2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese:"

Transkript

1 2.4.1 Grundprinzipien statistischer Hypothesentests Hypothese: Behauptung einer Tatsache, deren Überprüfung noch aussteht (Leutner in: Endruweit, Trommsdorff: Wörterbuch der Soziologie, 1989). Statistischer Test: Überprüfung von Hypothesen über die Grundgesamtheit anhand einer Stichprobe Statistische Testtheorie: Schließe von Stichprobe auf Grundgesamtheit Vorgehen: inhaltliche Hypothese aufstellen Operationalisierung inhaltliche Hypothese in statistische Hypothese übersetzen statistischer Test 2 Induktive Statistik 263

2 Bsp Studie zur Einstellung der Münchner Bevölkerung zu psychisch Kranken (1989). Wir betrachten eine Teilstudie: Kooperationsbereitschaft in der Befragung. 1. Theorie : Aktive Stellung im öffentlichen Leben beeinflusst Kooperationsbereitschaft positiv. Aktiv Altruismus Interesse an öffentlichen Angelegenheiten eher bereit, die Rolle des Befragten einzunehmen 2. Hypothese: Unterscheidet sich die Koorperationsbereitschaft der aktiven Personen vom Rest der Bevölkerung? 3. Operationalisierung: Aktiv im öffentlichen Leben Verbandsmitgliedschaft ja/nein = Variable X 2 Induktive Statistik 264

3 Kooperationsbereitschaft antwortet freiwillig (Koorperativer)/nur auf sanften Druck (Primärverweigerer) = Variable Y 4. Statistische Hypothesen: Besteht ein Zusammenhang zwischen X und Y? Statistisches Vorgehen: Kann die sog. Nullhypothese Es besteht kein Zusammenhang zwischen X und Y abgelehnt werden? 2 Induktive Statistik 265

4 Herleitung / Motivation eines geeigneten Prüfverfahrens Gegebene Daten (relative und absolute Häufigkeiten): aktiv ja nein. kooperativ ja nein (95) 0.53 (186) 0.8 (281) (17) 0.15 (54) 0.2 (71) 0.32 (112) 0.68 (240) 1 (352) Vergleiche gegebene Tafel mit der Unabhängigkeitstafel Wie würde denn die Tafel aussehen, wenn kein Zusammenhang bestünde? Genauer: wie würde das Innere der Tabelle aussehen, wenn Unabhängigkeit (und die gleichen Randverteilungen) herrschen würde, also die Nullhypothese zutreffen würde? 2 Induktive Statistik 266

5 aktiv kooperativ ja nein ja nein Die Häufigkeiten in der Unabhängigkeitstafel weichen von den tatsächlichen Daten ab. Vgl. Statistik I: Je stärker die Abweichung, desto stärker ist der Zusammenhang. 2 Induktive Statistik 267

6 Kardinalfrage der Testtheorie: Wann ist die Abweichung groß genug, d.h. überzufällig? Testen mit Hilfe des p-wertes (Alternative: Testen mithilfe eines Ablehnbereichs, s.u.) Bestimme eine Zufallsvariable T, die in geeigneter Weise den Unterschied einer zufälligen Stichprobe zur Situation der Nullhypothese misst (hier: der χ 2 -Abstand zwischen einer Stichprobe und der Unabhängigkeitstafel, vgl. Statistik I). Bestimme die Realisation t von T anhand der konkreten Daten (hier: χ 2 =2.11). Berechne die Wahrscheinlichkeit, einen mindestens so extremen Wert von T zu beobachten, falls H 0 richtig ist: p-wert := P (T t H 0 ) (hier: p-wert=0.15). 2 Induktive Statistik 268

7 Falls p-wert einer aus substanzwissenschaftlichen Überlegungen abgeleiteten, vorgegebenen Schranke α (Signifikanznivea), dann H 0 ablehnen, sonst beibehalten. (hier bei α = 0.05 (üblicher Wert): p-wert zu groß: Die Nullhypothese kann nicht abgelehnt werden.) Der Richtwert α, das sogenannte Signifikanzniveau soll sicherstellen, dass die Nullhypothese nur in α der Fälle fälschlicherweise abgelehnt wird. 2 Induktive Statistik 269

8 Fehler 1. Art (α-fehler): Die Nullhypothese wird abgelehnt, obwohl sie in Wirklichkeit richtig ist. z.b.: Man behauptet, es bestünde ein Zusammenhang, obwohl in Wirklichkeit kein Zusammenhang besteht. Der Fehler 1. Art soll klein sein (üblich sind 5% oder 10%). Allerdings kann man nicht fordern, dass der Fehler 1. Art bei 0% liegen soll, sonst würde man die Nullhypothese nie ablehnen können. Fehler 2. Art 2 Induktive Statistik 270

9 Fehler 2. Art (β-fehler): Die Nullhypothese wird beibehalten, obwohl sie in Wirklichkeit falsch ist. Ein guter statistischer Test garantiert bei einem vergegebenen niedrigen Signifikanzniveau (als Schranke für den Fehler 1. Art) auch einen möglichst geringen Fehler 2. Art. 2 Induktive Statistik 271

10 2.4.2 Konstruktion eines parametrischen statistischen Tests 1. Aufstellen der substanzwissenschaftlichen Hypothese / inhaltliche Fragestellung (z.b. Rot/Grün bekommt die absolute Mehrheit, das Einkommen von Akademikern beträgt mindestens 3000 Euro) 2. Formulieren eines geeigneten statistischen Modells Im Folgenden stets X 1,...,X n i.i.d. Stichprobe sowie parametrisches Modell mit unbekanntem Parameter ϑ. Anteil Rot/Grün: B(1,π) Durchschnittseinkommen: N (μ; σ 2 ). 3. Formulierung der statistischen Hypothesen Umformulieren der substantzwissenschaftlichen Hypothesen als Hypothesen über ϑ. 2 Induktive Statistik 272

11 Verglichen wird immer eine sog. Nullhypothese (H 0 ) mit einer sog. Alternativhypothese (H 1 ). Bei parametrischen Fragestellungen: a) Einseitige Testprobleme: H 0 : ϑ ϑ 0 gegen H 1 : ϑ>ϑ 0 b) Zweiseitiges Testproblem: H 0 : ϑ ϑ 0 gegen H 1 : ϑ<ϑ 0 H 0 : ϑ = ϑ 0 gegen H 1 : ϑ ϑ 0 ϑ 0 ist ein fester, vorgegebener Wert, der von inhaltlichem Interesse ist; zu unterscheiden von wahrem Wert ϑ. 2 Induktive Statistik 273

12 4. Festlegung des Signifikanzniveaus α Beim Testen sind folgende Entscheidungen möglich: H 0 : ablehnen oder H 0 : beibehalten Der Begriff einseitig/zweiseitig bezieht sich auf die Alternative, je nachdem ob die Alternative nur aus großen bzw. nur aus kleinen Werten besteht oder ob sowohl große als auch kleine Werte für die Alternative sprechen. Damit sind zwei verschiedene Arten von Fehlern möglich: Aktion Wahrheit H 0 wahr H 0 falsch H 0 beibehalten Fehler 2. Art H 0 ablehnen Fehler 1.Art Man kann nicht beide Fehlerwahrscheinlichkeiten gleichzeitig kontrollieren! (Tradeoff!) 2 Induktive Statistik 274

13 asymmetrische Vorgehensweise: α =0.1, α =0.05, α =0.01 α =0.001 marginal signifikant signifikant hoch signifikant höchst signifikant 5. Festlegen einer Testgröße und einer kritischen Region Eine Testgröße T ist eine Zufallsgröße T = g(x 1,...,X n ), die empfindlich gegenüber Abweichungen von H 0 ist. Die Kritische Region KR ( Ablehnungsbe- reich ) besteht aus potentiellen Werten von T, die gegen H 0 sprechen. 6. Auswerten der Stichprobe Berechnung der Realisation t der Testgröße T basierend auf der konkret vorliegenden Stichprobe. 7. Testentscheidung Ist t KR, dann H 0 ablehnen, sonst nicht ablehnen. 2 Induktive Statistik 275

14 Bem Die wesentliche Elemente des Tests (Signifikanzniveau, Testgröße, kritische Region) sind unabhängig von den Daten, also vor der Auswertung zu bestimmen. Da nur die Fehlerwahrscheinlichkeit 1. Art kontrolliert werden kann, kann H 0 nicht mit einer a priori kontrollierten Fehlerwahrscheinlichkeit angenommen, sondern nur abgelehnt oder nicht abgelehnt, werden. Vergleich Popper: Prinzipiell Nichtverifizierbarkeit, aber Falsifizierbarkeit von Allaussagen. Z.B. kann der Nachweis, das Handystrahlen nicht gesundheitsschädlich sind aus prinzipiellen, logischen Überlegungen nicht erbracht werden. Man kann bestenfalls die Hypothese keine schädliche Wirkung nicht verwerfen. Als guter Forscher sollte man deshalb immer das, was man zeigen will, in die Alternativhypothese schreiben. z.b. Forscher will zeigen, dass sein Medikament besser wirkt als ein anderes. Nullhypothese: Es wirkt schlechter oder gleich gut. Alternativhypothese: Es wirkt besser. 2 Induktive Statistik 276

15 Durch die Kontrolle des Fehlers 1. Art ist gewährleistet, dass die Wahrscheinlichkeit, den Medikament irrtümlich eine bessere Wirkung zuzuschreiben höchstens α ist. Allerdings gibt es nicht immer einen (einfachen) statistischen Test für jede Nullhypothese. z.b. ist es technisch viel einfacher als Nullhypothese θ = θ 0 zu verwenden, als θ θ 0 ( Äquivalenztest ). Verwendet man deshalb einen Test mit H 0 : θ = θ 0,möchte man inhaltlich aber genau dies zeigen, kehren sich die Rollen des Fehlers 1. Art und des Fehlers 2. Art um. Um in diesem Fall einen geringeren Fehler 2. Art zu erzielen, sollte das Signifikanzniveau höher als üblich gewählt werden. 2 Induktive Statistik 277

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert

KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert 0. Das eigentliche Forschungsziel ist: Beweis der eigenen Hypothese H 1 Dafür muss Nullhypothese H 0 falsifiziert werden können Achtung!

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Das Testen von Hypothesen Während die deskriptive Statistik die Stichproben nur mit Hilfe quantitativer Angaben charakterisiert,

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36)

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36) Statistik I Sommersemester 2009 Statistik I I (1/36) Wiederholung Grenzwertsatz Konfidenzintervalle Logik des 0.0 0.1 0.2 0.3 0.4 4 2 0 2 4 Statistik I I (2/36) Zum Nachlesen Agresti/Finlay: Kapitel 6+7

Mehr

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei

Mehr

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.

Mehr

Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung

Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung Abgaben: 92 / 234 Maximal erreichte Punktzahl: 7 Minimal erreichte Punktzahl: 1 Durchschnitt: 4 Frage 1 (Diese Frage haben ca. 0% nicht beantwortet.)

Mehr

Einführung in die statistische Testtheorie. Einführung in die statistische Testtheorie STATISTIK IST IRR-SINN! Ziel: Methoden:

Einführung in die statistische Testtheorie. Einführung in die statistische Testtheorie STATISTIK IST IRR-SINN! Ziel: Methoden: Nullhypothese H 0 Alternativhypothese H 1 H 0 : A B Fehler 1.Art p-wert H ( -Fehler) 0 : A B, H 0 : A zweiseitige Hypothesen B Signifikanzniveau. Niveau- -Test H 0 H 1 signifikant Fehler 2.Art Fehler 1.Art

Mehr

Prüfgröße: Ist die durch eine Schätzfunktion zugeordnete reelle Zahl (etwa Mittelwert 7 C).

Prüfgröße: Ist die durch eine Schätzfunktion zugeordnete reelle Zahl (etwa Mittelwert 7 C). Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Aus praktischen Gründen

Mehr

Aussagen hierzu sind mit einer unvermeidbaren Unsicherheit behaftet, die statistisch über eine Irrtumswahrscheinlichkeit bewertet wird.

Aussagen hierzu sind mit einer unvermeidbaren Unsicherheit behaftet, die statistisch über eine Irrtumswahrscheinlichkeit bewertet wird. Stichprobenumfang Für die Fragestellung auf Gleichheit von ein oder zwei Stichproben wird auf Basis von Hypothesentests der notwendige Stichprobenumfang bestimmt. Deshalb werden zunächst die Grundlagen

Mehr

Testentscheidungen. Worum geht es in diesem Modul? Kritische Werte p-wert

Testentscheidungen. Worum geht es in diesem Modul? Kritische Werte p-wert Testentscheidungen Worum geht es in diesem Modul? Kritische Werte p-wert Worum geht es in diesem Modul? Testentscheidungen: Annahme- und Ablehnbereich Bei der Durchführung eines statistischen Tests kommen

Mehr

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0 1.4 Der Binomialtest Mit dem Binomialtest kann eine Hypothese bezüglich der Wahrscheinlichkeit für das Auftreten einer Kategorie einer dichotomen (es kommen nur zwei Ausprägungen vor, z.b. 0 und 1) Zufallsvariablen

Mehr

Biomathematik für Mediziner, Klausur SS 2001 Seite 1

Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Aufgabe 1: Von den Patienten einer Klinik geben 70% an, Masern gehabt zu haben, und 60% erinnerten sich an eine Windpockeninfektion. An mindestens einer

Mehr

1. rechtsseitiger Signifikanztest

1. rechtsseitiger Signifikanztest Testen von Hypothesen HM2 Seite Geschichte und ufgabe der mathematischen Statistik Stochastik ist die Kunst, im Falle von Ungewißheit auf geschickte Weise Vermutungen aufzustellen. Entwickelt wurde sie

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 19. Januar 2011 1 Nichtparametrische Tests Ordinalskalierte Daten 2 Test für ein Merkmal mit nur zwei Ausprägungen

Mehr

Mögliche Fehler beim Testen

Mögliche Fehler beim Testen Mögliche Fehler beim Testen Fehler. Art (Irrtumswahrscheinlichkeit α), Zusammenfassung: Die Nullhypothese wird verworfen, obwohl sie zutrifft. Wir haben uns blamiert, weil wir etwas Wahres abgelehnt haben.

Mehr

Hypothesentest, ein einfacher Zugang mit Würfeln

Hypothesentest, ein einfacher Zugang mit Würfeln R. Brinkmann http://brinkmann-du.de Seite 4..4 ypothesentest, ein einfacher Zugang mit Würfeln Von einem Laplace- Würfel ist bekannt, dass bei einmaligem Wurf jede einzelne der Zahlen mit der Wahrscheinlichkeit

Mehr

Fehlerwahrscheinlichkeiten

Fehlerwahrscheinlichkeiten Fehlerwahrscheinlichkeiten Worum geht es in diesem Modul? Worum geht es in diesem Modul? Fehlentscheidungen beim Testen Ein statistischer Test wird eingesetzt um anhand einer Stichprobe Rückschlüsse auf

Mehr

e) Beim klassischen Signifikanztest muß die Verteilung der Prüfgröße unter der Nullhypothese

e) Beim klassischen Signifikanztest muß die Verteilung der Prüfgröße unter der Nullhypothese 9 Hypothesentests 1 Kapitel 9: Hypothesentests A: Übungsaufgaben: [ 1 ] Bei Entscheidungen über das Ablehnen oder Nichtablehnen von Hypothesen kann es zu Irrtümern kommen. Mit α bezeichnet man dabei die

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Hypothesentests mit SPSS. Beispiel für einen t-test

Hypothesentests mit SPSS. Beispiel für einen t-test Beispiel für einen t-test Daten: museum-f-v04.sav Hypothese: Als Gründe, in ein Museum zu gehen, geben mehr Frauen als Männer die Erweiterung der Bildung für Kinder an. Dies hängt mit der Geschlechtsrolle

Mehr

Chi-Quadrat Verfahren

Chi-Quadrat Verfahren Chi-Quadrat Verfahren Chi-Quadrat Verfahren werden bei nominalskalierten Daten verwendet. Die einzige Information, die wir bei Nominalskalenniveau zur Verfügung haben, sind Häufigkeiten. Die Quintessenz

Mehr

Tutorial: Vergleich von Anteilen

Tutorial: Vergleich von Anteilen Tutorial: Vergleich von Anteilen Die Sicherung des Pensionssystems ist in vielen Ländern ein heikles Thema. Noch stärker als der Streit, wer wann welche Pension beziehen können soll, tobt ein Streit, welche

Mehr

Lösungen zu den Übungsaufgaben in Kapitel 10

Lösungen zu den Übungsaufgaben in Kapitel 10 Lösungen zu den Übungsaufgaben in Kapitel 10 (1) In einer Stichprobe mit n = 10 Personen werden für X folgende Werte beobachtet: {9; 96; 96; 106; 11; 114; 114; 118; 13; 14}. Sie gehen davon aus, dass Mittelwert

Mehr

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Statistische Auswertungen mit R Universität Kassel, FB 07 Wirtschaftswissenschaften Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Beispiele 8. Sitzung Konfidenzintervalle, Hypothesentests > # Anwendungsbeispiel

Mehr

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie!

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie! Aufgabe 1 (3 + 3 + 2 Punkte) Ein Landwirt möchte das durchschnittliche Gewicht von einjährigen Ferkeln bestimmen lassen. Dies möchte er aus seinem diesjährigen Bestand an n Tieren schätzen. Er kann dies

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test 1 Der zweidimensionale Chi²-Test 4 Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

Chi Quadrat-Unabhängigkeitstest

Chi Quadrat-Unabhängigkeitstest Fragestellung 1: Untersuchung mit Hilfe des Chi-Quadrat-Unabhängigkeitstestes, ob zwischen dem Herkunftsland der Befragten und der Bewertung des Kontaktes zu den Nachbarn aus einem Anderen Herkunftsland

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen einer Population anhand eines Merkmals mit zwei oder mehr

Mehr

9. StatistischeTests. 9.1 Konzeption

9. StatistischeTests. 9.1 Konzeption 9. StatistischeTests 9.1 Konzeption Statistische Tests dienen zur Überprüfung von Hypothesen über einen Parameter der Grundgesamtheit (bei einem Ein-Stichproben-Test) oder über die Verteilung einer Zufallsvariablen

Mehr

Scheinklausur Stochastik 1 für Studierende des Lehramts und der Diplom-Pädagogik

Scheinklausur Stochastik 1 für Studierende des Lehramts und der Diplom-Pädagogik Universität Karlsruhe (TH) Institut für Stochastik Dr. Bernhard Klar Dipl.-Math. oec. Volker Baumstark Name Vorname Matr.-Nr.: Scheinklausur Stochastik für Studierende des Lehramts und der Diplom-Pädagogik

Mehr

Statistik-Übungsaufgaben

Statistik-Übungsaufgaben Statistik-Übungsaufgaben 1) Bei der Produktion eine Massenartikels sind erfahrungsgemäß 20 % aller gefertigten Erzeugnisse unbrauchbar. Es wird eine Stichprobe vom Umfang n =1000 entnommen. Wie groß ist

Mehr

Übungsaufgaben zu Statistik II

Übungsaufgaben zu Statistik II Übungsaufgaben zu Statistik II Prof. Dr. Irene Prof. Dr. Albrecht Ungerer Die Kapitel beziehen sich auf das Buch: /Ungerer (2016): Statistik für Wirtschaftswissenschaftler Springer Gabler 4 Übungsaufgaben

Mehr

Biometrische Planung von Versuchsvorhaben

Biometrische Planung von Versuchsvorhaben Biometrische Planung von Versuchsvorhaben Einführung in das Prinzip der Lehrstuhl für Mathematik VIII Statistik http://statistik.mathematik.uni-wuerzburg.de/~hain Ziel des Vortrags Im nachfolgenden Vortrag

Mehr

Biostatistik Erne Einfuhrung fur Biowissenschaftler

Biostatistik Erne Einfuhrung fur Biowissenschaftler Matthias Rudolf Wiltrud Kuhlisch Biostatistik Erne Einfuhrung fur Biowissenschaftler PEARSON Studium Inhaltsverzeichnis Vorwort xi Kapitel 1 Einfiihrung 1 1.1 Biostatistik als Bestandteil biowissenschafllicher

Mehr

Institut für Soziologie Werner Fröhlich. Methoden 2. Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest

Institut für Soziologie Werner Fröhlich. Methoden 2. Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest Institut für Soziologie Methoden 2 Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest Aufbau der Sitzung Was sind Kontingenztabellen? Wofür werden Kontingenztabellen verwendet? Aufbau und Interpretation

Mehr

Bivariate Zusammenhänge

Bivariate Zusammenhänge Bivariate Zusammenhänge Tabellenanalyse: Kreuztabellierung und Kontingenzanalyse Philosophische Fakultät Institut für Soziologie Berufsverläufe und Berufserfolg von Hochschulabsolventen Dozent: Mike Kühne

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test 1 Der zweidimensionale Chi²-Test 6 Alternativer Lösungsweg für SPSS Version 17 und älter 10 Alte Dialogfelder: Eindimensionaler Chi²-Test

Mehr

11 Tests zur Überprüfung von Mittelwertsunterschieden

11 Tests zur Überprüfung von Mittelwertsunterschieden 11 Tests zur Überprüfung von Mittelwertsunterschieden 11.1 Der z Test (t Test) für verbundene Stichproben 11.2 Der z Test (t Test) für unabhängige Stichproben 11.3 Fehler 1. Art und 2. Art 11.4 Typische

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests

1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests 1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests Statistische Tests dienen dem Testen von Vermutungen, so genannten Hypothesen, über Eigenschaften der Gesamtheit aller Daten ( Grundgesamtheit

Mehr

Forschungsmethodik II Mag.rer.nat. M. Kickmeier-Rust Karl-Franzens-Universität Graz. Lisza Gaiswinkler, Daniela Gusel, Tanja Schlosser

Forschungsmethodik II Mag.rer.nat. M. Kickmeier-Rust Karl-Franzens-Universität Graz. Lisza Gaiswinkler, Daniela Gusel, Tanja Schlosser Kolmogorov-Smirnov-Test Forschungsmethodik II Mag.rer.nat. M. Kickmeier-Rust Karl-Franzens-Universität Graz 1 Kolmogorov- Smirnov Test Andrei Nikolajewitsch Kolmogorov * 25.4.1903-20.10.1987 2 Kolmogorov-

Mehr

Test auf einen Anteilswert (Binomialtest) Vergleich zweier Mittelwerte (t-test)

Test auf einen Anteilswert (Binomialtest) Vergleich zweier Mittelwerte (t-test) Spezielle Tests Test auf einen Anteilswert (Binomialtest) Vergleich zweier Anteilswerte Test auf einen Mittelwert (Ein-Stichproben Gauss bzw. t-test) Vergleich zweier Mittelwerte (t-test) Test auf einen

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt?

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt? 341 i Metrische und kategoriale Merkmale An einer Beobachtungseinheit werden metrische und kategoriale Variable erhoben. Beispiel: Hausarbeit von Teenagern (Stunden/Woche) 25 15 STUNDEN 5-5 weiblich männlich?

Mehr

Bivariate Kreuztabellen

Bivariate Kreuztabellen Bivariate Kreuztabellen Kühnel, Krebs 2001 S. 307-342 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/33 Häufigkeit in Zelle y 1 x 1 Kreuztabellen Randverteilung x 1... x j... x J Σ

Mehr

Deduktive und induktive Aspekte statistischer Methoden

Deduktive und induktive Aspekte statistischer Methoden Deduktive und induktive Aspekte statistischer Methoden Wissenschaftshistorische und -philosophische Grundlagen Felix Günther Institut für Statistik Ludwig-Maximilians-Universität München Prof. Seising

Mehr

methodenlehre ll Grenzen des Signifikanztests methodenlehre ll Grenzen des Signifikanztests

methodenlehre ll Grenzen des Signifikanztests methodenlehre ll Grenzen des Signifikanztests Möglichkeiten und Grenzen des Signifikanztests Thomas Schäfer SS 29 1 Grenzen des Signifikanztests Sie haben zur Untersuchung Ihrer Fragestellung eine Experimental und eine Kontrollgruppe mit jeweils 2

Mehr

Marktforschung I. Marktforschung I 2

Marktforschung I. Marktforschung I 2 Marktforschung I Marktforschung I Einführung in die Testtheorie (Toporowski) Mathematische Grundlagen (Toporowski) Varianzanalyse (Toporowski) Regressionsanalyse (Boztuğ) Diskriminanzanalyse (Hammerschmidt)

Mehr

Zeit zum Kochen [in min] [10, 20[ [20, 30[ [30, 40[ [40, 50[ [50,60[ [60, 100] Hi

Zeit zum Kochen [in min] [10, 20[ [20, 30[ [30, 40[ [40, 50[ [50,60[ [60, 100] Hi 1. Susi und Fritzi bereiten ein Faschingsfest vor, dazu gehört natürlich ein Faschingsmenü. Ideen haben sie genug, aber sie möchten nicht zu viel Zeit fürs Kochen aufwenden. In einer Zeitschrift fanden

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathemati für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 22. Dezember 2010 1 Binomialtests Einseitiger unterer Binomialtest Zweiseitiger Binomialtest Beispiel BSE Normalapproximation

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Diskrete Wahrscheinlichkeitstheorie - Probeklausur

Diskrete Wahrscheinlichkeitstheorie - Probeklausur Diskrete Wahrscheinlichkeitstheorie - robeklausur Sommersemester 2007 - Lösung Name: Vorname: Matrikelnr.: Studiengang: Hinweise Sie sollten insgesamt Blätter erhalten haben. Tragen Sie bitte Ihre Antworten

Mehr

6. Übung Statistische Tests Teil 1 (t-tests)

6. Übung Statistische Tests Teil 1 (t-tests) Querschnittsbereich 1: Epidemiologie, Medizinische iometrie und Medizinische Informatik - Übungsmaterial - Erstellt von Mitarbeitern des IMISE und des ZKS Leipzig 6. Übung Statistische Tests Teil 1 (t-tests)

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 9. Dezember 2010 1 Konfidenzintervalle Idee Schätzung eines Konfidenzintervalls mit der 3-sigma-Regel Grundlagen

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Mittelwertvergleiche Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS Sommersemester 2009, Statistik mit SPSS 26. August 2009 26. August 2009 Statistik Dozentin: mit Anja SPSS Mays 1 Bivariate Datenanalyse, Überblick bis Freitag heute heute Donnerstag Donnerstag Freitag

Mehr

Test auf Varianzgleichheit (F-Test) (einseitiger Test!!)

Test auf Varianzgleichheit (F-Test) (einseitiger Test!!) T-Tests in Excel T-Tests in Excel Test auf Varianzgleichheit (F-Test) (einseitiger Test!!)! Annahmen:! Unabhängige Stichproben! Normalverteilte Grundgesamtheiten H0 : σx = σ y; H0 : σx > σ y Sx σ x F =

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007 Wirtschaftswissenschaftliches Prüfungsamt DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 006/07 8.0.007 Lösung Prof. Dr. R Friedmann / Dr. R. Hauser Hinweise für die Klausurteilnehmer

Mehr

7.3 Chi-Quadrat-Streuungstest und F-Test

7.3 Chi-Quadrat-Streuungstest und F-Test 7.3 Chi-Quadrat-Streuungstest und F-Test Alle bisher besprochenen Statistischen Tests sind sog. Tests über die Mittelwerte; denn ihre Nullhypothesen handeln vom Vergleich entweder zweier Mittelwerte oder

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Abiturienten-Aufgabe Bayern GK 2004

Abiturienten-Aufgabe Bayern GK 2004 Abiturienten-Aufgabe Bayern GK 2004 Die Bezeichnungen Abiturienten und Schüler beziehen sich im folgenden Text sowohl auf männliche als auch auf weibliche Personen. Die Abiturienten eines bayerischen Gymnasiums

Mehr

Tutorial: Rangkorrelation

Tutorial: Rangkorrelation Tutorial: Rangkorrelation In vielen Sportarten gibt es mehr oder weniger ausgefeilte Methoden, nicht nur die momentanen Leistungen (der jetzige Wettkampf, das jetzige Rennen, das jetzige Spiel,..) der

Mehr

1 Einleitung. 1.1 Was ist Ökonometrie und warum sollte man etwas darüber lernen?

1 Einleitung. 1.1 Was ist Ökonometrie und warum sollte man etwas darüber lernen? 1 Einleitung 1.1 Was ist Ökonometrie und warum sollte man etwas darüber lernen? Idee der Ökonometrie: Mithilfe von Daten und statistischen Methoden Zusammenhänge zwischen verschiedenen Größen messen. Lehrstuhl

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

TESTEN VON HYPOTHESEN

TESTEN VON HYPOTHESEN TESTEN VON HYPOTHESEN 1. Beispiel: Kann ein neugeborenes Küken Körner erkennen oder lernt es dies erst durch Erfahrung? Um diese Frage zu entscheiden, wird folgendes Experiment geplant: Sobald das Küken

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz R.Oldenbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL I GRUNDLAGEN

Mehr

an, anderfalls wird sie verworfen. Bestimmen Sie den Fehler 1. und 2. Art. Bestimmen Sie zu obigem Beispiel jeweils den Anahmebereich a 0; 1;...

an, anderfalls wird sie verworfen. Bestimmen Sie den Fehler 1. und 2. Art. Bestimmen Sie zu obigem Beispiel jeweils den Anahmebereich a 0; 1;... Hypothesentest ================================================================== Fehler 1. und 2.Art Ein Pilzsammler findet einen Pilz der giftig sein könnte. a) Welchen Fehler kann er bei der Überprüfung

Mehr

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Analytische Statistik I Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Testen Anpassungstests (goodness of fit) Weicht eine gegebene Verteilung signifikant von einer bekannten

Mehr

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende im Sommersemester 2012 Prof. Dr. H. Küchenhoff, J. Brandt, G. Schollmeyer, G. Walter Aufgabe 1 Betrachten

Mehr

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero?

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Manche sagen: Ja, manche sagen: Nein Wie soll man das objektiv feststellen? Kann man Geschmack objektiv messen? - Geschmack ist subjektiv

Mehr

Statistik II. Aufgabe 1

Statistik II. Aufgabe 1 Statistik II, SS 2004, Seite 1 von 7 Statistik II Hinweise zur Bearbeitung Hilfsmittel: - Taschenrechner (ohne Datenbank oder die Möglichkeit diesen zu programmieren) - Formelsammlung für Statistik II

Mehr

Produzierendes Gewerbe

Produzierendes Gewerbe Statistik II, SS 2005, Seite 1 von 6 Statistik II Hinweise zur Bearbeitung Hilfsmittel: - Taschenrechner (ohne Datenbank oder die Möglichkeit diesen zu programmieren) - Formelsammlung im Umfang von einer

Mehr

Aufgaben zu Kapitel 9

Aufgaben zu Kapitel 9 Aufgaben zu Kapitel 9 Aufgabe 1 Für diese Aufgabe benötigen Sie den Datensatz Nominaldaten.sav. a) Sie arbeiten für eine Marktforschungsfirma und sollen überprüfen, ob die in diesem Datensatz untersuchte

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Statistisches Testen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

4. Grundzüge der Wahrscheinlichkeitsrechnung

4. Grundzüge der Wahrscheinlichkeitsrechnung 4. Grundzüge der Wahrscheinlichkeitsrechnung Dr. Antje Kiesel Institut für angewandte Mathematik WS 2010/2011 In der beschreibenden Statistik haben wir verschiedene Kennzahlen (Statistiken) für Stichproben

Mehr

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Klausur Nr. 1 2014-02-06 Wahrscheinlichkeitsrechnung Pflichtteil Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche Darstellung,

Mehr

Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001

Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001 Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001 1. Sensitivität und Spezifität In einer medizinischen Ambulanz haben 30 % der Patienten eine akute Appendizitis. 80 % dieser Patienten haben

Mehr

Melanie Kaspar, Prof. Dr. B. Grabowski 1

Melanie Kaspar, Prof. Dr. B. Grabowski 1 7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen

Mehr

Tutorial: Homogenitätstest

Tutorial: Homogenitätstest Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite

Mehr

Mathematik für MolekularbiologInnen. Vorlesung IX Ausgewählte Kapitel der Statistik

Mathematik für MolekularbiologInnen. Vorlesung IX Ausgewählte Kapitel der Statistik Mathematik für MolekularbiologInnen Vorlesung I Ausgewählte Kapitel der Statistik Übersicht Statistische Stichproben- und Schätztheorie Entscheidungstheorie (Signifikanztests) Theorie der kleinen Stichproben,

Mehr

7 Kategoriale Daten. 7.1 Eine kategoriale Variable Der χ 2 -Anpassungstest

7 Kategoriale Daten. 7.1 Eine kategoriale Variable Der χ 2 -Anpassungstest 7 Kategoriale Daten Kategoriale Daten erhält man durch Klassifikation von auftretenden Beobachtungen in verschiedene Kategorien. Der Definition 6.1.3 folgend, sind dies also Daten, die nominalskaliert

Mehr

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst.

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst. Aufgabe 1 (2 + 4 + 2 + 1 Punkte) Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen X und Y : { 2x + 2y für 0.5 x 0.5, 1 y 2 f(x, y) = 3 0 sonst. a) Berechnen

Mehr

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße DAS THEMA: INFERENZSTATISTIK III INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße Inferenzstatistik für Lagemaße Standardfehler

Mehr

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Hypothese: Die Beschäftigung mit Kunst ist vom Bildungsgrad abhängig. 1. Annahmen Messniveau: Modell: Die Skala zur Erfassung der

Mehr

Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill.

Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill. Statistik Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill. Maxwell, S.E. & Delaney, H.D. (2000). Designing Experiments and Analyzing Data. Mahwah, NJ: Erlbaum. Das Grundproblem

Mehr

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente... Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............

Mehr

Prozentsatzes fehlerhafter Einheiten von einem Sollprozentsatz fehlerhafter Einheiten feststellen zu können. Der Assistent führt automatisch eine

Prozentsatzes fehlerhafter Einheiten von einem Sollprozentsatz fehlerhafter Einheiten feststellen zu können. Der Assistent führt automatisch eine Dieses White Paper ist Teil einer Reihe von Veröffentlichungen, welche die Forschungsarbeiten der Minitab-Statistiker erläutern, in deren Rahmen die im Assistenten der Minitab 17 Statistical Software verwendeten

Mehr