhängigkeitstest χ 2 = (23 40) (45 28) (83 66) (30 47) ,47 χ 2 = (46 79,6) 2 79,6 + (90 56,4) 2 56,4 + ( ,4) 2 132,4 + (60 93,6) 2 93,6 54,78 χ 2 0, d.h. eine Abhängigkeit ist zu vermuten, Stärke und Richtung des Zusammenhangs sind nicht erkennbar

18 Yates-Korrektur und exakter Ungenauigkeit des Fisher-Test χ 2 -Unabhängigkeitstest bei kleinen Stichprobenumfängen Yates-Korrektur bei Stichprobenumfang von Exakter Fisher-Test bei n < 20

19 c) Zusammenhangsmaße für Prozentsatzdifferenz nominale Daten Phi Kontingenzkoeffizient C Cramer s V χ 2 -basierte Maßzahlen Odds Ratio Relative Risiken Spezielle Maßzahlen

20 Prozentsatzdifferenz Einfachste Art, die Stärke von Zusammenhängen zwischen Merkmalen zu messen Differenzen der relativen Häufigkeiten werden gebildet Bsp: Der Unterschied zwischen Butterkäufern auf dem Land (60%) und Butterkäufern in der Stadt (40%) beträgt 20%.

21 Phi ϕ= Beruht auf χ 2 Je größer ϕ, desto stärker der Zusammenhang Nimmt Werte zwischen 0 und 1 an Orientierung: ϕ > 0,3 mehr als triviale Abhängigkeit χ 2 N

22 Nachteile des ϕ-koeffizienten Unterschiedliche ϕ-koeffizienten lassen sich nicht vergleichen Transformation des Skalenniveaus haben Auswirkung auf ϕ Ist nur für Vier-Feldertafel geeignet (sonst ϕ > 1)

23 Kontingenzkoeffizient C Sinnvoll, bei mehreren Ausprägungen Modifikation von ϕ C = χ 2 χ 2 + N Nimmt Werte zwischen 0 und 1 an Erreicht nur selten 1

24 Kontingenzkoeffizient C Obergrenze ist abhängig von der Anzahl der Merkmalsausprägungen C = 0,362 C max = C max = 0,707 R -1 R R = min[i,j]

25 Cramer s V Anwendbar für alle i j - Kreuztabellen Identisch mit ϕ, falls Variablen binär V= χ 2 N (min[i,j] - 1) Nimmt Werte zwischen 0 und 1 an

26 Odds Ratio und Risk Krankheit Ja Nein Summe Placebo Medikament Summe

27 Odds Ratio Odds - Chancen Verhältnis der Wahrscheinlichkeit, dass ein Ereignis eintritt zu der, dass es nicht eintritt Odds Ratio - relative Chancen Maß für das Chancenverhältnis zwischen zwei Gruppen Odds der Gruppen werden ins Verhältnis zueinander gesetzt Nur für Vier-Feldertabellen geeignet

28 Odds Odds = p / (1-p) Chance, dass Placebogruppe Krankheit bekommt: O PK = 52 / 255 = 0,204 = 1 : 5 Chance, dass Medikamentengruppe Krankheit bekommt: O MK = 21 / 294 = 0,071 = 1 : 14

29 Odds Ratio Odds Ratio zwischen den Gruppen Placebo und Medikament Chancenverhältnis der Gruppen, die Krankheit zu bekommen OR = O PK O MK OR = 0,204 0,071 2,9 D.h.: Chancen der Placebogruppe die Krankheit zu bekommen ist 2,9 mal höher als die der Medikamentengruppe

30 Risk Risiko ist die Wahrscheinlichkeit für ein unerwünschtes Ereignis z.b.: Krankheit in der Placebogruppe bekommen: p = 52 / 307 = 0,169 Relatives Risiko Maß für das Risikoverhältnis zwischen zwei Gruppen Risiken der Gruppen werden ins Verhältnis zueinander gesetzt

31 Risiko Krankheit: Placebogruppe: 52 / 307 = 0,169 Medikamentengruppe 21 / 315 = 0,067 Relatives Risiko Verhältnis Placebogruppe zu Medikamentengruppe 0,169 / 0,067 2,5 D.h.: Risiko der Placebogruppe, Krankheit zu bekommen ist 2,5 mal höher als das der Medikamentengruppe.

32 3. Zusammenfassung Zu untersuchende Variablen auswählen Konstruktion der Kreuztabelle Signifikanztest zur Überprüfung einer Abhängigkeit Auswahl eines geeigneten Zusammenhangsmaßes Messniveau beachten

33 4. Quellen Backhaus, K.; Erichson, B.; Plinke, W.; Weiber, R. (1996): Multivariate Analysemethoden. Eine anwendungsorientierte Einführung. Berlin u.a.: Springer Bamberg, G.; Baur, F. (2001): Statistik. 11. Auflage. München: Oldenbourg Diekmann, A. (2003): Empirische Sozialforschung. Grundlagen, Methoden, Anwendungen. Hamburg: Rowohlt Janssen, J.; Laatz, W. (2005): Statistische Datenanalyse mit SPSS für Windows. 5., neu bearbeitet und erweiterte Auflage. Berlin u.a.: Springer Spiegel, M.R. (1990): Statistik. 2., überarb. und erw. Auflage. London u.a.: McGraw-Hill

Bivariate Analyse: Gemeinsame (bivariate) Häufigkeitstabelle. Sie wird auch Kontingenz-, Assoziations- oder Korrelationstabelle (f b )genannt.

Bivariate Analyse: Gemeinsame (bivariate) Häufigkeitstabelle. Sie wird auch Kontingenz-, Assoziations- oder Korrelationstabelle (f b )genannt. Bivariate Analyse: Tabellarische Darstellung: Gemeinsame (bivariate) Häufigkeitstabelle. Sie wird auch Kontingenz-, Assoziations- oder Korrelationstabelle (f b )genannt. Beispiel: Häufigkeitsverteilung

Mehr

Bivariate Kreuztabellen

Bivariate Kreuztabellen Bivariate Kreuztabellen Kühnel, Krebs 2001 S. 307-342 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/33 Häufigkeit in Zelle y 1 x 1 Kreuztabellen Randverteilung x 1... x j... x J Σ

Mehr

Was sind Zusammenhangsmaße?

Was sind Zusammenhangsmaße? Was sind Zusammenhangsmaße? Zusammenhangsmaße beschreiben einen Zusammenhang zwischen zwei Variablen Beispiele für Zusammenhänge: Arbeiter wählen häufiger die SPD als andere Gruppen Hochgebildete vertreten

Mehr

Skalenniveaus =,!=, >, <, +, -

Skalenniveaus =,!=, >, <, +, - ZUSAMMENHANGSMAßE Skalenniveaus Nominalskala Ordinalskala Intervallskala Verhältnisskala =,!= =,!=, >, < =,!=, >, ,

Mehr

Zusammenhangsanalyse in Kontingenztabellen

Zusammenhangsanalyse in Kontingenztabellen Zusammenhangsanalyse in Kontingenztabellen Bisher: Tabellarische / graphische Präsentation Jetzt: Maßzahlen für Stärke des Zusammenhangs zwischen X und Y. Chancen und relative Chancen Zunächst 2 2 - Kontingenztafel

Mehr

Chi Quadrat-Unabhängigkeitstest

Chi Quadrat-Unabhängigkeitstest Fragestellung 1: Untersuchung mit Hilfe des Chi-Quadrat-Unabhängigkeitstestes, ob zwischen dem Herkunftsland der Befragten und der Bewertung des Kontaktes zu den Nachbarn aus einem Anderen Herkunftsland

Mehr

Quantitative Auswertung II. Korpuslinguistik Heike Zinsmeister

Quantitative Auswertung II. Korpuslinguistik Heike Zinsmeister Quantitative Auswertung II Korpuslinguistik Heike Zinsmeister 16.12.2011 Unterschiedstest Fall 1: unabhängige Stichproben Daten eine unabhängige Variable auf Nominal- oder Kategorialniveau eine abhängige

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 4B a.) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Mit "Deskriptive Statistiken", "Kreuztabellen " wird die Dialogbox "Kreuztabellen" geöffnet. POL wird in das Eingabefeld von

Mehr

Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 6 Gerhard Tutz, Jan Ulbricht WS 05/06.

Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 6 Gerhard Tutz, Jan Ulbricht WS 05/06. Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt Gerhard Tutz, Jan Ulbricht WS 05/0 Lösung Aufgabe 4 Notation: X: Rauchen, Y : chronische Bronchitis S X {ja, nein} {a 1, a },

Mehr

Zwei kategoriale Merkmale. Homogenität Unabhängigkeit

Zwei kategoriale Merkmale. Homogenität Unabhängigkeit 121 Zwei kategoriale Merkmale Homogenität Unabhängigkeit 122 Beispiel Gründe für die Beliebtheit bei Klassenkameraden 478 neun- bis zwölfjährige Schulkinder in Michigan, USA Grund für Beliebtheit weiblich

Mehr

THEMA: ZUSAMMENHANGSANALYSEN FÜR KATEGORIALE VARIABLEN " TORSTEN SCHOLZ

THEMA: ZUSAMMENHANGSANALYSEN FÜR KATEGORIALE VARIABLEN  TORSTEN SCHOLZ W THEMA: ZUSAMMENHANGSANALYSEN FÜR KATEGORIALE VARIABLEN " TORSTEN SCHOLZ HERZLICH WILLKOMMEN BEI W Moderation Anne K. Bogner-Hamleh SAS Institute GmbH Education Consultant Training Dr. Torsten Scholz

Mehr

Institut für Soziologie Werner Fröhlich. Methoden 2. Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest

Institut für Soziologie Werner Fröhlich. Methoden 2. Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest Institut für Soziologie Methoden 2 Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest Aufbau der Sitzung Was sind Kontingenztabellen? Wofür werden Kontingenztabellen verwendet? Aufbau und Interpretation

Mehr

Institut für Soziologie Werner Fröhlich. Methoden 2. Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest

Institut für Soziologie Werner Fröhlich. Methoden 2. Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest Institut für Soziologie Methoden 2 Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest Aufbau der Sitzung Was sind Kontingenztabellen? Wofür werden Kontingenztabellen verwendet? Aufbau und Interpretation

Mehr

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen - nominal, ordinal, metrisch In SPSS: - Einfache -> Mittelwerte vergleichen -> Einfaktorielle - Mehrfaktorielle -> Allgemeines lineares Modell -> Univariat In SPSS: -> Nichtparametrische Tests -> K unabhängige

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für einen chi²-test Daten: afrikamie.sav Im Rahmen der Evaluation des Afrikamie-Festivals wurden persönliche Interviews durchgeführt. Hypothese: Es gibt einen Zusammenhang zwischen dem Geschlecht

Mehr

Der χ 2 -Test (Chiquadrat-Test)

Der χ 2 -Test (Chiquadrat-Test) Der χ 2 -Test (Chiquadrat-Test) Der Grundgedanke Mit den χ 2 -Methoden kann überprüft werden, ob sich die empirischen (im Experiment beobachteten) Häufigkeiten einer nominalen Variable systematisch von

Mehr

Chi-Quadrat Verfahren

Chi-Quadrat Verfahren Chi-Quadrat Verfahren Chi-Quadrat Verfahren werden bei nominalskalierten Daten verwendet. Die einzige Information, die wir bei Nominalskalenniveau zur Verfügung haben, sind Häufigkeiten. Die Quintessenz

Mehr

5.3 (Empirische) Unabhängigkeit und χ 2

5.3 (Empirische) Unabhängigkeit und χ 2 5.3 (Empirische) Unabhängigkeit und χ 2 5.3.1 (Empirische) Unabhängigkeit Durch den Vergleich der bedingten Häufigkeiten mit den Randhäufigkeiten kann man Zusammenhänge beurteilen Illustration an einem

Mehr

Statistik II: Signifikanztests /1

Statistik II: Signifikanztests /1 Medien Institut : Signifikanztests /1 Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Noch einmal: Grundlagen des Signifikanztests 2. Der chi 2 -Test 3. Der t-test

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test 1 Der zweidimensionale Chi²-Test 4 Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen einer Population anhand eines Merkmals mit zwei oder mehr

Mehr

Bivariater Zusammenhang in der Mehrfeldertafel PEΣO

Bivariater Zusammenhang in der Mehrfeldertafel PEΣO Bivariater Zusammenhang in der Mehrfeldertafel PEΣO 9. November 2001 Bivariate Häufigkeitsverteilungen in Mehrfeldertabellen In der Mehrfeldertabelle werden im Gegensatz zur Vierfeldertabelle keine dichotomen

Mehr

Test auf den Erwartungswert

Test auf den Erwartungswert Test auf den Erwartungswert Wir interessieren uns für den Erwartungswert µ einer metrischen Zufallsgröße. Beispiele: Alter, Einkommen, Körpergröße, Scorewert... Wir können einseitige oder zweiseitige Hypothesen

Mehr

Bivariate Statistik: Kreuztabelle

Bivariate Statistik: Kreuztabelle Bivariate Statistik: Kreuztabelle Beispiel 1: Im ALLBUS wurde u.a. nach dem Nationalstolz und nach dem Gefühl der Überfremdung gefragt: Würden Sie sagen, dass Sie sehr stolz, ziemlich stolz, nicht sehr

Mehr

3. ZWEI KATEGORIALE MERKMALE (bivariate kategoriale Daten)

3. ZWEI KATEGORIALE MERKMALE (bivariate kategoriale Daten) 3. ZWEI KATEGORIALE MERKMALE (bivariate kategoriale Daten) Beispiel: Gründe für Beliebtheit bei Klassenkameraden 478 neun- bis zwölfjährigen Schulkinder in Michigan, USA warum ist man bei seinen Klassenkameraden

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Analyse von Kreuztabellen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof.

Mehr

Assoziation & Korrelation

Assoziation & Korrelation Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei Beobachtung von Merkmalen stellt sich die Frage, ob es Zusammenhänge oder Abhängigkeiten zwischen den

Mehr

Analyse von Querschnittsdaten. Arten von Variablen und Strategien der Datenanalyse

Analyse von Querschnittsdaten. Arten von Variablen und Strategien der Datenanalyse Analyse von Querschnittsdaten Arten von Variablen und Strategien der Datenanalyse Gliederung 1. Arten von Variablen 2. Analyse einzelner Variablen (univariate Verteilungen) 3. Analyse der Zusammenhänge

Mehr

Musterlösung zur Aufgabensammlung Statistik I Teil 3

Musterlösung zur Aufgabensammlung Statistik I Teil 3 Musterlösung zur Aufgabensammlung Statistik I Teil 3 2008, Malte Wissmann 1 Zusammenhang zwischen zwei Merkmalen Nominale, Ordinale Merkmale und Mischungen Aufgabe 12 a) x\ y 1.Klasse 2.Klasse 3.Klasse

Mehr

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

Biometrieübung 11 Kontingenztafeln

Biometrieübung 11 Kontingenztafeln Biometrieübung 11 (Kontingenztafeln) - Aufgabe Biometrieübung 11 Kontingenztafeln Aufgabe 1 2x2-Kontingenztafeln 100 weibliche Patienten sind mit einer konventionellen Therapie behandelt worden 85 Patientinnen

Mehr

Mehrere kategoriale Merkmale

Mehrere kategoriale Merkmale Kapitel 3 Mehrere kategoriale Merkmale 3.1 Wie kann man zwei kategoriale Merkmale numerisch beschreiben? Kontingenztafeln (Kreuztabellen) erzeugt man wiederum mit table: R> CMMRCIAL

Mehr

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG GLIEDERUNG Statistik eine Umschreibung Gliederung der Statistik in zwei zentrale Teilbereiche Deskriptive Statistik Inferenzstatistik

Mehr

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08 Computergestützte Methoden Master of Science Prof. Dr. G. H. Franke WS 07/08 1 Seminarübersicht 1. Einführung 2. Recherchen mit Datenbanken 3. Erstellung eines Datenfeldes 4. Skalenniveau und Skalierung

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test 1 Der zweidimensionale Chi²-Test 6 Alternativer Lösungsweg für SPSS Version 17 und älter 10 Alte Dialogfelder: Eindimensionaler Chi²-Test

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Aufgaben zu Kapitel 9

Aufgaben zu Kapitel 9 Aufgaben zu Kapitel 9 Aufgabe 1 Für diese Aufgabe benötigen Sie den Datensatz Nominaldaten.sav. a) Sie arbeiten für eine Marktforschungsfirma und sollen überprüfen, ob die in diesem Datensatz untersuchte

Mehr

Kategorielle Daten. Seminar für Statistik Markus Kalisch

Kategorielle Daten. Seminar für Statistik Markus Kalisch Kategorielle Daten Markus Kalisch 1 Phase 3 Studie: Wirksamer als Placebo? Medikament Placebo Total Geheilt 15 9 24 Nicht geheilt 10 11 21 Total 25 20 45 Grundfrage: Sind Heilung und Medikamentengabe unabhängig?

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Das Testen von Hypothesen Während die deskriptive Statistik die Stichproben nur mit Hilfe quantitativer Angaben charakterisiert,

Mehr

Bivariate Verteilungen

Bivariate Verteilungen Bei der univariatendatenanalyse wird jeweils eine Variable analysiert. Im Zuge der univariatendatenanalyse werden zwar i.d.r. mehrere Variablen untersucht, aber jede Variablenverteilung isoliert von den

Mehr

Datenanalyse. Dietmar Maringer WWZ, Universität Basel, HS 2010

Datenanalyse. Dietmar Maringer WWZ, Universität Basel, HS 2010 Kontingenzanalyse Datenanalyse Dietmar Maringer WWZ, Universität Basel, HS 2010 Grundlagen Zutaten kategoriale Merkmale Häufigkeiten für jede Kategorie typische Frage: hängen Merkmale zusammen oder sind

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Forschungsmethoden in der Sozialen Arbeit

Forschungsmethoden in der Sozialen Arbeit Forschungsmethoden in der Sozialen Arbeit Fachhochschule für Sozialarbeit und Sozialpädagogik Alice- Salomon Hochschule für Soziale arbeit, Gesundheit, Erziehung und Bildung University of Applied Sciences

Mehr

Assoziation & Korrelation

Assoziation & Korrelation Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei Beobachtung von 2 Merkmalen stellt sich die Frage, ob es Zusammenhänge oder Abhängigkeiten zwischen den

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese:

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese: 2.4.1 Grundprinzipien statistischer Hypothesentests Hypothese: Behauptung einer Tatsache, deren Überprüfung noch aussteht (Leutner in: Endruweit, Trommsdorff: Wörterbuch der Soziologie, 1989). Statistischer

Mehr

Analyse bivariater Kontingenztafeln

Analyse bivariater Kontingenztafeln Analyse bivariater Kontingenztafeln Werden zwei kategoriale Merkmale mit nicht zu vielen möglichen Ausprägungen gemeinsam analysiert, so kommen zur Beschreibung der gemeinsamen Verteilung im allgemeinen

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 15 Statistische Testverfahren 15.1. Arten statistischer Test Klassifikation von Stichproben-Tests Einstichproben-Test Zweistichproben-Test - nach der Anzahl der Stichproben - in Abhängigkeit von

Mehr

Deskriptive Statistik Lösungen zu Blatt 5 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 27. f X Y (a i b j ) = f i j = f ij f j

Deskriptive Statistik Lösungen zu Blatt 5 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 27. f X Y (a i b j ) = f i j = f ij f j 1 Deskriptive Statistik Lösungen zu Blatt 5 Christian Heumann, Susanne Konrath SS 2011 Lösung Aufgabe 27 (a) Notation: X: Rauchen, Y : chronische Bronchitis S X {ja, nein} {a 1, a 2 }, S Y {ja, nein} {b

Mehr

Analyse von Kontingenztafeln

Analyse von Kontingenztafeln Analyse von Kontingenztafeln Mit Hilfe von Kontingenztafeln (Kreuztabellen) kann die Abhängigkeit bzw. die Inhomogenität der Verteilungen kategorialer Merkmale beschrieben, analysiert und getestet werden.

Mehr

Fortgeschrittene Statistik Logistische Regression

Fortgeschrittene Statistik Logistische Regression Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für eine zweifaktorielle Varianzanalyse mit Messwiederholung auf einem Faktor (univariate Lösung) Daten: POKIII_AG4_V06.SAV Hypothese: Die physische Attraktivität der Bildperson und das Geschlecht

Mehr

Herzlich willkommen zur Vorlesung Statistik

Herzlich willkommen zur Vorlesung Statistik FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik Zusammenhänge zwischen nominalen (und/oder ordinalen) Merkmalen: analyse und II: Signifikanztests und Maße der Assoziation

Mehr

Grundlagen der Statistik I

Grundlagen der Statistik I NWB-Studienbücher Wirtschaftswissenschaften Grundlagen der Statistik I Beschreibende Verfahren Von Professor Dr. Jochen Schwarze 10. Auflage Verlag Neue Wirtschafts-Briefe Herne/Berlin Inhaltsverzeichnis

Mehr

Kontingenztabellen. Worum geht es in diesem Modul?

Kontingenztabellen. Worum geht es in diesem Modul? Kontingenztabellen Worum geht es in diesem Modul? Die Ausgangssituation Die 2x2 Felder Tafel Randverteilungen in 2x2-Tafeln Bedingte Häufigkeiten in 2x2-Tafeln Die IxJ-Felder Tafel Kontingenztabelle und

Mehr

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei

Mehr

8. Kreuztabellenanalyse

8. Kreuztabellenanalyse 8. Kreuztabellenanalyse In den bislang dargestellten Beispielen wurde in der Regel der Mittelwert eines Merkmals ausgewertet. Meistens ist man aber nicht nur an der Verteilung eines einzigen Merkmals oder

Mehr

Kategoriale Daten. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/17

Kategoriale Daten. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/17 Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/17 Übersicht Besitzen die Daten, die statistisch ausgewertet werden sollen, kategoriales Skalenniveau, unterscheidet man die folgenden Szenarien:

Mehr

Einführung in die computergestützte Datenanalyse

Einführung in die computergestützte Datenanalyse Karlheinz Zwerenz Statistik Einführung in die computergestützte Datenanalyse 6., überarbeitete Auflage DE GRUYTER OLDENBOURG Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL

Mehr

Unterschiedshypothesen Vergleiche von Häufigkeiten bzw. Mittelwerten zwischen (mindestens) zwei Gruppen Zusammenhangshypothesen Korrelationsanalysen

Unterschiedshypothesen Vergleiche von Häufigkeiten bzw. Mittelwerten zwischen (mindestens) zwei Gruppen Zusammenhangshypothesen Korrelationsanalysen Statistische Überprüfung von Hypothesen Hypothesen sind allgemeine Aussagen über Zusammenhänge zwischen empirischen und logischen Sachverhalten.Allgemein bezeichnet man diejenigen Aussagen als Hypothesen,

Mehr

Leseprobe. Michael Sachs. Wahrscheinlichkeitsrechnung und Statistik. für Ingenieurstudenten an Fachhochschulen. ISBN (Buch):

Leseprobe. Michael Sachs. Wahrscheinlichkeitsrechnung und Statistik. für Ingenieurstudenten an Fachhochschulen. ISBN (Buch): Leseprobe Michael Sachs Wahrscheinlichkeitsrechnung und Statistik für Ingenieurstudenten an Fachhochschulen ISBN (Buch): 978-3-446-43797-5 ISBN (E-Book): 978-3-446-43732-6 Weitere Informationen oder Bestellungen

Mehr

Kapitel 16 Kreuztabellen

Kapitel 16 Kreuztabellen Kapitel 16 Kreuztabellen Eine Kreuztabelle dient dazu, die kombinierte Häufigkeitsverteilung zweier Variablen darzustellen. Sie bildet somit das Pendant zu einer Häufigkeitstabelle für den 2-Variablen-Fall.

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Prof. Dr. Achim Bühl SPSS 16. Einführung in die moderne Datenanalyse. 11., überarbeitete und erweiterte Auflage

Prof. Dr. Achim Bühl SPSS 16. Einführung in die moderne Datenanalyse. 11., überarbeitete und erweiterte Auflage Prof. Dr. Achim Bühl SPSS 16 Einführung in die moderne Datenanalyse 11., überarbeitete und erweiterte Auflage ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario

Mehr

Einführung in die Korrelationsrechnung

Einführung in die Korrelationsrechnung Einführung in die Korrelationsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Korrelationsrechnung

Mehr

Inhaltsverzeichnis. Vorwort

Inhaltsverzeichnis. Vorwort V Vorwort XI 1 Zum Gebrauch dieses Buches 1 1.1 Einführung 1 1.2 Der Text in den Kapiteln 1 1.3 Was Sie bei auftretenden Problemen tun sollten 2 1.4 Wichtig zu wissen 3 1.5 Zahlenbeispiele im Text 3 1.6

Mehr

Epidemiologie / Biometrie

Epidemiologie / Biometrie Wintersemester 2004 / 2005 Epidemiologie / Biometrie Robert Hochstrat 14. März 2005 Zusammenschrift der Übung zur Vorlesung aus dem WS 04/05 Rückfragen, Ergänzungen und Korrekturen an robert hochstrat@web.de

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS Sommersemester 2009, Statistik mit SPSS 26. August 2009 26. August 2009 Statistik Dozentin: mit Anja SPSS Mays 1 Bivariate Datenanalyse, Überblick bis Freitag heute heute Donnerstag Donnerstag Freitag

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten Von Prof. Dr. Rainer Schlittgen 4., überarbeitete und erweiterte Auflage Fachbereich Materialwissenschaft! der Techn. Hochschule Darmstadt

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie () WiSe /3 Univariate und bivariate Verfahren Univariate

Mehr

Empirische Analysen mit dem SOEP

Empirische Analysen mit dem SOEP Empirische Analysen mit dem SOEP Methodisches Lineare Regressionsanalyse & Logit/Probit Modelle Kurs im Wintersemester 2007/08 Dipl.-Volksw. Paul Böhm Dipl.-Volksw. Dominik Hanglberger Dipl.-Volksw. Rafael

Mehr

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8 Wiederholung Statistik I Statistik für SozialwissenschaftlerInnen II p.8 Konstanten und Variablen Konstante: Merkmal hat nur eine Ausprägung Variable: Merkmal kann mehrere Ausprägungen annehmen Statistik

Mehr

1.TABELLENANALYSEN MIT DICHOTOMEN VARIABLEN...

1.TABELLENANALYSEN MIT DICHOTOMEN VARIABLEN... Tabellenanalyse 1.TABELLENANALYSEN MIT DICHOTOMEN VARIABLEN... 2 1.1 BEISPIEL AUS DEM SKRIPT: DER ZUSAMMENHANG VON RAUCHEN UND KREBSERKRANKUNG... 2 1.2 DARSTELLUNG DES ZUSAMMENHANGS MIT SPSS:... 2 1.3

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 09. Mai 2009 09. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Arbeitsschritte bei der Datenanalyse Datenmanagement (Einlesen von Daten, Teilen von

Mehr

2.1 Einführung in das Testen von Hypothesen

2.1 Einführung in das Testen von Hypothesen 2.1 Einführung in das Testen von Hypothesen 1 Gliederung 2.1 Einführung in das Testen von Hypothesen 2.1.1 Typische Fragestellungen 2.1.2 Mittelwertvergleich 2.1.2.1 Einstichprobenproblem 2.1.2.2 Zweistichprobenproblem

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik Wahrscheinlichkeitsrechnung und Statistik Für Ingenieurstudenten an Fachhochschulen von Michael Sachs erweitert Wahrscheinlichkeitsrechnung und Statistik Sachs schnell und portofrei erhältlich bei beck-shopde

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz 3., überarbeitete Auflage R.01denbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

Bivariate Analyseverfahren

Bivariate Analyseverfahren Bivariate Analyseverfahren Bivariate Verfahren beschäftigen sich mit dem Zusammenhang zwischen zwei Variablen Beispiel: Konservatismus/Alter Zusammenhangsmaße beschreiben die Stärke eines Zusammenhangs

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

Angewandte Statistik mit R

Angewandte Statistik mit R Reiner Hellbrück Angewandte Statistik mit R Eine Einführung für Ökonomen und Sozialwissenschaftler 2., überarbeitete Auflage B 374545 GABLER Inhaltsverzeichnis Vorwort zur zweiten Auflage Tabellenverzeichnis

Mehr

Lineare Gleichungssysteme: eine Ergänzung

Lineare Gleichungssysteme: eine Ergänzung Lineare Gleichungssysteme: eine Ergänzung Ein lineares Gleichungssystem, bei dem alle Einträge auf der rechten Seite gleich sind heiÿt homogenes lineares Gleichungssystem: a x + a 2 x 2 +... + a n x n

Mehr

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg Lagemaße Übung M O D U S, M E D I A N, M I T T E L W E R T, M O D A L K L A S S E, M E D I A N, K L A S S E, I N T E R P O L A T I O N D E R M E D I A N, K L A S S E M I T T E Zentrale Methodenlehre, Europa

Mehr

Biomathematik für Mediziner, Klausur WS 2003/2004 Seite 1

Biomathematik für Mediziner, Klausur WS 2003/2004 Seite 1 Biomathematik für Mediziner, Klausur WS 2003/2004 Seite 1 Aufgabe 1: Prüfe, welche der folgenden Merkmale qualitativ sind: (a) Blutgruppe (b) Pulsfrequenz (c) Erkrankung an Scharlach (d) Teilnahme an einem

Mehr

Statistik II: Grundlagen und Definitionen der Statistik

Statistik II: Grundlagen und Definitionen der Statistik Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

Modul G.1 WS 07/08: Statistik

Modul G.1 WS 07/08: Statistik Modul G.1 WS 07/08: Statistik 10.01.2008 1 2 Test Anwendungen Der 2 Test ist eine Klasse von Verfahren für Nominaldaten, wobei die Verteilung der beobachteten Häufigkeiten auf zwei mehrfach gestufte Variablen

Mehr

Statistik, Geostatistik

Statistik, Geostatistik Geostatistik Statistik, Geostatistik Statistik Zusammenfassung von Methoden (Methodik), die sich mit der wahrscheinlichkeitsbezogenen Auswertung empirischer (d.h. beobachteter, gemessener) Daten befassen.

Mehr

Ausarbeitung Prüfung Statistik und Wahrscheinlichkeitstheorie (Universität Wien)

Ausarbeitung Prüfung Statistik und Wahrscheinlichkeitstheorie (Universität Wien) Ausarbeitung Prüfung Statistik und Wahrscheinlichkeitstheorie (Universität Wien) Prüfung 28.0.03 Ausgearbeitet von Murmel (Murmel.vienna@gmx.at) Beispiel : Theorie Welche grafischen Darstellungsformen

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 19. Januar 2011 1 Nichtparametrische Tests Ordinalskalierte Daten 2 Test für ein Merkmal mit nur zwei Ausprägungen

Mehr

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Grundlage: Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Die Testvariable T = X µ 0 S/ n genügt der t-verteilung mit n 1 Freiheitsgraden. Auf der Basis

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz R.Oldenbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL I GRUNDLAGEN

Mehr

Was sagen uns Odds Ratio oder Risk Ratio in medizinischen Studien?

Was sagen uns Odds Ratio oder Risk Ratio in medizinischen Studien? Was sagen uns Odds Ratio oder Risk Ratio in medizinischen Studien? Peggy Seehafer Anthropologin & Hebamme Hamburg 2012 Statistik in der Medizin ist nicht dazu geeignet ursächliche Zusammenhänge herauszufinden

Mehr

Bitte schreiben Sie in Druckbuchstaben und vergessen Sie nicht zu unterschreiben. Name, Vorname:. Studiengang/ Semester:. Matrikelnummer:..

Bitte schreiben Sie in Druckbuchstaben und vergessen Sie nicht zu unterschreiben. Name, Vorname:. Studiengang/ Semester:. Matrikelnummer:.. Institut für Erziehungswissenschaft der Philipps-Universität Marburg Prof. Dr. Udo Kuckartz Arbeitsbereich Empirische Pädagogik/Methoden der Sozialforschung Wintersemester 004/005 KLAUSUR FEBRUAR 005/

Mehr