THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ"

Transkript

1 THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ

2 EINLEITENDES BEISPIEL SAT: Standardisierter Test, der von Studienplatzbewerbern an amerikanischen Unis gefordert wird Bewertet werden (u.a.) mathematische Kenntnisse und sprachliche Ausdrucksfähigkeit Allgemeiner Bildungsstand soll anhand des durchschnittlichen Testergebnisses bewertet werden Bildungsausschuss vermutet Abweichung der mittleren Punktzahl vom Sollwert (1200 Punkte) Vermutung soll empirisch überprüft werden

3 PRINZIPIEN DES STATISTISCHEN TESTENS Statistisches Testen: Empirische Überprüfung von Annahmen über das Verhalten eines Merkmals in der Grundgesamtheit H 0 versus H 1 Durchführung eines statistischen Tests muss gewissen Prinzipien genügen: Auffassen der inhaltlichen Fragestellung als statistisches Testproblem Definieren einer Entscheidungsregel Sammeln von Daten für die empirische Bewertung Anwenden der Entscheidungsregel, d.h. fällen einer Testentscheidung

4 HYPOTHESEN AUFSTELLEN Formalisieren der Problemstellung: Zufallsvariable X beschreibe die erzielte Punktzahl Vorgabe der Schulbehörde als Aussage über den Erwartungswert von X formulierbar: μ = E X = μ 0 = 1200 Auffassen der inhaltlichen Fragestellung als statistisches Testproblem: H 0 : μ = μ 0 vs. H 1 : μ μ 0 Empirische Überprüfung anhand von Stichprobe vom Umfang n. Testergebnisse als Realisationen unabhängiger Wiederholungen X 1,, X n von X interpretierbar U.U. Formulierung weiterer Modellannahmen, z.b. über Verteilung von X bzw. X 1,, X n X~N μ, σ 2, σ 2 unbekannt

5 SIGNIFIKANZNIVEAU FESTLEGEN Festlegung des Ablehnungsbereichs (Stichprobenergebnisse, die für H 1 sprechen): Verdichten der Stichprobeninformation zu geeigneter Prüfgröße / Teststatistik Anforderung 1: Sensibel für Testproblem: X = n X i i=1, da E H0 X = μ 0 Welche Werte von X sind so extrem unwahrscheinlich, dass sie unter H 0 zustande gekommen sind? Quantifizierung über Signifikanzniveau α, α 0.01, 0.05, 0.10 : P H0 X > c = α Anforderung 2: Bekannte Verteilung unter H 0. Betrachte normierte Version von X T = X μ 0 S n ~ t n 1 P H0 T > c = α c = t 1 α 2 n 1

6 DATEN SAMMELN Ziehen einer zufälligen Stichprobe von n = 80 Testteilnehmern Stichprobenmittel und Stichprobenvarianz aus Werten x 1,, x 80 berechnen: x = n x i i=1 = s = 1 n n 1 x i x 2 i=1 = Wert der Prüfgröße / Teststatistik berechnen: t = x μ 0 s n = 0.57

7 TESTENTSCHEIDUNG FÄLLEN (1) Entscheidung, ob H 0 zugunsten von H 1 verworfen wird oder beibehalten werden muss Liegt berechneter Prüfgrößenwert im Ablehnungsbereich? Gilt t > t 1 α 2 n 1? α = 0.05 t 1 α 2 n 1 = 1.99 t < t 1 α 2 n 1 Nullhypothese kann nicht zum Signifikanzniveau α = 0.05 verworfen werden Formulierung der Testentscheidung als Bedingung an μ 0 : t > t 1 α 2 n 1 μ 0 x s n t 1 α 2 n 1, x + s n t 1 α 2 n 1 H 0 zum Niveau α verwerfen μ 0 nicht in 1 α 100% Konfidenzintervall für μ

8 TESTENTSCHEIDUNG FÄLLEN (2) Entscheidung, ob H 0 zugunsten von H 1 verworfen wird oder beibehalten werden muss Ist p-wert kleiner oder größer bzw. gleich vorgegebenem Signifikanzniveau α? p-wert ist Wahrscheinlichkeit, unter Nullhypothese beobachteten Prüfgrößenwert oder in Richtung Alternative extremeren Wert zu erhalten Im Beispiel ist p = P H0 T t = P H0 T Dabei gilt t > t 1 α 2 n 1 P H0 T t < P H0 T t 1 α 2 n 1 p < α H 0 beibehalten, falls p α. H 0 verwerfen, falls p < α. p-werte werden standardmäßig von Software-Paketen ausgegeben

9 KURZUMFRAGE

10 FRAGE WELCHE DER FOLGENDEN GRÖßEN BEEINFLUSST DAS SIGNIFIKANZNIVEAU α EINES STATISTISCHEN TESTS? ANTWORTEN a. Der p-wert b. Der Stichprobenumfang n c. Beide genannten Größen d. Keine der genannten Größen

11 FRAGE WELCHE DER FOLGENDEN GRÖßEN BEEINFLUSST DAS SIGNIFIKANZNIVEAU α EINES STATISTISCHEN TESTS? ANTWORTEN a. Der p-wert b. Der Stichprobenumfang n c. Beide genannten Größen d. Keine der genannten Größen

12 FEHLENTSCHEIDUNGEN Rückschlüsse von Stichprobe auf Grundgesamtheit implizieren Fehlentscheidungen Entscheidung für H 0 H 1 H 0 wahr richtig Fehler 1. Art H 1 wahr Fehler 2. Art richtig Wahrscheinlichkeit für Fehler 1. Art wird kontrolliert durch α Wahrscheinlichkeit für Fehler 2. Art wird nicht vorgegeben Ungleichbehandlung der Fehlerarten führt zu asymmetrischen Testentscheidungen p < α heißt, H 1 bestätigt bzw. signifikant (zum Niveau α) nachgewiesen p α heißt nicht, H 0 bestätigt, nur H 0 ist beizubehalten bzw. nicht zu verwerfen Interessierende Forschungshypothese als Alternative formulieren!

13 GÜTEFUNKTION (1) Fehler 1. und 2. Art als Kriterien zur Qualitätsbeurteilung statistischer Tests lassen sich in Gütefunktion zusammenführen Gibt für Test in Abhängigkeit des interessierenden Parameters die Wahrscheinlichkeit an, die Nullhypothese zu verwerfen g μ = P μ H 0 verwerfen Gilt μ H 0, hier μ = μ 0, so ist g μ = α, d.h. die Wahrscheinlichkeit für Fehler 1. Art Gilt μ H 1, hier μ μ 0, so ist 1 g μ die Wahrscheinlichkeit für Fehler 2. Art Enthält neben Signifikanzniveau auch Informationen darüber, für welche Parameterwerte die Nullhypothese mit großer Wahrscheinlichkeit verworfen wird Wird zum Vergleich mehrerer konkurrierender Tests herangezogen

14 GÜTEFUNKTION (2) Eigenschaften einer Gütefunktion: Heißt für Werte aus H 1 Trennschärfe oder Macht Ist für Werte aus H 0 (kleiner) gleich α Macht wird größer mit wachsendem Stichprobenumfang n mit wachsendem Signifikanzniveau α mit wachsender Abweichung von H 0

15 DEMO

16 FRAGEN?

17 VIELEN DANK FÜR IHRE AUFMERKSAMKEIT Interesse an weiterem Austausch? Diskutieren Sie mit uns in der XING-Gruppe Business Analytics mit SAS Sprechen Sie uns direkt an: Treffen Sie uns auf Veranstaltungen:

18 WEITERE INFORMATIONEN UND KURSE ZU DIESEM THEMA Varianzanalyse, Regression und logistische Regression mit dem SAS Enterprise Guide Heidelberg Wien München Statistik 1: Varianzanalyse, Regression und logistische Regression Wien München Heidelberg Vorhersagemodellierung mit der logistischen Regression Heidelberg Heidelberg

19 NÄCHSTES

20 FOLIEN ZUM DOWNLOAD UNTER WIE HAT IHNEN UNSER WEBINAR GEFALLEN?

THEMA: MAßGESCHNEIDERTE TESTS IN DER VARIANZANALYSE" TORSTEN SCHOLZ

THEMA: MAßGESCHNEIDERTE TESTS IN DER VARIANZANALYSE TORSTEN SCHOLZ WEBINAR@LUNCHTIME THEMA: MAßGESCHNEIDERTE TESTS IN DER VARIANZANALYSE" TORSTEN SCHOLZ HERZLICH WILLKOMMEN BEI WEBINAR@LUNCHTIME Moderation Anne K. Bogner-Hamleh SAS Institute GmbH Education Consultant

Mehr

4.1. Nullhypothese, Gegenhypothese und Entscheidung

4.1. Nullhypothese, Gegenhypothese und Entscheidung rof. Dr. Roland Füss Statistik II SS 8 4. Testtheorie 4.. Nullhypothese, Gegenhypothese und Entscheidung ypothesen Annahmen über die Verteilung oder über einzelne arameter der Verteilung eines Merkmals

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

Allgemeines zu Tests. Statistische Hypothesentests

Allgemeines zu Tests. Statistische Hypothesentests Statistische Hypothesentests Allgemeines zu Tests Allgemeines Tests in normalverteilten Grundgesamtheiten Asymptotische Tests Statistischer Test: Verfahren Entscheidungsregel), mit dem auf Basis einer

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Exakter Binomialtest als Beispiel

Exakter Binomialtest als Beispiel Prinzipien des statistischen Testens Entscheidungsfindung Exakter Binomialtest als Beispiel Statistische Tests Nullhypothese Alternativhypothese Fehlentscheidungen Ausgangspunkt: Forschungshypothese Beispiele:.

Mehr

Statistik II für Betriebswirte Vorlesung 1

Statistik II für Betriebswirte Vorlesung 1 Statistik II für Betriebswirte Vorlesung 1 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 16. Oktober 2017 Dr. Andreas Wünsche Statistik II für Betriebswirte Vorlesung 1 Version:

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

THEMA: ZUSAMMENHANGSANALYSEN FÜR KATEGORIALE VARIABLEN " TORSTEN SCHOLZ

THEMA: ZUSAMMENHANGSANALYSEN FÜR KATEGORIALE VARIABLEN  TORSTEN SCHOLZ W THEMA: ZUSAMMENHANGSANALYSEN FÜR KATEGORIALE VARIABLEN " TORSTEN SCHOLZ HERZLICH WILLKOMMEN BEI W Moderation Anne K. Bogner-Hamleh SAS Institute GmbH Education Consultant Training Dr. Torsten Scholz

Mehr

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X Hypothesentests Bisher betrachtet: Punkt- bzw. Intervallschätzung des unbekannten Mittelwerts Hierzu: Verwendung der 1 theoretischen Information über Verteilung von X empirischen Information aus Stichprobenrealisation

Mehr

Statistik II. Weitere Statistische Tests. Statistik II

Statistik II. Weitere Statistische Tests. Statistik II Statistik II Weitere Statistische Tests Statistik II - 19.5.2006 1 Überblick Bisher wurden die Test immer anhand einer Stichprobe durchgeführt Jetzt wollen wir die statistischen Eigenschaften von zwei

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:

Mehr

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x)

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x) 7. Hypothesentests Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang X habe die unbekannte VF F X (x) Interessieren uns für einen unbekannten Parameter θ der Verteilung von X 350 Bisher:

Mehr

2. Formulieren von Hypothesen. Nullhypothese: H 0 : µ = 0 Gerät exakt geeicht

2. Formulieren von Hypothesen. Nullhypothese: H 0 : µ = 0 Gerät exakt geeicht 43 Signifikanztests Beispiel zum Gauß-Test Bei einer Serienfertigung eines bestimmten Typs von Messgeräten werden vor der Auslieferung eines jeden Gerätes 10 Kontrollmessungen durchgeführt um festzustellen,

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 15 Statistische Testverfahren 15.1. Arten statistischer Test Klassifikation von Stichproben-Tests Einstichproben-Test Zweistichproben-Test - nach der Anzahl der Stichproben - in Abhängigkeit von

Mehr

Hypothesen über die Grundgesamtheit. Aufgabenstellung der Testtheorie Hypothesen (Annahmen, Vermutungen oder

Hypothesen über die Grundgesamtheit. Aufgabenstellung der Testtheorie Hypothesen (Annahmen, Vermutungen oder Hypothesen über die Grundgesamtheit Aufgabenstellung der Testtheorie Hypothesen (Annahmen, Vermutungen oder Behauptungen) über die unbekannte Grundgesamtheit anhand einer Stichprobe als richtig oder falsch

Mehr

GRUNDPRINZIPIEN statistischen Testens

GRUNDPRINZIPIEN statistischen Testens Fragestellungen beim Testen GRUNDPRINZIPIEN statistischen Testens. Vergleiche Unterscheidet sich die Stichprobenbeobachtung von einer vorher spezifizierten Erwartung ( Hypothese ) mit ausreichender Sicherheit?

Mehr

Aufgabe 1 (8= Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten:

Aufgabe 1 (8= Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten: Aufgabe 1 (8=2+2+2+2 Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten: Die Zufallsvariable X bezeichne die Note. 1443533523253. a) Wie groß ist h(x 5)? Kreuzen

Mehr

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese:

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese: 2.4.1 Grundprinzipien statistischer Hypothesentests Hypothese: Behauptung einer Tatsache, deren Überprüfung noch aussteht (Leutner in: Endruweit, Trommsdorff: Wörterbuch der Soziologie, 1989). Statistischer

Mehr

Ablaufschema beim Testen

Ablaufschema beim Testen Ablaufschema beim Testen Schritt 1 Schritt 2 Schritt 3 Schritt 4 Schritt 5 Schritt 6 Schritt 7 Schritt 8 Schritt 9 Starten Sie die : Flashanimation ' Animation Ablaufschema Testen ' siehe Online-Version

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

Testen von Hypothesen

Testen von Hypothesen Statistik 2 für SoziologInnen Testen von Hypothesen Univ.Prof. Dr. Marcus Hudec Statistik für SoziologInnen 1 Testtheorie Inhalte Themen dieses Kapitels sind: Erklären der Grundbegriffe der statistischen

Mehr

KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert

KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert KATA LOGO Mathematik Statistik Roadmap: Von der Hypothese zum p-wert 0. Das eigentliche Forschungsziel ist: Beweis der eigenen Hypothese H 1 Dafür muss Nullhypothese H 0 falsifiziert werden können Achtung!

Mehr

Grundlagen der Biometrie in Agrarwissenschaften / Ernährungswissenschaften

Grundlagen der Biometrie in Agrarwissenschaften / Ernährungswissenschaften Grundlagen der Biometrie in Agrarwissenschaften / Ernährungswissenschaften Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Grundlagen der Biometrie, WS 2011/12 Vorlesung: Dienstag 8.15-9.45,

Mehr

Statistik Einführung // Tests auf einen Parameter 8 p.2/74

Statistik Einführung // Tests auf einen Parameter 8 p.2/74 Statistik Einführung Tests auf einen Parameter Kapitel 8 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Leydold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Tests

Mehr

Einführung in die statistische Testtheorie

Einführung in die statistische Testtheorie 1 Seminar Simulation und Bildanalyse mit Java von Benjamin Burr und Philipp Orth 2 Inhalt 1. Ein erstes Beispiel 2. 3. Die Gütefunktion 4. Gleichmäßig beste Tests (UMP-Tests) 1 Einführendes Beispiel 3

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 15 009 FernUniversität in Hagen Alle Rechte vorbehalten Fachbereich Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 17.3.21 Grundlagen zum Hypothesentest Einführung: Wer Entscheidungen zu treffen hat, weiß oft erst im nachhinein ob seine Entscheidung richtig war. Die Unsicherheit

Mehr

Lösungen zum Aufgabenblatt 14

Lösungen zum Aufgabenblatt 14 Lösungen zum Aufgabenblatt 14 61. Das Gewicht von Brötchen (gemessen in g) sei zufallsabhängig und werde durch eine normalverteilte Zufallsgröße X N(µ, 2 ) beschrieben, deren Varianz 2 = 49 g 2 bekannt

Mehr

Statistiktutorium (Kurs Frau Jacobsen)

Statistiktutorium (Kurs Frau Jacobsen) Statistiktutorium (Kurs Frau Jacobsen) von Timo Beddig 1 Grundbegriffe p = Punktschätzer, d.h. der Mittelwert aus der Stichprobe, auf Basis dessen ein angenäherter Wert für den unbekannten Parameter der

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Bemerkung 3.34: Die hier betrachteten Konfidenzintervalle für unbekannte Erwartungswerte sind umso schmaler, je größer der Stichprobenumfang n ist, je kleiner die (geschätzte) Standardabweichung σ (bzw.

Mehr

Macht des statistischen Tests (power)

Macht des statistischen Tests (power) Macht des statistischen Tests (power) Realer Treatment ja Ergebnis der Studie H 0 verworfen statistisch signifikant O.K. Macht H 0 beibehalten statistisch nicht signifikant -Fehler Effekt nein -Fehler

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Pantelis Christodoulides & Karin Waldherr 4. Juni 2014 Christodoulides / Waldherr Einführung in Quantitative Methoden 1/35 Ein- und Zweiseitige Hypothesen H 0 : p =

Mehr

Statistische Tests Übersicht

Statistische Tests Übersicht Statistische Tests Übersicht Diskrete Stetige 1. Einführung und Übersicht 2. Das Einstichprobenproblem 3. Vergleich zweier unabhängiger Gruppen (unverbundene Stichproben) 4. Vergleich zweier abhängiger

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

Kapitel 13. Grundbegriffe statistischer Tests

Kapitel 13. Grundbegriffe statistischer Tests Kapitel 13 Grundbegriffe statistischer Tests Oft hat man eine Vermutung über die Verteilung einer Zufallsvariablen X. Diese Vermutung formuliert man als Hypothese H 0.Sokönnte man daran interessiert sein

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

T-Test für den Zweistichprobenfall

T-Test für den Zweistichprobenfall T-Test für den Zweistichprobenfall t-test (unbekannte, gleiche Varianzen) Test auf Lageunterschied zweier normalverteilter Grundgesamtheiten mit unbekannten, aber gleichen Varianzen durch Vergleich der

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 24.2.214 Grundlagen zum Hypothesentest Einführung: Wer Entscheidungen zu treffen hat, weiß oft erst im nachhinein ob seine Entscheidung richtig war. Die Unsicherheit

Mehr

Statistik II für Betriebswirte Vorlesung 1

Statistik II für Betriebswirte Vorlesung 1 Statistik II für Betriebswirte Vorlesung 1 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 19. Oktober 2016 Prof. Dr. Hans-Jörg Starkloff Statistik II für Betriebswirte Vorlesung

Mehr

Die Abfüllmenge ist gleich dem Sollwert 3 [Deziliter].

Die Abfüllmenge ist gleich dem Sollwert 3 [Deziliter]. Eine Methode, um anhand von Stichproben Informationen über die Grundgesamtheit u gewinnen, ist der Hypothesentest (Signifikantest). Hier wird erst eine Behauptung oder Vermutung (Hypothese) über die Parameter

Mehr

9 Prinzipien der statistischen Hypothesenprüfung

9 Prinzipien der statistischen Hypothesenprüfung 9 Prinzipien der statistischen Hypothesenprüfung Prinzipien der statistischen Hypothesenprüfung Bei der Schätzung eines Populationsparamters soll dessen Wert aus Stichprobendaten erschlossen werden. Wenn

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Testen von Hypothesen, Beurteilende Statistik

Testen von Hypothesen, Beurteilende Statistik Testen von Hypothesen, Beurteilende Statistik Was ist ein Test? Ein Test ist ein Verfahren, mit dem man anhand von Beobachtungen eine begründete Entscheidung über die Gültigkeit oder Ungültigkeit einer

Mehr

Testen von Hypothesen

Testen von Hypothesen Elke Warmuth Humboldt-Universität zu Berlin Sommersemster 2010 1 / 46 2 / 46 1 Testen von Hypothesen 3 / 46 Signifikant, signifikant, signifikant,... 4 / 46 Signifikant, signifikant, signifikant,... 5

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Testen von Hypothesen

Testen von Hypothesen Statistik 2 für SoziologInnen Testen von Hypothesen Univ.Prof. Dr. Marcus Hudec Statistik für SoziologInnen 1 Testtheorie Inhalte Themen dieses Kapitels sind: Erklären der Grundbegriffe der statistischen

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests Nach Verteilungsannahmen: verteilungsabhängig: parametrischer [parametric] Test verteilungsunabhängig: nichtparametrischer [non-parametric] Test Bei parametrischen Tests

Mehr

THEMA: AUSGABEDATEIEN PFIFFIG NUTZEN IM SAS ENTERPRISE GUIDE " KARIN GROSS

THEMA: AUSGABEDATEIEN PFIFFIG NUTZEN IM SAS ENTERPRISE GUIDE  KARIN GROSS WEBINAR@LUNCHTIME THEMA: AUSGABEDATEIEN PFIFFIG NUTZEN IM SAS ENTERPRISE GUIDE " KARIN GROSS WEBINAR@LUNCHTIME HERZLICH WILLKOMMEN BEI WEBINAR@LUNCHTIME Moderation Anne K. Bogner-Hamleh SAS Institute GmbH

Mehr

Schließende Statistik: Hypothesentests (Forts.)

Schließende Statistik: Hypothesentests (Forts.) Mathematik II für Biologen 15. Mai 2015 Testablauf (Wdh.) Definition Äquivalente Definition Interpretation verschiedener e Fehler 2. Art und Macht des Tests Allgemein im Beispiel 1 Nullhypothese H 0 k

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

Testen von Hypothesen

Testen von Hypothesen Statistik 2 für SoziologInnen Testen von Hypothesen Univ.Prof. Dr. Marcus Hudec Statistik für SoziologInnen 1 Testtheorie Inhalte Themen dieses Kapitels sind: Erklären der Grundbegriffe der statistischen

Mehr

Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung

Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung Abgaben: 92 / 234 Maximal erreichte Punktzahl: 7 Minimal erreichte Punktzahl: 1 Durchschnitt: 4 Frage 1 (Diese Frage haben ca. 0% nicht beantwortet.)

Mehr

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Induktive Statistik Prof. Dr. W.-D. Heller

Mehr

Mögliche Fehler beim Testen

Mögliche Fehler beim Testen Mögliche Fehler beim Testen Fehler. Art (Irrtumswahrscheinlichkeit α), Zusammenfassung: Die Nullhypothese wird verworfen, obwohl sie zutrifft. Wir haben uns blamiert, weil wir etwas Wahres abgelehnt haben.

Mehr

Testentscheidungen. Worum geht es in diesem Modul? Kritische Werte p-wert

Testentscheidungen. Worum geht es in diesem Modul? Kritische Werte p-wert Testentscheidungen Worum geht es in diesem Modul? Kritische Werte p-wert Worum geht es in diesem Modul? Testentscheidungen: Annahme- und Ablehnbereich Bei der Durchführung eines statistischen Tests kommen

Mehr

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen 2) Bei einer Stichprobe unter n=800 Wahlberechtigten gaben 440 an, dass Sie gegen die Einführung eines generellen Tempolimits von 100km/h auf Österreichs Autobahnen sind. a) Man bestimme ein 95%-Konfidenzintervall

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Testen von Hypothesen

Mehr

Inferenzstatistik und Hypothesentests. Hierbei geht es um die Absicherung eines Untersuchungsergebnisses gegen ein Zufallsereignis.

Inferenzstatistik und Hypothesentests. Hierbei geht es um die Absicherung eines Untersuchungsergebnisses gegen ein Zufallsereignis. Statistik II und Hypothesentests Dr. Michael Weber Aufgabenbereich Hierbei geht es um die Absicherung eines Untersuchungsergebnisses gegen ein Zufallsereignis. Ist die zentrale Fragestellung für alle statistischen

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik Die schließende Statistik befasst sich mit dem Rückschluss von einer Stichprobe auf die Grundgesamtheit (Population). Die Stichprobe muss repräsentativ für die Grundgesamtheit sein.

Mehr

Bereiche der Statistik

Bereiche der Statistik Bereiche der Statistik Deskriptive / Exploratorische Statistik Schließende Statistik Schließende Statistik Inferenz-Statistik (analytische, schließende oder konfirmatorische Statistik) baut auf der beschreibenden

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

3. Das Prüfen von Hypothesen. Hypothese?! Stichprobe Signifikanztests in der Wirtschaft

3. Das Prüfen von Hypothesen. Hypothese?! Stichprobe Signifikanztests in der Wirtschaft 3. Das Prüfen von Hypothesen Hypothese?! Stichprobe 3.1. Signifikanztests in der Wirtschaft Prüfung, ob eine (theoretische) Hypothese über die Verteilung eines Merkmals X und ihre Parameter mit einer (empirischen)

Mehr

11. Parametrische Tests 11.1 Konzeption von statistischen Tests

11. Parametrische Tests 11.1 Konzeption von statistischen Tests 11. Parametrische Tests 11.1 Konzeption von statistischen Tests Statistische Tests dienen zur Überprüfung von Hypothesen über die Grundgesamtheit auf der Basis der vorliegenden Beobachtungen einer Stichprobe.

Mehr

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 4.1 4. Statistische Entscheidungsverfahren Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Beispiel:

Mehr

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests ue biostatistik: hypothesen, fehler 1. und. art, power 1/8 h. lettner / physik Hypothesen: Fehler 1. und. Art, Power eines statistischen Tests Die äußerst wichtige Tabelle über die Zusammenhänge zwischen

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

Vertiefung der. Wirtschaftsmathematik. und Statistik (Teil Statistik)

Vertiefung der. Wirtschaftsmathematik. und Statistik (Teil Statistik) Selbstkontrollarbeit 1 Vertiefung der Wirtschaftsmathematik und Statistik (Teil Statistik) 18. Januar 2011 Aufgaben Aufgabe 1 Gegeben sei eine binomialverteilte Zufallsvariablen X mit den Parametern N

Mehr

Prüfgröße: Ist die durch eine Schätzfunktion zugeordnete reelle Zahl (etwa Mittelwert 7 C).

Prüfgröße: Ist die durch eine Schätzfunktion zugeordnete reelle Zahl (etwa Mittelwert 7 C). Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Aus praktischen Gründen

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 3.2.2 bis 3.3 besser zu verstehen. Auswertung und Lösung Abgaben: 81 / 265 Maximal erreichte Punktzahl: 7 Minimal erreichte Punktzahl: 0 Durchschnitt: 4.28 Frage

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

1. Einführung in die induktive Statistik

1. Einführung in die induktive Statistik Wichtige Begriffe 1. Einführung in die induktive Statistik Grundgesamtheit: Statistische Masse, die zu untersuchen ist, bzw. über die Aussagen getroffen werden soll Stichprobe: Teil einer statistischen

Mehr

5. Seminar Statistik

5. Seminar Statistik Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation

Mehr

THEMA: SAS DATA INTEGRATION STUDIO FÜR MEHR TRANSPARENZ IM DATENMANAGEMENT EVA-MARIA KEGELMANN

THEMA: SAS DATA INTEGRATION STUDIO FÜR MEHR TRANSPARENZ IM DATENMANAGEMENT EVA-MARIA KEGELMANN WEBINAR@LUNCHTIME THEMA: SAS DATA INTEGRATION STUDIO FÜR MEHR TRANSPARENZ IM DATENMANAGEMENT EVA-MARIA KEGELMANN HERZLICH WILLKOMMEN BEI WEBINAR@LUNCHTIME Moderation Anne K. Bogner-Hamleh SAS Institute

Mehr

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers 4. Statistik im multiplen Regressionsmodell In diesem Kapitel wird im Abschnitt 4.1 zusätzlich zu den schon bekannten Standardannahmen noch die Annahme von normalverteilten Residuen hinzugefügt. Auf Basis

Mehr

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36)

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36) Statistik I Sommersemester 2009 Statistik I I (1/36) Wiederholung Grenzwertsatz Konfidenzintervalle Logik des 0.0 0.1 0.2 0.3 0.4 4 2 0 2 4 Statistik I I (2/36) Zum Nachlesen Agresti/Finlay: Kapitel 6+7

Mehr

9 Prinzipien der statistischen Hypothesenprüfung

9 Prinzipien der statistischen Hypothesenprüfung 9 Prinzipien der statistischen Hypothesenprüfung Prinzipien der statistischen Hypothesenprüfung Bei der Schätzung eines Populationsparamters soll dessen Wert aus Stichprobendaten erschlossen werden. Wenn

Mehr

Grundlagen sportwissenschaftlicher Forschung Deskriptive Statistik 2 Inferenzstatistik 1

Grundlagen sportwissenschaftlicher Forschung Deskriptive Statistik 2 Inferenzstatistik 1 Grundlagen sportwissenschaftlicher Forschung Deskriptive Statistik 2 Inferenzstatistik 1 Dr. Jan-Peter Brückner jpbrueckner@email.uni-kiel.de R.216 Tel. 880 4717 Rückblick: Besonders wichtige Themen Wissenschaftstheoretischer

Mehr

5. Stichproben und Statistiken

5. Stichproben und Statistiken 5. Stichproben und Statistiken Problem: Es sei X eine ZV, die einen interessierenden Zufallsvorgang repräsentiere Man möchte die tatsächliche Verteilung von X kennenlernen (z.b. mittels der VF F X (x)

Mehr

THEMA: SAS ENTERPRISE GUIDE MIT VIEL WENN UND ABER EVA-MARIA KEGELMANN

THEMA: SAS ENTERPRISE GUIDE MIT VIEL WENN UND ABER EVA-MARIA KEGELMANN WEBINAR@LUNCHTIME THEMA: SAS ENTERPRISE GUIDE MIT VIEL WENN UND ABER EVA-MARIA KEGELMANN EBINAR@LUNCHTIME HERZLICH WILLKOMMEN BEI WEBINAR@LUNCHTIME Moderation Anne K. Bogner-Hamleh SAS Institute GmbH Education

Mehr

Klausur zu Statistik II

Klausur zu Statistik II GOETHE-UNIVERSITÄT FRANKFURT FB Wirtschaftswissenschaften Statistik und Methoden der Ökonometrie Prof. Dr. Uwe Hassler Wintersemester 03/04 Klausur zu Statistik II Matrikelnummer: Hinweise Hilfsmittel

Mehr

6. Statistische Hypothesentests

6. Statistische Hypothesentests 6. Statistische Hypothesentests Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang X habe die unbekannte VF F X (x) Interessieren uns für einen unbekannten Parameter θ der Verteilung von

Mehr

Statistik Einführung // Stichprobenverteilung 6 p.2/26

Statistik Einführung // Stichprobenverteilung 6 p.2/26 Statistik Einführung Kapitel 6 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Leydold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // 6 p.0/26 Lernziele 1. Beschreiben

Mehr

Lösung Übungsblatt 5

Lösung Übungsblatt 5 Lösung Übungsblatt 5 5. Januar 05 Aufgabe. Die sogenannte Halb-Normalverteilung spielt eine wichtige Rolle bei der statistischen Analyse von Ineffizienzen von Produktionseinheiten. In Abhängigkeit von

Mehr

Abbildung 1: Dieses Quiz soll Ihnen helfen, die Residuenplots besser zu verstehen. Am Schluss kommen noch vermischte Aufgaben zur Wiederholung.

Abbildung 1: Dieses Quiz soll Ihnen helfen, die Residuenplots besser zu verstehen. Am Schluss kommen noch vermischte Aufgaben zur Wiederholung. Residuals vs Fitted Normal Q Q Residuals 2 1 0 1 2 16 18 30 Standardized residuals 2 1 0 1 2 18 30 16 5 10 15 20 25 30 Fitted values 2 1 0 1 2 Theoretical Quantiles Abbildung 1: Dieses Quiz soll Ihnen

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik [statistical inference] Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X.

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X. Fragenkatalog zur Übung Methoden der empirischen Sozialforschung WS 2014/15 Hier finden Sie die denkbaren Fragen zum ersten Teil der Übung. Das bedeutet, dass Sie zu diesem Teil keine anderen Fragen im

Mehr

THEMA: "DATENMANAGEMENT IM SAS ENTERPRISE GUIDE - SPALTEN TEILEN, STAPELN, TRANSPONIEREN EVA-MARIA KEGELMANN

THEMA: DATENMANAGEMENT IM SAS ENTERPRISE GUIDE - SPALTEN TEILEN, STAPELN, TRANSPONIEREN EVA-MARIA KEGELMANN WEBINAR@LUNCHTIME THEMA: "DATENMANAGEMENT IM SAS ENTERPRISE GUIDE - SPALTEN TEILEN, STAPELN, TRANSPONIEREN EVA-MARIA KEGELMANN HERZLICH WILLKOMMEN BEI WEBINAR@LUNCHTIME Moderation Anne K. Bogner-Hamleh

Mehr

Abiturvorbereitung Alkoholsünder, bedingte Wahrscheinlichkeit, Hypothesentest Aufgabenblatt

Abiturvorbereitung Alkoholsünder, bedingte Wahrscheinlichkeit, Hypothesentest Aufgabenblatt R. Brinkmann http://brinkmann-du.de Seite 2.05.2009 Abiturvorbereitung Alkoholsünder, bedingte Wahrscheinlichkeit, Hypothesentest Aufgabenblatt Aufgabe 0 0. In einer bestimmten Stadt an einer bestimmten

Mehr

Überblick Hypothesentests bei Binomialverteilungen (Ac)

Überblick Hypothesentests bei Binomialverteilungen (Ac) Überblick Hypothesentests bei Binomialverteilungen (Ac) Beim Testen will man mit einer Stichprobe vom Umfang n eine Hypothese H o (z.b.p o =70%) widerlegen! Man geht dabei aus von einer Binomialverteilung

Mehr

Welche(s) Paar(e) ist(sind) denn nun signifikant verschieden?

Welche(s) Paar(e) ist(sind) denn nun signifikant verschieden? Welche(s) Paar(e) ist(sind) denn nun signifikant verschieden? Der F-Test der Varianzanalyse erlaubt lediglich eine Existenzaussage über ein Paar (i,j) mit µ i µ j zum einem Niveau α. In der Praxis interessiert

Mehr