Quantitative Auswertung II. Korpuslinguistik Heike Zinsmeister

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Quantitative Auswertung II. Korpuslinguistik Heike Zinsmeister"

Transkript

1 Quantitative Auswertung II Korpuslinguistik Heike Zinsmeister

2 Unterschiedstest Fall 1: unabhängige Stichproben Daten eine unabhängige Variable auf Nominal- oder Kategorialniveau eine abhängige Variable auf Nominal- oder Kategorialniveau unabhängige Stichproben Frage Haben die Ausprägungen der unabhängigen Variable einen Einfluss auf die beobachteten Häufigkeiten der abhängigen Variable? Test Chi-Quadrat-Unterschiedstest 1

3 Ablaufschema Formulieren der Hypothese Tabellierung der beobachteten Häufigkeiten; graphische Betrachtung Ermittlung der Häufigkeiten, die nach H 0 zu erwarten wären Testen der Voraussetzungen Berechnung der Abweichungsmaße für alle beobachteten Häufigkeiten Summierung der Abweichungsmaße zur Ermittlung der Prüfstatistik χ 2 Ermittlung der Freiheitsgrade df und der Irrtumswahrscheinlichkeit p. 2

4 Voraussetzungen Alle Beobachtungen sind voneinander unabhängig. 80% der erwarteten Häufigkeiten sind größer oder gleich 5 Alle erwarteten Häufigkeiten sind größer 1 3

5 Experiment die uns bekannten Verb-Partikel-Objekt-Daten abhängige Variable: KONSTRUKTION Verb-Partikel-Direktes_Objekt Verb-Direktes_Objekt-Partikel unabhängige Variable: BEKANNTHEIT Referent des direkten Objekts ist bekannt Referent des direkten Objekts ist unbekannt unabhängige Stichproben, da die Kategorisierung der einzelne Objekte nichts mit der Kategorisierung anderer Objekte zu tun hat 4

6 Hypothesen H 0 : Die Häufigkeiten der Variablenausprägungen der Variable KONSTRUKTION variiert nicht in Abhängigkeit von der Variable BEKANNTHEIT H 1 : Die Häufigkeiten der Variablenausprägungen der Variable KONSTRUKTION variiert in Abhängigkeit von der Variable BEKANNTHEIT 5

7 Tabellierung der beobachteten Häufigkeiten Experiment Beschreibungen von Bildern (Peters 2001) einschließlich Vorerwähntheit im Diskurs Referent des DO bekannt Referent des DO unbekannt Zeilensummen V DO Part V PART DO Spaltensummen

8 Graphische Betrachtung Ist der Unterschied signifikant? 7

9 Ermitteln der erwarteten Werte Erster Versuch: Gleichverteilung scheitert an Ungleichverteilung der Variablen ansich Referent des Referent des DO bekannt DO unbekannt Zeilensummen V DO Part V PART DO Spaltensumm en

10 Ermitteln der erwarteten Werte Zweiter Versuch Berücksichtigung der Randsummen Wahrscheinlichkeiten/Prozentwerte unabhängiges gemeinsames Auftreten p(a,b)=p(a)*p(b) Referent des DO bekannt Referent des DO unbekannt Zeilensummen V DO Part 150/397= 37,78% V PART DO 247/397= 62,22% Spaltensumm en 185/397= 46,60% 212/397= 53,40% 397 = 100% 9

11 Ermitteln der erwarteten Werte n erwarteterzellenwert = Zeilensumme Spaltensumme n n Zeilensumme Spaltensumme = n n V DO Part Referent des DO bekannt (150*185)/ 397 = 69,9 Referent des DO unbekannt Zeilensummen 150 V PART DO 247 Spaltensumm en

12 Ermitteln der erwarteten Werte n erwarteterzellenwert = Zeilensumme Spaltensumme n n Zeilensumme Spaltensumme = n n V DO Part V PART DO Spaltensumm en Referent des DO bekannt (150*185)/ 397 = 69,9 (247*185)/397= 115,1 Referent des DO unbekannt (150*212)/ 397= 80,1 (247*212)/397= 131,9 Zeilensummen

13 Hypothesen Gleichverteilung bedeutet hier nicht: "Die Häufigkeiten in den Tabellenzellen sind gleich groß" sondern: "Die Häufigkeiten in den unterschiedlichen Bedingungen sind gleich der Verhältnisse der Randsummen." 69,9/80,1 115,1/131,9 185/212 0, ,9/115,1 80,1/131,9 150/247 0,6073 R-DO bekannt R-DO unbekannt Zeilensummen V DO Part 69,9 80,1 150 V PART DO 115,1 131,9 247 Spaltensummen

14 Hypothesen H 0 : χ 2 = 0 H 1 : χ 2 > 0 Voraussetzungen? Es besteht Unabhängigkeit, da wir davon ausgehen, dass die Versuchspersonen die Sätze für die einzelnen Bilder unabhängig voneinander äußern. Anforderungen an die erwarteten Frequenzen? 13

15 Abweichungen ermitteln Chi Quadrat = χ 2 = ( beobachtet erwartet) 2 n i=1 erwartet R-DO bekannt R-DO unbekannt Zeilensummen V DO Part 3,26 2,85 V PART DO 1,98 1,73 Spaltensummen χ 2 = 9,82 Freiheitsgrade df =(Zeilenzahl-1) *(Spaltenzahl-1)=(2-1)*(2-1)=1 14

16 Einschub: Freiheitsgrade Werden die erwarteten Häufigkeiten aus beobachteten ermittelt gilt: df =(Zeilenzahl-1) *(Spaltenzahl-1) Werden sie aus einer bekannten Verteilung errechnet: df =(Zeilenzahl*Spaltenzahl)-1 15

17 Interpretation Kritische χ 2 -Werte für p zweiseitig p=0,05 p=0,01 p=0,001 df=1 3,841 6,635 10,827 df=2 5,991 9,21 13,815 df=3 7,815 11,345 16,266 mit χ 2 =9,82 gilt 0,001 < p <0,01 das Ergebnis ist signifikant, aber nicht hoch signifikant 16

18 Wie ermittelt man die Effektstärke? Problem Chi-Quadrat-Wert ist abhängig von der Stichprobengröße Lösung Korrelationskoeffizient φ bzw. CI = χ 2 ( [ ] 1) n min Zeilenzahl,Spaltenzahl φ: bei k 2/m 2-Tabellen Cramers V: bei k m-tabellen mit k,m>2 Grenzwerte: 0= Nullkorrelation, 1=perfekte Korrelation 17

19 Bestimmung der Effektstärke über den Korrelationskoeffizienten φ φ bzw. CI = χ 2 ( [ ] 1) n min Zeilenzahl,Spaltenzahl Hier: Interpretation: Zusammenhang eher zufällig 18

20 Für 2 2-Tabellen: Bestimmung der Effektstärke über die Odds Ratio Die Odds eines Ereignisses E (mit zwei Ausprägungen) odds = p E 1 p E Vergleiche Wahrscheinlichkeit P: Häufigkeit eines Ereignisses in Bezug auf die Gesamtheit aller Ereignisse Odds O:Wahrscheinlichkeit eines Ereignisses in Bezug auf Wahrscheinlichkeit seines Nicht-Eintretens Odds Ratio zweier Ereignisse O 1 /O 2 19

21 Einschub odds ratio Beispiel: Regentage vs. Sonnentage p(regentag) = 1-p(Sonnentag) Sei p(regentag_august) = 3/4= 0.75 p(regentag_juli) = 2/7 = dann gilt O(Regentag_August) = 0.75/0.25 = 3:1 O(Regentag_Juli)= (2/7)/1-(2/7)= 2:5 Eine Wahrscheinlichkeit von 0,75 oder 75% entspricht den odds von 3:1 ("3 zu 1") Auf dreimal das Ereignis kommt jeweils einmal das Nicht- Ereignis 3/1 odds ratio(regentag_august/regentag_juli) = 2 /5 = 7.5 O(Regentag_August) ist 7,5 mal größer als O(Regen_Juli) 20

22 Einschub odds ratio Grenzwerte Wahrscheinlichkeit zwischen 0 und 1 Odds zwischen 0 und O=1 entspricht p=0.5 Odds ratio zwischen 0 und O 1 /O 2 = 1 bedeutet, dass zwischen den Ereignissen kein Unterschied besteht 21

23 Referent des DO bekannt Referent des DO unbekannt Zeilensummen V DO Part V PART DO Spaltensumm en Odds ratio = 85/65 100/147 = Die Konstruktion V DO PART ist 1,9223 mal wahrscheinlicher, wenn der Referent des DOs bekannt ist, als wenn er es nicht ist. 22

24 Zusammenfassung "Unbekannte Objekte werden bevorzugt in der Verb- Partikel-Konstruktion eingesetzt, in der die Partikel direkt dem Verb folgt; sie dispräferieren die Verb- Partikel-Konstruktion, in der die Partikel dem direkten Objekt folgt. Demgegenüber werden bekannte Objekte vorzugsweise in die Verb-Partikel-Konstruktion eingesetzt, in der die Partikel dem direkten Objekt folgt; bekannte Objekte in der anderen Konstruktion werden dispräferiert. Diese Präferenz ist gemäß einem Chi-Quadrat-Unterschiedstest signifikant (χ 2 =9,82;df=1;p zweiseitig <0,001), aber der Effekt ist schwach(φ=0,157, odds ratio=1,9223)." 23

25 Von welchen Ausprägungen stammen signifikante Unterschiede? Quadrierung der Pearson Residuals χ 2 =3,841; df=1; p zweiseitig <0,05 BEKANNTHEIT KONSTRUKTION bekannt unbekannt V_DO_Part V_Part_DO χ 2 =3,841 24

26 Waren die einzelnen Werte größer oder kleiner als erwartet? Residuals ohne Quadrierung BEKANNTHEIT KONSTRUKTION bekannt unbekannt V_DO_Part V_Part_DO

27 Waren die einzelnen Werte größer oder kleiner als erwartet? 26

28 Online: Chi-Quadrat-Test der Test auf Vassar Statistics Frequency Data Chi-Square, Cramer's V, and Lambda Signifikanz: Chi-Quadrat-Wert, Freiheitsgrade (df), p-wert Effektstärke: Cramer's V Prozentuale Abweichung (Percentage Deviations) Standardisierte Residuale (Standardized Residuals) Bei zu kleinen Frequenzen Fisher's Exact Test 27

29 Ausblick: Fall: abhängige Stichproben Daten eine abhängige Variable auf Nominal- oder Kategorialniveau abhängige Stichproben Frage Haben die geänderten Bedingungen bei einer Versuchwiederholung Einfluss auf die Variablenverteilung? Methode McNemar-Test 28

Analytische Statistik II. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09

Analytische Statistik II. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Analytische Statistik II Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Testen Anpassungstests (goodness of fit) Weicht eine gegebene Verteilung signifikant von einer bekannten

Mehr

erwartete Häufigkeit n=80 davon 50% Frauen fe=40 davon 50% Männer fe=40 Abweichung der beobachteten von den erwarteten Häufigkeiten:

erwartete Häufigkeit n=80 davon 50% Frauen fe=40 davon 50% Männer fe=40 Abweichung der beobachteten von den erwarteten Häufigkeiten: Verfahren zur Analyse von Nominaldaten Chi-Quadrat-Tests Vier-Felder Kontingenztafel Mehrfach gestufte Merkmale Cramers V, Kontingenzkoeffizient, Phi-Koeffizient Muster aller Chi-Quadrat-Verfahren eine

Mehr

Analytische Statistik: Varianzanpassungstest, Varianzhomogenitätstest. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09

Analytische Statistik: Varianzanpassungstest, Varianzhomogenitätstest. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Analytische Statistik: Varianzanpassungstest, Varianzhomogenitätstest Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Varianzanpassungstest Untersuchung der Streuung einer bzw.

Mehr

Quantitative Auswertung. Korpuslinguistik Dr. Heike Zinsmeister

Quantitative Auswertung. Korpuslinguistik Dr. Heike Zinsmeister Quantitative Auswertung Korpuslinguistik Dr. Heike Zinsmeister 02.12.2011 Analysetypen Deskriptive Statistik Beschreibung der 'Gestalt' von Datenverteilungen Grafische Darstellungen Zentrale Maße (Mittelwert

Mehr

Konfidenzintervalle. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09

Konfidenzintervalle. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Konfidenzintervalle Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Münzspiel Experiment 100 Münzwürfe: Stefan gewinnt bei "Kopf" Hypothesen H 0 : Stefan wird so oft gewinnen

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Korrelationsanalysen Kreuztabellen und χ²-test Themen Korrelation oder Lineare Regression? Korrelationsanalysen - Pearson, Spearman-Rang, Kendall s Tau

Mehr

Statistik II: Signifikanztests /1

Statistik II: Signifikanztests /1 Medien Institut : Signifikanztests /1 Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Noch einmal: Grundlagen des Signifikanztests 2. Der chi 2 -Test 3. Der t-test

Mehr

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Analytische Statistik I Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Testen Anpassungstests (goodness of fit) Weicht eine gegebene Verteilung signifikant von einer bekannten

Mehr

Aufgaben zu Kapitel 9

Aufgaben zu Kapitel 9 Aufgaben zu Kapitel 9 Aufgabe 1 Für diese Aufgabe benötigen Sie den Datensatz Nominaldaten.sav. a) Sie arbeiten für eine Marktforschungsfirma und sollen überprüfen ob die in diesem Datensatz untersuchte

Mehr

Analyse 1 Tierkreiszeichen (korrigiert für Bounces).docx Seite 1 von 7. Tierkreiszeichen * Crosstabulation

Analyse 1 Tierkreiszeichen (korrigiert für Bounces).docx Seite 1 von 7. Tierkreiszeichen *  Crosstabulation 2012 03 31 Analyse 1 Tierkreiszeichen (korrigiert für Bounces).docx Seite 1 von 7 Count Tierkreiszeichen * Crosstabulation Total nicht Tierkreiszeichen 22.12.-20.01. Steinbock 36278 22383 58661 21.01.-19.02.

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für einen chi²-test Daten: afrikamie.sav Im Rahmen der Evaluation des Afrikamie-Festivals wurden persönliche Interviews durchgeführt. Hypothese: Es gibt einen Zusammenhang zwischen dem Geschlecht

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

Der χ 2 -Test (Chiquadrat-Test)

Der χ 2 -Test (Chiquadrat-Test) Der χ 2 -Test (Chiquadrat-Test) Der Grundgedanke Mit den χ 2 -Methoden kann überprüft werden, ob sich die empirischen (im Experiment beobachteten) Häufigkeiten einer nominalen Variable systematisch von

Mehr

Bivariate Zusammenhänge

Bivariate Zusammenhänge Bivariate Zusammenhänge Tabellenanalyse: Kreuztabellierung und Kontingenzanalyse Philosophische Fakultät Institut für Soziologie Berufsverläufe und Berufserfolg von Hochschulabsolventen Dozent: Mike Kühne

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Das Testen von Hypothesen Während die deskriptive Statistik die Stichproben nur mit Hilfe quantitativer Angaben charakterisiert,

Mehr

Zwei kategoriale Merkmale. Homogenität Unabhängigkeit

Zwei kategoriale Merkmale. Homogenität Unabhängigkeit 121 Zwei kategoriale Merkmale Homogenität Unabhängigkeit 122 Beispiel Gründe für die Beliebtheit bei Klassenkameraden 478 neun- bis zwölfjährige Schulkinder in Michigan, USA Grund für Beliebtheit weiblich

Mehr

Tutorial:Unabhängigkeitstest

Tutorial:Unabhängigkeitstest Tutorial:Unabhängigkeitstest Mit Daten aus einer Befragung zur Einstellung gegenüber der wissenschaftlich-technischen Entwicklungen untersucht eine Soziologin den Zusammenhang zwischen der Einstellung

Mehr

Chi² Test und Kontingenzkoeffizient. - aber keine natürliche Reihenfolge

Chi² Test und Kontingenzkoeffizient. - aber keine natürliche Reihenfolge Chi² Test und Kontingenzoeffizient Für nominalsalierte Daten: - diese haben unterschiedliche Ausprägung, - aber eine natürliche Reihenfolge 1. Chi² Test Test nominalsalierter Daten Vergleich von beobachteten

Mehr

Inhaltsverzeichnis. Über die Autoren Einleitung... 21

Inhaltsverzeichnis. Über die Autoren Einleitung... 21 Inhaltsverzeichnis Über die Autoren.... 7 Einleitung... 21 Über dieses Buch... 21 Was Sie nicht lesen müssen... 22 Törichte Annahmen über den Leser... 22 Wie dieses Buch aufgebaut ist... 23 Symbole, die

Mehr

THEMA: ZUSAMMENHANGSANALYSEN FÜR KATEGORIALE VARIABLEN " TORSTEN SCHOLZ

THEMA: ZUSAMMENHANGSANALYSEN FÜR KATEGORIALE VARIABLEN  TORSTEN SCHOLZ W THEMA: ZUSAMMENHANGSANALYSEN FÜR KATEGORIALE VARIABLEN " TORSTEN SCHOLZ HERZLICH WILLKOMMEN BEI W Moderation Anne K. Bogner-Hamleh SAS Institute GmbH Education Consultant Training Dr. Torsten Scholz

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

Modul G.1 WS 07/08: Statistik

Modul G.1 WS 07/08: Statistik Modul G.1 WS 07/08: Statistik 10.01.2008 1 2 Test Anwendungen Der 2 Test ist eine Klasse von Verfahren für Nominaldaten, wobei die Verteilung der beobachteten Häufigkeiten auf zwei mehrfach gestufte Variablen

Mehr

Methodenlehre. Vorlesung 11. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 11. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 11 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 03.12.13 Methodenlehre I Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 25.9.13 Psychologie

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test 1 Der zweidimensionale Chi²-Test 4 Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Bivariate Kreuztabellen

Bivariate Kreuztabellen Bivariate Kreuztabellen Kühnel, Krebs 2001 S. 307-342 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/33 Häufigkeit in Zelle y 1 x 1 Kreuztabellen Randverteilung x 1... x j... x J Σ

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen einer Population anhand eines Merkmals mit zwei oder mehr

Mehr

Einführung in die sozialwissenschaftliche Statistik

Einführung in die sozialwissenschaftliche Statistik Einführung in die sozialwissenschaftliche Statistik Sitzung 4 Bivariate Deskription Heinz Leitgöb in Vertretung von Katrin Auspurg Sommersemester 2015 04.05.2015 Überblick 1. Kontingenztabellen 2. Assoziationsmaße

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Sven Garbade. Statistik 1

Sven Garbade. Statistik 1 χ 2 -Test für nominale Daten Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) χ 2 -Test für nominale

Mehr

Methodenlehre. Vorlesung 12. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 12. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 12 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie als Wissenschaft

Mehr

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments 73 Hypothesentests 73.1 Motivation Bei Hypothesentests will man eine gewisse Annahme über eine Zufallsvariable darauf hin überprüfen, ob sie korrekt ist. Beispiele: ( Ist eine Münze fair p = 1 )? 2 Sind

Mehr

Alternative Darstellung des 2-Stcihprobentests für Anteile

Alternative Darstellung des 2-Stcihprobentests für Anteile Alternative Darstellung des -Stcihprobentests für Anteile DCF CF Total n 111 11 3 Response 43 6 69 Resp. Rate 0,387 0,3 0,309 Bei Gültigkeit der Nullhypothese Beobachtete Response No Response Total absolut

Mehr

Chi-Quadrat Verfahren

Chi-Quadrat Verfahren Chi-Quadrat Verfahren Chi-Quadrat Verfahren werden bei nominalskalierten Daten verwendet. Die einzige Information, die wir bei Nominalskalenniveau zur Verfügung haben, sind Häufigkeiten. Die Quintessenz

Mehr

Aufgaben zu Kapitel 4

Aufgaben zu Kapitel 4 Rasch, Friese, Hofmann & aumann (2006). Quantitative Methoden. Band (2. Auflage). Heidelberg: Springer. Aufgaben zu Kapitel 4 Aufgabe a) Berechnen Sie die Korrelation zwischen dem Geschlecht und der Anzahl

Mehr

Statistik I. Sommersemester 2009

Statistik I. Sommersemester 2009 I Sommersemester 2009 I χ 2 =?!? Nächste Woche: Maße für ordinale, nominal/intervallskalierte und intervallskalierte Daten I Zum Nachlesen Agresti/Finlay: Kapitel 8.1-8.4 Gehring/Weins: Kapitel 7.1 Schumann:

Mehr

Bivariater Zusammenhang in der Mehrfeldertafel PEΣO

Bivariater Zusammenhang in der Mehrfeldertafel PEΣO Bivariater Zusammenhang in der Mehrfeldertafel PEΣO 9. November 2001 Bivariate Häufigkeitsverteilungen in Mehrfeldertabellen In der Mehrfeldertabelle werden im Gegensatz zur Vierfeldertabelle keine dichotomen

Mehr

Institut für Soziologie Werner Fröhlich. Methoden 2. Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest

Institut für Soziologie Werner Fröhlich. Methoden 2. Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest Institut für Soziologie Methoden 2 Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest Aufbau der Sitzung Was sind Kontingenztabellen? Wofür werden Kontingenztabellen verwendet? Aufbau und Interpretation

Mehr

Institut für Soziologie Sabine Düval. Methoden 2. Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest

Institut für Soziologie Sabine Düval. Methoden 2. Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest Institut für Soziologie Methoden 2 Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest Aufbau der Sitzung Wiederholung Exkurs zur Inferenzstatistik Was sind Kontingenztabellen? Recodieren, Kategorisieren

Mehr

Arbeitsbuch zur deskriptiven und induktiven Statistik

Arbeitsbuch zur deskriptiven und induktiven Statistik Helge Toutenburg Michael Schomaker Malte Wißmann Christian Heumann Arbeitsbuch zur deskriptiven und induktiven Statistik Zweite, aktualisierte und erweiterte Auflage 4ü Springer Inhaltsverzeichnis 1. Grundlagen

Mehr

Tutorial: Anpassungstest

Tutorial: Anpassungstest Tutorial: Anpassungstest An einem Institut gibt es vier UniversitätslehrerInnen, die auch Diplomarbeiten betreuen. Natürlich erfordert die Betreuung einer Diplomarbeit einiges an Arbeit und Zeit und vom

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 4B a.) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Mit "Deskriptive Statistiken", "Kreuztabellen " wird die Dialogbox "Kreuztabellen" geöffnet. POL wird in das Eingabefeld von

Mehr

Anpassungstests VORGEHENSWEISE

Anpassungstests VORGEHENSWEISE Anpassungstests Anpassungstests prüfen, wie sehr sich ein bestimmter Datensatz einer erwarteten Verteilung anpasst bzw. von dieser abweicht. Nach der Erläuterung der Funktionsweise sind je ein Beispiel

Mehr

Biometrieübung 11 Kontingenztafeln

Biometrieübung 11 Kontingenztafeln Biometrieübung 11 (Kontingenztafeln) - Aufgabe Biometrieübung 11 Kontingenztafeln Aufgabe 1 2x2-Kontingenztafeln 100 weibliche Patienten sind mit einer konventionellen Therapie behandelt worden 85 Patientinnen

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften 2 3 3 4 6 4 5 0 0 5 6 5 20 5 6 Tabellen (leicht gekürzte Version) Hans Walser: Tabellen ii Inhalt Binomische Verteilung.... Binomische Verteilung (ohne

Mehr

Statistik I. Sommersemester 2009

Statistik I. Sommersemester 2009 I Sommersemester 2009 I Wiederholung/Einführung χ 2 =?!? I Wiederholung/Einführung χ 2 =?!? Nächste Woche: Maße für ordinale, nominal/intervallskalierte und intervallskalierte Daten I Zum Nachlesen Agresti/Finlay:

Mehr

Bivariate Verteilungen. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09

Bivariate Verteilungen. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Bivariate Verteilungen Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Wiederholung Konfidenzintervalle Abschätzung wie gut eine Stichprobe die Grundgesamtheit repräsentiert

Mehr

entschieden hat, obwohl die Merkmalsausprägungen in der Grundgesamtheit voneinander abhängig sind.

entschieden hat, obwohl die Merkmalsausprägungen in der Grundgesamtheit voneinander abhängig sind. Bsp 1) Die Wahrscheinlichkeit dafür, dass eine Glühbirne länger als 200 Stunden brennt, beträgt 0,2. Wie wahrscheinlich ist es, dass von 10 Glühbirnen mindestens eine länger als 200 Stunden brennt? (Berechnen

Mehr

Chi Quadrat-Unabhängigkeitstest

Chi Quadrat-Unabhängigkeitstest Fragestellung 1: Untersuchung mit Hilfe des Chi-Quadrat-Unabhängigkeitstestes, ob zwischen dem Herkunftsland der Befragten und der Bewertung des Kontaktes zu den Nachbarn aus einem Anderen Herkunftsland

Mehr

Bivariate Analyse: Gemeinsame (bivariate) Häufigkeitstabelle. Sie wird auch Kontingenz-, Assoziations- oder Korrelationstabelle (f b )genannt.

Bivariate Analyse: Gemeinsame (bivariate) Häufigkeitstabelle. Sie wird auch Kontingenz-, Assoziations- oder Korrelationstabelle (f b )genannt. Bivariate Analyse: Tabellarische Darstellung: Gemeinsame (bivariate) Häufigkeitstabelle. Sie wird auch Kontingenz-, Assoziations- oder Korrelationstabelle (f b )genannt. Beispiel: Häufigkeitsverteilung

Mehr

Bivariater Zusammenhang in der Vierfeldertafel PEΣO

Bivariater Zusammenhang in der Vierfeldertafel PEΣO Bivariater Zusammenhang in der Vierfeldertafel PEΣO 12. Oktober 2001 Zusammenhang zweier Variablen und bivariate Häufigkeitsverteilung Die Bivariate Häufigkeitsverteilung gibt Auskunft darüber, wie zwei

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

Grundidee. χ 2 Tests. Ausgangspunkt: Klasseneinteilung der Beobachtungen in k Klassen. Grundidee. Annahme: Einfache Zufallsstichprobe (X 1,..., X n ).

Grundidee. χ 2 Tests. Ausgangspunkt: Klasseneinteilung der Beobachtungen in k Klassen. Grundidee. Annahme: Einfache Zufallsstichprobe (X 1,..., X n ). Grundidee χ 2 -Anpassungstest χ 2 -Unabhängigkeitstest χ 2 -Homogenitätstest χ 2 Tests Grundidee Ausgangspunkt: Klasseneinteilung der Beobachtungen in k Klassen Annahme: Einfache Zufallsstichprobe (X 1,,

Mehr

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen 2) Bei einer Stichprobe unter n=800 Wahlberechtigten gaben 440 an, dass Sie gegen die Einführung eines generellen Tempolimits von 100km/h auf Österreichs Autobahnen sind. a) Man bestimme ein 95%-Konfidenzintervall

Mehr

Statistik III Regressionsanalyse, Varianzanalyse und Verfahren bei Messwiederholung mit SPSS

Statistik III Regressionsanalyse, Varianzanalyse und Verfahren bei Messwiederholung mit SPSS Statistik III Regressionsanalyse, Varianzanalyse und Verfahren bei Messwiederholung mit SPSS Verena Hofmann Dr. phil. des. Departement für Sonderpädagogik Universität Freiburg Petrus-Kanisius-Gasse 21

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 10. Vorlesung - 017 Quantil der Ordnung α für die Verteilung des beobachteten Merkmals X ist der Wert z α R für welchen gilt z 1 heißt Median. P(X < z α ) α P(X z α ). Falls X stetige zufällige Variable

Mehr

10. Medizinische Statistik

10. Medizinische Statistik 10. Medizinische Statistik Projektplanung Deskriptive Statistik Inferenz-Statistik Literatur: Hüsler, J. und Zimmermann, H.: Statistische Prinzipien für medizinische Projekte, Verlag Hans Huber, 1993.

Mehr

Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2

Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2 Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2 Dr. Jan-Peter Brückner jpbrueckner@email.uni-kiel.de R.216 Tel. 880 4717 Statistischer Schluss Voraussetzungen z.b. bzgl. Skalenniveau und

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften 2 3 3 4 6 4 5 0 0 5 6 5 20 5 6 Tabellen (leicht gekürzte Version) Hans Walser: Tabellen ii Inhalt Binomische Verteilung.... Binomische Verteilung (ohne

Mehr

Statistik für Ingenieure Vorlesung 13

Statistik für Ingenieure Vorlesung 13 Statistik für Ingenieure Vorlesung 13 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 6. Februar 2018 5.1.4. Weitere ausgewählte statistische Tests a) Binomialtest Der Binomialtest

Mehr

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n 3.2. Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare von Merkmalsausprägungen (x, y) Beispiele:

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-06) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Ergebnisse VitA und VitVM

Ergebnisse VitA und VitVM Ergebnisse VitA und VitVM 1 Basisparameter... 2 1.1 n... 2 1.2 Alter... 2 1.3 Geschlecht... 5 1.4 Beobachtungszeitraum (von 1. Datum bis letzte in situ)... 9 2 Extraktion... 11 3 Extraktionsgründe... 15

Mehr

3. ZWEI KATEGORIALE MERKMALE (bivariate kategoriale Daten)

3. ZWEI KATEGORIALE MERKMALE (bivariate kategoriale Daten) 3. ZWEI KATEGORIALE MERKMALE (bivariate kategoriale Daten) Beispiel: Gründe für Beliebtheit bei Klassenkameraden 478 neun- bis zwölfjährigen Schulkinder in Michigan, USA warum ist man bei seinen Klassenkameraden

Mehr

Häufigkeiten. Verteilungen. Lageparameter Mittelwert. oder

Häufigkeiten. Verteilungen. Lageparameter Mittelwert. oder Formelsammlung Beschreibende Statistik Univariate Häufigkeitsverteilungen X ist ein diskretes Merkmal, mit k Ausprägungen TR: Mode 2 1 = AC absolute relative Häufigkeit Häufigkeiten Bivariate Häufigkeitsverteilungen

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften t-test Varianzanalyse (ANOVA) Übersicht Vergleich von Mittelwerten 2 Gruppen: t-test einfaktorielle ANOVA > 2 Gruppen: einfaktorielle ANOVA Seeigel und

Mehr

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei

Mehr

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit:

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit: 1. Welche der folgenden Kenngrößen, Statistiken bzw. Grafiken sind zur Beschreibung der Werteverteilung des Merkmals Konfessionszugehörigkeit sinnvoll einsetzbar? A. Der Modalwert. B. Der Median. C. Das

Mehr

6. Multivariate Verfahren Übersicht

6. Multivariate Verfahren Übersicht 6. Multivariate Verfahren 6. Multivariate Verfahren Übersicht 6.1 Korrelation und Unabhängigkeit 6.2 Lineare Regression 6.3 Nichtlineare Regression 6.4 Nichtparametrische Regression 6.5 Logistische Regression

Mehr

5. Seminar Statistik

5. Seminar Statistik Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test 1 Der zweidimensionale Chi²-Test 6 Alternativer Lösungsweg für SPSS Version 17 und älter 10 Alte Dialogfelder: Eindimensionaler Chi²-Test

Mehr

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 4.1 4. Statistische Entscheidungsverfahren Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Beispiel:

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Juni 2014 Waldherr / Christodoulides Einführung in Quantitative Methoden 1/46 Anpassungstests allgemein Gegeben: Häufigkeitsverteilung

Mehr

Institut für Soziologie Werner Fröhlich. Methoden 2. Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest

Institut für Soziologie Werner Fröhlich. Methoden 2. Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest Institut für Soziologie Methoden 2 Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest Aufbau der Sitzung Was sind Kontingenztabellen? Wofür werden Kontingenztabellen verwendet? Aufbau und Interpretation

Mehr

Ein- und Zweistichprobentests

Ein- und Zweistichprobentests (c) Projekt Neue Statistik 2003 - Lernmodul: Ein- Zweistichprobentests Ein- Zweistichprobentests Worum geht es in diesem Modul? Wiederholung: allgemeines Ablaufschema eines Tests Allgemeine Voraussetzungen

Mehr

Gekoppelte Vererbung. Genkarten. Doppel Crossover. Interferenz

Gekoppelte Vererbung. Genkarten. Doppel Crossover. Interferenz 4. Kopplung Konzepte: Gekoppelte Vererbung Genkarten Doppel Crossover Interferenz Statistik 1. Sie analysieren die Kopplungsverhältnisse von 3 Mutationen in Drosophila melanogaster (scute [sc; keine Thoraxborsten],

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Die widerspenstige. Kapitel 5: Chi-Quadrat oder.. Merkmal B: Spalten. Merkmal A: Zeilen. Kreuztabelle zweidimensionale Häufigkeitstabelle

Die widerspenstige. Kapitel 5: Chi-Quadrat oder.. Merkmal B: Spalten. Merkmal A: Zeilen. Kreuztabelle zweidimensionale Häufigkeitstabelle Kapitel 5: Chi-Quadrat oder.. Die widerspenstige Zähmung des Zufalls Ein Lustspiel in mehreren Akten 1. Akt: Die Kreuztabelle Kreuztabelle zweidimensionale Häufigkeitstabelle Merkmal 2 Merkmal 1 y 1 y

Mehr

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre I Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 25.9.13 Psychologie als Wissenschaft

Mehr

Kollexem-Analyse. SE: Quantitative Analyse linguistischer Variation WS 2012/13. Germanistik

Kollexem-Analyse. SE: Quantitative Analyse linguistischer Variation WS 2012/13. Germanistik Kollexem-Analyse SE: Quantitative Analyse linguistischer Variation Germanistik WS 2012/13 WS 2012/13 1 / 14 Heutige Sitzung 1 Einführung: Quantitative syntaktische Analyse am Beispiel der Kollexem-Analyse

Mehr

Was sind Zusammenhangsmaße?

Was sind Zusammenhangsmaße? Was sind Zusammenhangsmaße? Zusammenhangsmaße beschreiben einen Zusammenhang zwischen zwei Variablen Beispiele für Zusammenhänge: Arbeiter wählen häufiger die SPD als andere Gruppen Hochgebildete vertreten

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Post Hoc Tests A priori Tests (Kontraste) Nicht-parametrischer Vergleich von Mittelwerten 50 Ergebnis der ANOVA Sprossdichte der Seegräser 40 30 20 10

Mehr

4. Kopplung. Konzepte: Gekoppelte Vererbung. Genkarten. Doppel-Crossover. Interferenz. Statistik

4. Kopplung. Konzepte: Gekoppelte Vererbung. Genkarten. Doppel-Crossover. Interferenz. Statistik 4. Kopplung Konzepte: Gekoppelte Vererbung Genkarten Doppel-Crossover Interferenz Statistik 1. Sie analysieren die Kopplungsverhältnisse von 3 Mutationen in Drosophila melanogaster (scute [sc; keine Thoraxborsten],

Mehr

Alternative Darstellung des 2-Stichprobentests für Anteile

Alternative Darstellung des 2-Stichprobentests für Anteile Alternative Darstellung des -Stichprobentests für Anteile DCF CF Total n= 111 11 3 Response 43 6 69 Resp. Rate 0,387 0,3 0,309 Bei Gültigkeit der Nullhypothese Beobachtete Response No Response Total absolut

Mehr

Biomathematik für Mediziner, Klausur SS 2001 Seite 1

Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Aufgabe 1: Von den Patienten einer Klinik geben 70% an, Masern gehabt zu haben, und 60% erinnerten sich an eine Windpockeninfektion. An mindestens einer

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

Test auf den Erwartungswert

Test auf den Erwartungswert Test auf den Erwartungswert Wir interessieren uns für den Erwartungswert µ einer metrischen Zufallsgröße. Beispiele: Alter, Einkommen, Körpergröße, Scorewert... Wir können einseitige oder zweiseitige Hypothesen

Mehr

Statistische Messdatenauswertung

Statistische Messdatenauswertung Roland Looser Statistische Messdatenauswertung Praktische Einführung in die Auswertung von Messdaten mit Excel und spezifischer Statistik-Software für naturwissenschaftlich und technisch orientierte Anwender

Mehr

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen - nominal, ordinal, metrisch In SPSS: - Einfache -> Mittelwerte vergleichen -> Einfaktorielle - Mehrfaktorielle -> Allgemeines lineares Modell -> Univariat In SPSS: -> Nichtparametrische Tests -> K unabhängige

Mehr

Statistik für Psychologen, Pädagogen und Mediziner

Statistik für Psychologen, Pädagogen und Mediziner Thomas Köhler Statistik für Psychologen, Pädagogen und Mediziner Ein Lehrbuch ^~i: Verlag W. Kohlhammer 1 Einführung: Begriffsklärungen und Überblick 11 1.1 Aufgaben und Subdisziplinen der Statistik 11

Mehr

SigmaStat Nina Becker, Christoph. Rothenwöhrer. Copyright 2004 Systat Software, Inc.

SigmaStat Nina Becker, Christoph. Rothenwöhrer. Copyright 2004 Systat Software, Inc. SigmaStat 3.11 Copyright 2004 Systat Software, Inc. http://www.systat.com Nina Becker, Christoph Rothenwöhrer Die Aufgabe der Statistik ist die Zusammenfassung von Daten, deren Darstellung, Analyse und

Mehr

Seminar am Bildungswerk des VDV

Seminar am Bildungswerk des VDV Seminar am 21.11.2006 Bildungswerk des VDV Referent: Dr. Peter Lemannczick Statistische Grundgrößen EXCEL Funktionen Beispiele auf den Seiten Minimum Min Funktion MAX, MIN etc. Maximum Max Funktion MAX,

Mehr

11. Zusammenhangsmaße für nominale Variablen

11. Zusammenhangsmaße für nominale Variablen Statistik I Übung 11. Zusammenhangsmaße für nominale Variablen Dozent: Jürgen Leibold 1 Evaluation Nominale Zusammenhangsmaße Übersicht Chi-Quadrat Phi Cramers V Nominale Zusammenhangsmaße 3 Randverteilung

Mehr

Inhaltsverzeichnis. Vorwort

Inhaltsverzeichnis. Vorwort V Vorwort XI 1 Zum Gebrauch dieses Buches 1 1.1 Einführung 1 1.2 Der Text in den Kapiteln 1 1.3 Was Sie bei auftretenden Problemen tun sollten 2 1.4 Wichtig zu wissen 3 1.5 Zahlenbeispiele im Text 3 1.6

Mehr

5. Lektion: Einfache Signifikanztests

5. Lektion: Einfache Signifikanztests Seite 1 von 7 5. Lektion: Einfache Signifikanztests Ziel dieser Lektion: Du ordnest Deinen Fragestellungen und Hypothesen die passenden einfachen Signifikanztests zu. Inhalt: 5.1 Zwei kategoriale Variablen

Mehr

Musterlösung zu Serie 8

Musterlösung zu Serie 8 Prof. Dr. W. Stahel, Dr. J. Ernest Regression HS 2017 Musterlösung zu Serie 8 1. Im Data Frame http://stat.ethz.ch/teaching/datasets/wbl/umwelt.dat sind die Ergebnisse einer Umfrage zum Umweltschutz gegeben.

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Pantelis Christodoulides & Karin Waldherr 4. Juni 2014 Christodoulides / Waldherr Einführung in Quantitative Methoden 1/35 Ein- und Zweiseitige Hypothesen H 0 : p =

Mehr

Grundlagen der empirischen Sozialforschung

Grundlagen der empirischen Sozialforschung Grundlagen der empirischen Sozialforschung Sitzung 11 - Datenanalyseverfahren Jan Finsel Lehrstuhl für empirische Sozialforschung Prof. Dr. Petra Stein 5. Januar 2009 1 / 22 Online-Materialien Die Materialien

Mehr

Syntax. Ausgabe *Ü12. *1. corr it25 with alter li_re kontakt.

Syntax. Ausgabe *Ü12. *1. corr it25 with alter li_re kontakt. Syntax *Ü2. *. corr it25 with alter li_re kontakt. *2. regression var=it25 alter li_re kontakt/statistics /dependent=it25 /enter. regression var=it25 li_re kontakt/statistics /dependent=it25 /enter. *3.

Mehr

Einführung in SPSS. Sitzung 4: Bivariate Zusammenhänge. Knut Wenzig. 27. Januar 2005

Einführung in SPSS. Sitzung 4: Bivariate Zusammenhänge. Knut Wenzig. 27. Januar 2005 Sitzung 4: Bivariate Zusammenhänge 27. Januar 2005 Inhalt der letzten Sitzung Übung: ein Index Umgang mit missing values Berechnung eines Indexes Inhalt der letzten Sitzung Übung: ein Index Umgang mit

Mehr