Verfahren des Operations Research

Größe: px
Ab Seite anzeigen:

Download "Verfahren des Operations Research"

Transkript

1 Verfahren des Operations Research Blatt 1 (WS 2017/18) wird bearbeitet am Ein Rohstoff kann zu drei Gütern G 1, G 2 und G 3 verarbeitet werden. Man benötigt für G 1 60 kg/stk, für G 2 80 kg/stk und für G kg/stk von dem Rohstoff. An Arbeitszeit sind bei G 1 6 h/stk, bei G 2 10 h/stk und bei G 3 3 h/stk aufzuwenden. Im betrachteten Planungzeitraum stehen Arbeitsstunden und kg Rohstoff zur Verfügung. Aus technischen Gründen (die meistens sehr undurchschaubar sind) muss von G 1 mindestens die doppelte Stückzahl wie von G 2 produziert werden. Es wird erwartet, dass pro hergestelltem Stück bei G 1 C 30., bei G 2 C 50. und bei G 3 C 60. Gewinn erzielt wird. Stellen Sie zur Bestimmung der gewinnmaximierenden Stückzahlen ein lineares Programm auf und lösen Sie es mit Excel. 2. Modellieren Sie das folgende Problem eines Barkeepers: In der Bar werden drei verschiedene Cocktails angeboten: a) Daiquiri (45 ml weißer Rum, 30 ml Cointreau, 25 ml Zitronensaft, 15 ml Zuckersirup, Eis), Preis: C 5.80 b) Kamikaze (30 ml Wodka, 30 ml Cointreau, 25 ml Zitronensaft, 1 Schuß Limonensirup, Eis), Preis: C 4.70 c) Long Island Ice Tea (20 ml Wodka, 20 ml weißer Rum, 20 ml Gin, 20 ml Cointreau, 4 TL Zitronensaft, 4 TL Orangensaft, 1/8 l Cola, 1 Orangenscheibe, Eis), Preis: C 7.00 Der Vorrat des Barkeepers besteht aus 5 l weißem Rum, 6 l Cointreau, 4 l Wodka und 3 l Gin. Die übrigen Zutaten sind ausreichend vorhanden. Welche Cocktails muss der Barkeeper mixen und verkaufen, um möglichst viel Geld einzunehmen? (Hinweis: 1 l = 1000 ml) Formulieren Sie für dieses Problem ein lineares Programm und bestimmen Sie die Optimallösung mit Excel. 3. Zeigen Sie graphisch, dass die lineare Optimierungsaufgabe max 3x 1 + 4x 2 x 1 + x 2 4 x 1 + 2x 2 10 x 1 + 4x 2 4

2 mit x 1, x 2 0 eine optimale Lösung besitzt, obwohl die Menge der zulässigen Lösungen nicht beschränkt ist. 4. Giffen Paradoxon: Herr K. will 40km zurücklegen. Dafür stehen Boot und Zug zur Verfügung, die beliebig kombiniert werden können. Das Boot benötigt 2 Zeiteinheiten pro km und kostet C 5. pro km. Der Zug benötigt nur 1 Zeiteinheit pro km, kostet aber C 10. pro km. Wie schnell kann Herr K. die Strecke absolvieren, wenn er C 300. zur Verfügung hat? Stellen Sie ein lineares Programm auf und lösen Sie es mit Excel. Paradoxon: Der Preis des Bootes wird nun auf C 6. pro km erhöht. Weisen Sie nach, dass die mit dem Boot zurückgelegte Strecke dennoch steigt! 5. Lösen Sie das folgende lineare Programm händisch mit dem Simplexalgorithmus: max 3 4 x 1 + x 2 bzgl. x 1 + 2x 2 10 x 1 + x 2 7 x 2 4 x 1, x Lösen Sie das folgende lineare Programm händisch mit dem Simplexalgorithmus: max 6x 1 + 3x 2 9x x 4 bzgl. x 1 + 2x 2 + 4x 3 x x 1 + 3x 2 x 3 + x 4 72 x 1 + x 3 + x 4 24 x 1, x 2, x 3, x Gegeben sei folgendes (LP1): (LP1) maximiere 3x 1 + x 2 + x 3 bzgl. 3x 1 + 2x 2 + 2x 3 10 x 1 + 3x 2 x 3 13 x 2 x 3 7 2x 1 + x 3 = 2 ( ) x 1 0, x 2 0

3 a) Schreiben Sie obiges Programm (LP1) als ein lineares Programm (LP2) mit 2 Variablen und 3 Restriktionen an. Hinweis: Verwenden Sie die Gleichung ( ) um eine Variable zu eliminieren. b) Bestimmen Sie graphisch den zulässigen Bereich und die Optimallösung von (LP2). c) Welche Probleme ergeben sich, wenn Sie versuchen die Programme (LP1) bzw. (LP2) mit dem Simplexalgorithmus zu lösen? (keine Rechnung notwendig) 8. Eine Legierung besteht aus Material A und Material B. Die variablen Kosten für die Ausgangsprodukte betragen 3000 bzw C /t (Euro pro Tonne). Von der Legierung müssen mindestens 5 t und können aus Kapazitätsgründen höchstens 10 t hergestellt werden. Von Material A sind zur Zeit nur 5 t verfügbar, von Material B hingegen 7 t. Das Verhältnis von Material A zu Material B darf 7/8 nicht übersteigen. Es stehen 20 Stunden Vorbereitungszeit zur Verfügung, wobei Material A 2.5 Std./t und Material B 1.5 Std./t benötigen. a) Formulieren Sie eine lineares Programm zur Minimierung der Kosten! b) Lösen Sie das LP graphisch und interpretieren Sie die Lösung. c) Welche Restriktionen werden aktiv und was bedeutet das? 9. Die Green Bully AG will einen neuen Softdrink auf den Markt bringen. Das neue Getränk soll aus drei flüssigen Zutaten zusammengemischt werden, wobei die erste Zutat 5 C pro Liter, die zweite Zutat 2 C pro Liter und die dritte Zutat 25 Cent pro Liter kostet. Zutat 1 enthält 3g/l Zucker und 4 Einheiten/l eines streng geheimen Aromastoffes, während die zweite Zutat 7g/l Zucker und 8 Einheiten/l des Aromastoffes und die dritte Zutat 20g/l Zucker und keinen Aromastoff enthält. Aus produktionstechnischen Gründen müssen pro Produktionsvorgang mindestens 100 Liter des Getränks hergestellt werden. Die Marktforschung hat ergeben, dass das Getränk von der Zielgruppe angenommen wird, falls sich die Parameter in folgenden Intervallen bewegen: Das fertige Getränk soll mindestens 3g/l und höchtens 6g/l Zucker enthalten. In einem Liter des Getränks sollen sich mindestens 3 Einheiten des Aromastoffes befinden. Außerdem soll das Getränk zu mindestens 40% aus Zutat 1 bestehen, während Zutat 2 höchstens 50% und Zutat 3 höchstens 30% des neuen Getränks ausmachen darf. Wie soll der neue Softdrink bei minimalen Produktionskosten zusammengemixt werden? Achten Sie auf die exakte Bedeutung der von ihnen verwendeten Variablen.

4 10. Konstruieren Sie ein lineares Programm mit zwei Variablen, bei dem die übliche Spaltenauswahlregel für das Simplexverfahren nicht die kleinstmögliche Anzahl von Iterationen liefert. (Es ist hilfreich mit einer Skizze zu beginnen.) 11. Versuchen Sie eine Methode zu finden, um die zweitbeste zulässige Basislösung eines linearen Programms zu bestimmen. 12. Stellen Sie das folgende lineare Programm in Standardform dar: min 5x 1 3x 2 4x 3 + 7x unter x 1 2x 2 2x 4 8 x 2 + 2x 3 + x 4 6 5x 1 + x 3 = 5 x 2 + 2x 4 4 3x 2 2x 4 = 6 x 1 0 x 2 0 x 3, x 4 R 13. Betrachten Sie das folgende Endtableau eines LP in Normalform mit den Modellvariablen x 1,..., x 4. x 1 x 2 x 3 x 4 x 5 x 6 x 7 ZF a) Welche Variablen sind Basisvariablen und wie lauten die Optimalwerte der Modellvariablen? b) Wie ändert sich der Zielfunktionswert, wenn x 3 um eine Einheit erhöht wird? c) Welche Restriktion(en) können gestrichen werden, ohne dass sich die Optimallösung ändert? d) Die Angabe des LP beginnt mit max 3x 1 2x Aus welchem Bereich können die Koeffizienten von x 1 und x 2 gewählt werden, sodass die optimale Basislösung unverändert bleibt?

5 e) In welchem Bereich kann die Kapazitätsschranke der ersten Restriktion des LP gewählt werden, sodass die optimale Basislösung unverändert bleibt, wenn sie zu Beginn mit 15 festgesetzt war? 14. Wie lautet die Optimallösung der Dual-Variablen für das LP aus Beispiel 13? (Das duale LP muss nicht angegeben werden.) 15. Stellen Sie das duale LP zum linearen Programm aus Beispiel 5. auf. 16. Gegeben ist das folgende LP: (PP) maximiere 4x 1 3x 2 2x 3 + 7x 4 bzgl. x 1 2x 2 + 2x 4 8 x 2 + 2x 3 + x 4 3 5x 1 + x 3 = 3 x 2 + 2x 4 4 x 1 3x 2 + 2x 4 = 6 x 1 0, x 2 0, x 3, x 4 R Stellen Sie das dazugehörige duale LP (DP) auf!

Verfahren des Operations Research

Verfahren des Operations Research Verfahren des Operations Research Blatt 1 (WS 2018/19) wird bearbeitet am 31.10.2018 1. Ein Rohstoff kann zu drei Gütern G 1, G 2 und G 3 verarbeitet werden. Man benötigt für G 1 60 kg/stk, für G 2 80

Mehr

Übung 3, Simplex-Algorithmus

Übung 3, Simplex-Algorithmus Übung 3, 21.6.2011 Simplex-Algorithmus Aufgabe 3.1 Lösen Sie das folgende Optimierungsproblem (von Aufgabe 2.3) graphisch. Substituieren Sie dazu z = 5 y um ein 2-dimensionales Problem zu erhalten. Rechnung

Mehr

Eigenschaften von LPs

Eigenschaften von LPs 2 Lineare Programmierung Eigenschaften von LPs Eigenschaften von LPs Definition 24 Eine Menge K IR n heißt konvex gdw für je zwei Punkte Punkte x (1) K und x (2) K auch jeder Punkt mit 0 λ 1 zu K gehört

Mehr

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 4 Simplex-Verfahren Peter Becker (H-BRS) Operations Research I Sommersemester 24 86 / 298 Inhalt Inhalt 4 Simplex-Verfahren Dualer Simplexalgorithmus Vermeidung von Zyklen Peter Becker (H-BRS)

Mehr

Mathematische Grundlagen für Wirtschaftswissenschaftler Übungsaufgaben aus Kapitel 3 - Lineare Optimierung

Mathematische Grundlagen für Wirtschaftswissenschaftler Übungsaufgaben aus Kapitel 3 - Lineare Optimierung Mathematische Grundlagen für Wirtschaftswissenschaftler Übungsaufgaben aus Kapitel 3 - Lineare Optimierung Sascha Kurz Jörg Rambau 24. November 2009 2 Aufgabe 3.1. Ein in m Depots gelagertes homogenes

Mehr

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe Lösungen zu den Übungsaufgaben im Kapitel 1 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier 1. Lösen Sie die folgende lineare Optimierungsaufgabe

Mehr

Schnittebenenverfahren von Gomory. Stefan Allescher 30. Juni 2005

Schnittebenenverfahren von Gomory. Stefan Allescher 30. Juni 2005 Schnittebenenverfahren von Gomory Stefan Allescher 30. Juni 2005 Inhaltsverzeichnis 1. Grundprinzip 2. Das Verfahren von Gomory 2.1. Vorgehen 2.2. Beweis der Endlichkeit 2.3. Algorithmische Durchführung

Mehr

Probeklausur Optimierung

Probeklausur Optimierung Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Dr. Nico Düvelmeyer Hamburg, 4. Juli 2011 Probeklausur Optimierung Bitte selber ausfüllen: Name: (darf anonymisiert werden)

Mehr

1. Transport- und Zuordnungsprobleme

1. Transport- und Zuordnungsprobleme 1. Transport- und Zuordnungsprobleme Themen 1. Transport- und Zuordnungsprobleme Themen: Analyse der Problemstruktur Spezielle Varianten des Simplexalgorithmus für Transport- und Zuordnungsprobleme Bezug

Mehr

1. Hausaufgabenblatt (16.04./ )

1. Hausaufgabenblatt (16.04./ ) Lehrstuhl Ingenieurmathematik Modul: (Wirtschaftsingenieurwesen/Betriebswirtschaftslehre/Informatik) Sommersemester 2014 1. Hausaufgabenblatt (16.04./23.04.2015) Aufgabe H 1.1 Lösen Sie die linearen Gleichungssysteme

Mehr

AUFGABENTEIL. Klausur: Modul Optimierungsmethoden des Operations Research. Termin:

AUFGABENTEIL. Klausur: Modul Optimierungsmethoden des Operations Research. Termin: Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Univ.-Prof. Dr. Andreas Kleine AUFGABENTEIL Klausur: Modul 32621 Termin: 14.09.2015 Prüfer: Prof. Dr. Andreas

Mehr

Optimierung für Wirtschaftsinformatiker: Lineare Programme

Optimierung für Wirtschaftsinformatiker: Lineare Programme Optimierung für Wirtschaftsinformatiker: Lineare Programme Dr. Nico Düvelmeyer Dienstag, 31. Mai 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Lineare Programme Allgemeine Form 2 Spezielle Darstellungen

Mehr

Caipirinha. Zutaten: 1 unbehandelte Limette. 6 cl Cachaça. 2 TL brauner Zucker

Caipirinha. Zutaten: 1 unbehandelte Limette. 6 cl Cachaça. 2 TL brauner Zucker Caipirinha 1 unbehandelte Limette 6 cl Cachaça 2 TL brauner Zucker 1. Die Limette in acht Teile schneiden, diese in ein Glas geben und den braunen Zucker darüber streuen. Anschließend mit einem Stößel

Mehr

Tequila Sunrise. Zutaten: 5 cl heller Tequila. 12 cl Orangensaft. 1 cl Zitronensaft. 1-2 cl Grenadine

Tequila Sunrise. Zutaten: 5 cl heller Tequila. 12 cl Orangensaft. 1 cl Zitronensaft. 1-2 cl Grenadine Tequila Sunrise 5 cl heller Tequila 12 cl Orangensaft 1 cl Zitronensaft 1-2 cl Grenadine 1. Den Tequila, Orangen- und Zitronensaft zusammen mit ein paar Eiswürfeln shaken. (~10 Sekunden). 3. Die Grenadine

Mehr

Kurseinheit 2»Dualität und weiterführende Methoden«

Kurseinheit 2»Dualität und weiterführende Methoden« Inhaltsübersicht 1 Gliederung Kurseinheit 1»Simpleverfahren«1. Einleitung 1.1. Einordnung und Übersicht des Stoffes 1.2. Einführendes Beispiel und Grundlagen 2. Lineare Gleichungssysteme 2.1. Die allgemeine

Mehr

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen 1. Bestimmen Sie für die folgenden Funktionen zunächst die kritischen Stellen und entscheiden

Mehr

Maximiere Gesamtgewinn aus verschiedenen Produkten unter Restriktionen an Produktmenge (Lagermenge, Transportmenge)

Maximiere Gesamtgewinn aus verschiedenen Produkten unter Restriktionen an Produktmenge (Lagermenge, Transportmenge) Beispiel: Produktionsplanung Maximiere Gesamtgewinn aus verschiedenen Produkten unter Restriktionen an Produktmenge (Lagermenge, Transportmenge) Produktionskapazität Ressourcenmenge bei als fest angenommenem

Mehr

Lineare Programmierung (2)

Lineare Programmierung (2) Inhalt Rückblick Motivation - linearen Programmierung Flussprobleme Multiple Warenflüsse Fortsetzung Simplex Algorithmus Initialisierung Fundamentalsatz der linearen Programmierung schwache Dualität Dualität

Mehr

Übungsaufgaben. Teil Bergstadt-Gymnasium Ma/Inf (WPII-8) (ht) aufgabe_2017_05_12. Teil 2

Übungsaufgaben. Teil Bergstadt-Gymnasium Ma/Inf (WPII-8) (ht) aufgabe_2017_05_12. Teil 2 1 Gegeben ist das System linearer Ungleichungen: 2x + y 4 (1) x 2y 7 (2) 1.1 Bestimme rechnerisch den Schnittpunkt der zugehörigen Geraden! 1.2 Bestimme graphisch das Lösungsgebiet! 1 Lösungen 1 1.1 1.1.1

Mehr

Übungsaufgaben. Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler. Teil 1: Lineare Algebra und Optimierung.

Übungsaufgaben. Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler. Teil 1: Lineare Algebra und Optimierung. Übungsaufgaben Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler Teil : Lineare Algebra und Optimierung Wintersemester Matrizenrechnung Aufgabe ( 3 0 Gegeben sind die Matrizen A = 2 5 2 4 D =

Mehr

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Wintersemester 2007/08 27.2.2008 Dr. Sascha Kurz Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Bitte lesbar ausfüllen, Zutreffendes ankreuzen Herr Frau Name, Vorname: Anschrift:

Mehr

Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel:

Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel: Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel: Eine Firma produziert die Produkte P 1, P 2,..., P q aus den Rohstoffen R 1, R 2,..., R m. Dabei stehen b j Einheiten

Mehr

4.3.3 Simplexiteration

4.3.3 Simplexiteration 7. Januar 2013 53 4.3.3 Simplexiteration Eine Simplexiteration entspricht dem Übergang von einer Ecke des zulässigen Bereiches in eine benachbarte Ecke Dabei wird genau eine Nichtbasisvariable (die zugehörige

Mehr

1 Der Simplex Algorithmus I

1 Der Simplex Algorithmus I 1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier

Mehr

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme Optimierungsprobleme Häufig in Alltagssituationen anzutreffen (z.b. Kauf eines Gerätes) Optimierungsprobleme (OPs) sind Probleme, die i.a. viele zulässige Lösungen besitzen Jeder Lösung ist ein bestimmter

Mehr

AUFGABEN. Klausur: Modul Optimierungsmethoden des Operations Research. Termin:

AUFGABEN. Klausur: Modul Optimierungsmethoden des Operations Research. Termin: Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Prof. Dr. Andreas Kleine AUFGABEN Klausur: Modul 32621 Optimierungsmethoden des Operations Research Termin:

Mehr

1.4 Aufgaben. 2002/2003

1.4 Aufgaben. 2002/2003 .4 Aufgaben. 00/003 Aufgabe. Eine Firma stellt zwei Sorten A und B einer Meterware her. Pro Meter entstehen folgende Kosten und Erlöse in Euro: Rohstoffkosten Bearbeitungskosten Verkaufserlös A 6 3 5 B

Mehr

Fachakademie für Wirtschaft der FHM A2: Lineare Optimierung und das Simplexverfahren

Fachakademie für Wirtschaft der FHM A2: Lineare Optimierung und das Simplexverfahren A2.1 Lineare Optimierung mit dem Simplexverfahren Wenn ein Unternehmen ermitteln möchte, wie viele Mengeneinheiten von verschiedenen Produkten zu produzieren sind, damit bei gegebenen Verkaufspreisen der

Mehr

Lineare Optimierung Ergänzungskurs

Lineare Optimierung Ergänzungskurs Lineare Optimierung Ergänzungskurs Wintersemester 2015/16 Julia Lange, M.Sc. Literatur Werner, F.; Sotskov, Y.N. (2006): Mathematics of Economics and Business; Routledge; London Bemerkungen Diese Unterlagen

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 2016 Prof. Dr. Stefan Etschberger HSA Mögliche Fälle für Z Etschberger - WS2016 1 Z =, d.h., es existiert keine zulässige (x 1, x 2 )-Kombination. 2

Mehr

Mathematische Grundlagen für Wirtschaftswissenschaftler Lösungshinweise zu den Übungsaufgaben aus Kapitel 3 - Lineare Optimierung

Mathematische Grundlagen für Wirtschaftswissenschaftler Lösungshinweise zu den Übungsaufgaben aus Kapitel 3 - Lineare Optimierung Mathematische Grundlagen für Wirtschaftswissenschaftler Lösungshinweise zu den Übungsaufgaben aus Kapitel - Lineare Optimierung Sascha Kurz Jörg Rambau 8. August Lösung Aufgabe.. Da es sich um ein homogenes

Mehr

Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m)

Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m) Minimumproblem Definition 4.7 Ein LP der Form nx Minimiere Z = c j x j j=1 unter den Nebenbedingungen nx d ij x j b i (i =1,...,m) j=1 und den Vorzeichenbedingungen x j 0(j =1,...,n) heißt Minimumproblem.

Mehr

Dualitätssätze der linearen Optimierung

Dualitätssätze der linearen Optimierung Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =

Mehr

F u n k t i o n e n Lineare Optimierung

F u n k t i o n e n Lineare Optimierung F u n k t i o n e n Lineare Optimierung Das Simplex-Verfahren läuft die Ecken des Polyeders ab, bis es an einer Optimallösung angekommen ist. 1. Einführung Während des 2. Weltkrieges und in den darauf

Mehr

Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 2007/2008

Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 2007/2008 Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester

Mehr

Wirtschaftsmathematik für International Management (BA)

Wirtschaftsmathematik für International Management (BA) Wirtschaftsmathematik für International Management (BA) Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Lineare Algebra 4 Lineare Programme 5 Folgen und Reihen 6

Mehr

Klausur zur Vorlesung Operations Research im Sommersemester 2009

Klausur zur Vorlesung Operations Research im Sommersemester 2009 Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Operations Research im Sommersemester 2009 Hinweise:

Mehr

Produktionsplanung und Lineare Optimierung im Rahmen des Projekts Mathematik und Ökonomie 12./13. November 2003 in Düsseldorf.

Produktionsplanung und Lineare Optimierung im Rahmen des Projekts Mathematik und Ökonomie 12./13. November 2003 in Düsseldorf. Übungsaufgaben Aufgabe 1a Medikamentenmischung Ein Pharmaziehersteller möchte ein neues Medikament auf den Markt bringen. Das Medikament kann aus vier verschiedenen Komponenten (K1 K4) zusammengestellt

Mehr

Zugeordneter bipartiter Graph

Zugeordneter bipartiter Graph Zugeordneter bipartiter Graph Für ein Transportproblem sei A = {A 1,...,A m } die Menge der Fabriken und B = {B 1,...,B n } sei die Menge der Warenhäuser. Wir ordnen nun einem Transportproblem einen bipartiten

Mehr

Kosten und Umsatzfunktionen

Kosten und Umsatzfunktionen In den folgenden Abschnitten wenden wir gelegentlich Anwendungen aus der Wirtschaft behandeln. Wir stellen deshalb einige volks- und betriebswirtschaftliche Funktionen vor. Dabei handelt es sich stets

Mehr

Operations Research. Die Simplexmethode. LP-Dualität. Die Simplexmethode. Rainer Schrader. 18. Juni Zur Erinnerung: Gliederung

Operations Research. Die Simplexmethode. LP-Dualität. Die Simplexmethode. Rainer Schrader. 18. Juni Zur Erinnerung: Gliederung Operations Research Rainer Schrader Die Simplexmethode Zentrum für Angewandte Informatik Köln 18 Juni 00 1 / 1 / 1 Gliederung LP-Dualität ein lineares Produktionsmodell der Simplexalgorithmus Phase I Endlichkeit

Mehr

1.6 lineare Optimierung

1.6 lineare Optimierung 1.6 lineare Optimierung Inhaltsverzeichnis 1 Lineare Gleichung mit 2 Unbekannten 2 1.1 Was ist eine lineare Gleichung mit 2 Unbekannten?..................... 2 1.2 Was ist eine Lösung einer linearen Gleichung

Mehr

Lineare Optimierung: Simplexverfahren Phase Ⅰ

Lineare Optimierung: Simplexverfahren Phase Ⅰ Lineare Optimierung: Simplexverfahren Phase Ⅰ Zur Erinnerung: Die Lineare Optimierungsaufgabe in Standardform lautet z = c T x + c 0 min (.) bei Ax = b, x 0. Revidiertes Simplexverfahren Mit dem Simplexverfahren

Mehr

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 96 H. Meyerhenke: Kombinatorische Optimierung Dualität bei linearen Programmen Def.: Es sei (L): c T x max

Mehr

Klausur zur Vorlesung Operations Research im Wintersemester 2009/10

Klausur zur Vorlesung Operations Research im Wintersemester 2009/10 Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Sitzplatznr.: Klausur zur Vorlesung Operations Research im Wintersemester 2009/10

Mehr

Der Simplex-Algorithmus

Der Simplex-Algorithmus 5 Lineare Programmierung Simplex-Algorithmus Der Simplex-Algorithmus Standardverfahren zur Lösung von LPs, von G B Dantzig entwickelt Grundidee: Versuche ausgehend von einer Startecke mit einer Ausgangsbasis

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Lineare Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Lineares Programm (LP) in Standardform

Mehr

3.2.5 Dualität der linearen Optimierung I

3.2.5 Dualität der linearen Optimierung I 3..5 Dualität der linearen Optimierung I Jedem linearen Programm in Standardform kann ein sogenanntes duales Programm zugeordnet werden. Es entsteht dadurch, daß man von einem Minimierungsproblem zu einem

Mehr

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Dr. Nico Düvelmeyer Freitag, 24. Juni 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Dualität Motivation Duales LP Dualitätssätze

Mehr

Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen. Kapitel IV: Grundlagen der Linearen Optimierung

Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen. Kapitel IV: Grundlagen der Linearen Optimierung Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen Kapitel IV: Grundlagen der Linearen Optimierung Inhaltsverzeichnis Abschnitt 3-5 3 Der Simplexalgorithmus 58 3.1 Grundlagen..............................

Mehr

Zutaten gut im Shaker schütteln und im Longdrinkglas auf Eis servieren.

Zutaten gut im Shaker schütteln und im Longdrinkglas auf Eis servieren. Alkoholfrei Virgin Colada - 8 cl EL PUENTE Orangensaft - 8 cl Ananassaft - 2 cl Kokosmilch Zutaten gut im Shaker schütteln und im Longdrinkglas auf Eis servieren. Alice - 8 cl EL PUENTE Orangensaft - 8

Mehr

Aufgabe 3.1: LP-Informationen im Optimum

Aufgabe 3.1: LP-Informationen im Optimum Johann Wolfgang Goethe-Universität Frankfurt am Main Lehrst.f.BWL, insb. Quant. Methoden Prof. Dr. Dietrich Ohse LPUE:SQM6 LP und Erweiterungen lpueb03_ 2003s.doc Aufgabe 3.1: LP-Informationen im Optimum

Mehr

Lösung allgemeiner linearer Programme

Lösung allgemeiner linearer Programme Lösung allgemeiner linearer Programme Bisher: Für Anwendung des Simplexalgorithmus muss eine primal oder eine dual zulässige Basislösung vorliegen. Für allgemeine lineare Programme können wir dies direkt

Mehr

würde eine Reduktion der Kapazität um = 100 h ebenfalls eine Änderung des

würde eine Reduktion der Kapazität um = 100 h ebenfalls eine Änderung des Aufgabe 4.: Sensitivitätsanalyse (a) 60 c 30 Deckungsbeitrag: (30 db 60) (b) 20 3 c C 0 3 Das heißt, die Restkapazität kann bis zu 20 3 Erträge bringen, bzw. bis zu 0 3 Kosten verursachen, ohne die Lösung

Mehr

Math. II, Numerik, Uebung 2, Termin Eigenvektoren, 2-Eigenwerte, 3-Simplex, 4-Zwei-Phasen

Math. II, Numerik, Uebung 2, Termin Eigenvektoren, 2-Eigenwerte, 3-Simplex, 4-Zwei-Phasen Math. II, Numerik, Uebung 2, Termin 25.10.2012 1-Eigenvektoren, 2-Eigenwerte, 3-Simplex, 4-Zwei-Phasen ALLGEMEINES Detaillierter Bewertungsbogen auf der Rückseite des Deckblatts 1. Nur Verfahren der angewandten

Mehr

Lineare (Un-)Gleichungen und lineare Optimierung

Lineare (Un-)Gleichungen und lineare Optimierung Lineare (Un-)Gleichungen und lineare Optimierung Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-6020 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung In der linearen

Mehr

AUFGABENTEIL. Klausur: Modul Optimierungsmethoden des Operations Research. Termin:

AUFGABENTEIL. Klausur: Modul Optimierungsmethoden des Operations Research. Termin: Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Univ.-Prof. Dr. Andreas Kleine AUFGABENTEIL Klausur: Modul 32621 Termin: 23.03.2017 Prüfer: Prof. Dr. Andreas

Mehr

Lösung von Optimierungsproblemen anhand von Simplex- Verfahren

Lösung von Optimierungsproblemen anhand von Simplex- Verfahren Lineare Optimierung Lösung von Optimierungsproblemen anhand von Simplex- Verfahren Informatik-Seminar Studiengang: Informatik Autor: Zemp Michael Betreuer: Schwab Peter Auftraggeber: Schwab Peter Experten:

Mehr

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn Optimierung Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus 1 Resource Allocation Beispiel aus Vorlesung 6 Primales LP: Duales LP: max 3 4 2 2 4 2 8 3 6 0, 0, 0 min 4 8 6 2 3 3 4 2 2 0, 0,

Mehr

(Technisch: Setze alle Skalarprodukte der allgemeinen Lösung mit den Basisvektoren des Kerns gleich Null eindeutige leastsqares Lösung)

(Technisch: Setze alle Skalarprodukte der allgemeinen Lösung mit den Basisvektoren des Kerns gleich Null eindeutige leastsqares Lösung) Lineare Optimierung Unterbestimmte LGS und Optimierung Bei lösbaren unterbestimmten linearen Gleichungssystemen haben wir die Qual der Wahl in Abhängigkeit von den freien Parametern (Anzahl = Anzahl Unbekannte

Mehr

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Verbundstudiengang Wirtschaftsingenieurwesen Prof. Dr. rer. nat. habil. J. Resch Prüfung: Mathematik Termin: 1. September 2012 Bearbeitungszeit:

Mehr

Lineare Optimierung. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet.

Lineare Optimierung. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. Lineare Optimierung Dr. Bommhardt. Das ervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.de 1 Gleichungen und Ungleichungen n der Wirtschaft sind häufig

Mehr

Lineare Optimierung Teil 2

Lineare Optimierung Teil 2 Lineare Optimierung Teil 2 Primale Degeneration Duale Degeneration = Mehrdeutigkeit Normalform kanonische Form Duale Simplexmethode HTW-Berlin FB3 Prof. Dr.F. Hartl 1 Primale Degeneration/1 Besitzt eine

Mehr

Fachbereich Wirtschaftswissenschaften Professur f. Quantitativen Methoden Prof. Dr. Dietrich Ohse

Fachbereich Wirtschaftswissenschaften Professur f. Quantitativen Methoden Prof. Dr. Dietrich Ohse Fachbereich Wirtschaftswissenschaften Professur f. Quantitativen Methoden Prof. Dr. Dietrich Ohse Diplomprüfung / Sommersemester 24 Quantitative Methoden der BWL Musterlösung der Prüfungsklausur vom. Juli

Mehr

Schranken für zulässige Lösungen

Schranken für zulässige Lösungen Schranken für zulässige Lösungen Satz 5.9 Gegeben seien primales und duales LP gemäß der asymmetrischen Form der Dualität. Wenn x eine zulässige Lösung des primalen Programms und u eine zulässige Lösung

Mehr

Lineare Optimierungsmodelle

Lineare Optimierungsmodelle Lineare Optimierungsmodelle Simplex-Methode Vortragender: Michael Schneider Agenda Motivation Operations Research Aufbau linearer Optimierungsmodelle Simplex-Methode Ausblick 2 Problemstellung Futtermischung

Mehr

10. Die Berücksichtigung nicht vorzeichenbeschränkter Variablen

10. Die Berücksichtigung nicht vorzeichenbeschränkter Variablen 10. Die Berücksichtigung nicht vorzeichenbeschränkter Variablen Bisher haben wir immer vorausgesetzt, dass alle Variablen eines LOP der Bedingung x i 0 liegen. Im Folgenden wollen wir auch sogenannte freie

Mehr

Wiederholung. Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b

Wiederholung. Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b Wiederholung Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b x 0. x R n heißt Basislösung, wenn Ax = b und rang(a J ) = J, wobei J = {j x (j) 0}; Basislösung

Mehr

Aussage: richtig falsch Entscheidungen über Investitionen werden stets in der kurzfristigen (operativen) Planung getroffen.

Aussage: richtig falsch Entscheidungen über Investitionen werden stets in der kurzfristigen (operativen) Planung getroffen. Aufgabe 1 Richtig oder Falsch? (20 Punkte) Folgende Aussagen sind entweder richtig oder falsch! Kreuzen Sie jeweils direkt hinter der Aussage eines der Kästchen an. Stimmt Ihre Bewertung einer Aussage

Mehr

1 Lineare Optimierung, Simplex-Verfahren

1 Lineare Optimierung, Simplex-Verfahren 1 Lineare Optimierung, Simplex-Verfahren 1.1 Einführung Beispiel: In einer Fabrik werden n Produkte A 1, A 2,..., A n hergestellt. Dazu werden m Rohstoffe B 1, B 2,..., B m (inklusive Arbeitskräfte und

Mehr

z = c T x : Ax = b, x 0 }, - die Darstellung der Nichtbasisvektoren durch die Basis ist

z = c T x : Ax = b, x 0 }, - die Darstellung der Nichtbasisvektoren durch die Basis ist Kapitel 5 Die Simplexmethode Es werden folgende Bezeichnungen verwendet: - das untersuchte Problem ist min x R n { z = c T x : Ax = b, x 0 }, - die erste zulässige Basislösung sei x = x 1, x 2,, x m, 0,,

Mehr

Optimale Steuerung 1 Prozessoptimierung 1

Optimale Steuerung 1 Prozessoptimierung 1 Optimale Steuerung 1 Prozessoptimierung 1 Kapitel 2: Lineare Optimierung Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Lineare Algebra (Mathematische Grundlagen) 2 Beispiel: Produktionsplanung

Mehr

Inhaltsverzeichnis Grundlagen der Linearen Optimierung

Inhaltsverzeichnis Grundlagen der Linearen Optimierung Inhaltsverzeichnis 4 Grundlagen der Linearen Optimierung 1 4.1 Grundbegriffe............................. 1 4.1.1 Lineare Optimierung..................... 1 4.1.2 Das Grundmodell eines linearen Optimierungsproblems

Mehr

Optimierung I, SS 2008

Optimierung I, SS 2008 Aufgabe. ca. 4 Punkte Technische Universität München Zentrum Mathematik Prof. Dr. P. Gritzmann, Dipl.-Math. M. Ritter, Dipl.-Inf. Dipl.-Math. S. Borgwardt Optimierung I, SS 2008 Übungsblatt Um gegen die

Mehr

10.2 Dualitätstheorie Operations Research. In der Standardform eines Maximierungsproblem: b e ) mit ( w) + a ej ) x j + x g = ( b g + g G

10.2 Dualitätstheorie Operations Research. In der Standardform eines Maximierungsproblem: b e ) mit ( w) + a ej ) x j + x g = ( b g + g G 48 0 Operations Research In der Standardform eines Maximierungsproblem: Max ( w) mit ( w) + u. d. N. z + x l + n ( a gj + j= g G e E n d j x j = z 0 j= n a l j x j = b l für alle l L j= x g n + a gj x

Mehr

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 18. VO A&D WS 08/09 18.12.2008 1 Literatur

Mehr

2. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner

2. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner . Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: AG1.1 Wissen über die Zahlenmengen,,, verständig einsetzen können

Mehr

"Produktion und Logistik"

Produktion und Logistik Prof. Dr. Jutta Geldermann, Dipl.-Kfm. Harald Uhlemair Klausur im Fach "Produktion und Logistik" zur Veranstaltung "Produktion und Logistik" Wintersemester 2007/08 Name:... Vorname:... Matrikelnummer:...

Mehr

Verfahren des Operations Research

Verfahren des Operations Research Verfahren des Operations Research Blatt 3 (WS 2017/18) wird bearbeitet am 8.1.2018 26. Erweitern Sie das Xpress Modell für das Zuordnungsproblem aus der LV: Es gibt n Mitarbeiter und m Jobs, wobei n m

Mehr

KLAUSUR zu Einführung in die Optimierung. Studiengang: Bachelor Master Diplom (bitte ankreuzen)

KLAUSUR zu Einführung in die Optimierung. Studiengang: Bachelor Master Diplom (bitte ankreuzen) Mathematisches Institut WS 2012/13 der Heinrich-Heine-Universität 7.02.2013 Düsseldorf Prof. Dr. Achim Schädle KLAUSUR zu Einführung in die Optimierung Bitte folgende Angaben ergänzen und DEUTLICH LESBAR

Mehr

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1 1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme Duales Problem Lemma 1.4. Das zum Transportproblem duale Problem lautet: max unter den Nebenbedingungen m a i u i + i=1

Mehr

1. Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme. f(x) min, x G (1.1) (Legende)

1. Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme. f(x) min, x G (1.1) (Legende) . Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme X Banachraum, wobei X = R n G zulässige Menge des Optimierungsproblems f: G R Zielfunktion f(x) min, x G (.) (Legende)

Mehr

Über- und unterbestimmte

Über- und unterbestimmte Über- und unterbestimmte Systeme (verallgemeinerte Lösungen) Über- und unterbestimmte Systeme Ax = b ist genau dann für alle b R m eindeutig lösbar, wenn m = n und rk A = n. Falls m n oder rk A < min{m,

Mehr

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 5 Dualität Peter Becker (H-BRS) Operations Research I Sommersemester 2014 241 / 298 Inhalt 5 Dualität Dualitätssätze Zweiphasen-Simplexalgorithmus Peter Becker (H-BRS) Operations Research I Sommersemester

Mehr

Optimierung. Vorlesung 08

Optimierung. Vorlesung 08 Optimierung Vorlesung 08 Heute Dualität Ganzzahligkeit Optimierung der Vorlesung durch Evaluierung 2 Das duale LP Das primale LP Maximiere c T x unter Ax b, x R d 0. wird zu dem dualen LP Minimiere b T

Mehr

Die Lagrange-duale Funktion

Die Lagrange-duale Funktion Die Lagrange-duale Funktion Gregor Leimcke 21. April 2010 1 Die Lagrangefunktion Wir betrachten das allgemeine Optimierungsproblem wobei minimiere f 0 über D sodass f i 0, i = 1,..., m 1.1 D = h i = 0,

Mehr

Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme

Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Kapitel 11 Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Wir betrachten folgendes Optimierungsproblem z = c T x min! Ax = b (11.1) (11.2) x j ganz für j = 1,..., n 1 n, (11.3)

Mehr

Klausur Mathematik. Note:

Klausur Mathematik. Note: Fachhochschule Südwestfalen Fachhochschule Münster Hochschule Bochum Verbundstudiengang Wirtschaftsingenieurwesen Hochschule Bochum Hochschule für Technik und Wirtschaft Klausur Mathematik Datum: 18.09.2010

Mehr

Aufgabenkomplex 5: Inhomogene Differenzialgleichungssysteme; Lineare Optimierung

Aufgabenkomplex 5: Inhomogene Differenzialgleichungssysteme; Lineare Optimierung Technische Universität Chemnitz. Juni 9 Fakultät für Mathematik Höhere Mathematik I. Aufgabenkomplex : Inhomogene Differenzialgleichungssysteme; Lineare Optimierung Letzter Abgabetermin: 9. Juli 9 in Übung

Mehr

COCKTAIL SELECTION. Fruchtiger Cocktail. Zutaten. Zubereitung. Dekoration

COCKTAIL SELECTION. Fruchtiger Cocktail. Zutaten. Zubereitung. Dekoration Fruchtiger Cocktail 6 cl Gin TL Grenadine 2 cl Orangensaft 2 cl Zitronensaft Eis Sodawasser 3 Tropfen Angostura Die ersten 4 mit Eis in einem Shaker mischen. Abseihen in großes Glas und mit Sodawasser

Mehr

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Wintersemester 2006/07 05.03.2007 Dr. Priska Jahnke Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Bitte lesbar ausfüllen, Zutreffendes ankreuzen Herr Frau Name, Vorname:

Mehr

3. Schnittebenenverfahren

3. Schnittebenenverfahren 3. Schnittebenenverfahren Themen 3. Schnittebenenverfahren Ganzzahlige lineare Programmierung Schnittebenenverfahren Konstruktion von Schnittebenen Auswahl von Schnittrestriktionen Operations Research

Mehr

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten)

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) HTW Dresden 11. Februar 2014 FB Informatik/Mathematik Prof. Dr. J. Resch Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) Name, Vorname: Matr.-nr.: Anzahl der abge-

Mehr

Mitschrift der Vorlesung: Kombinatorische Optimierung

Mitschrift der Vorlesung: Kombinatorische Optimierung Mitschrift der Vorlesung: Kombinatorische Optimierung bei Prof. Socher-Ambrosius Niels-Peter de Witt 26. April 2002 Inhaltsverzeichnis 1 Einführung 2 1.1 Beispiel: Profil zersägen.......................

Mehr

1.8 lineare Optimierung

1.8 lineare Optimierung 1.8 lineare Optimierung Inhaltsverzeichnis 1 Einführung des Begriffs lineare Optimierung 2 2 Das Planungspolygon 2 3 Die Optimierungsgerade 3 1 lineare Optimierung 02.04.2008 Theorie und Übungen 2 1 Einführung

Mehr

Kaufmännische Berufsmatura 2016

Kaufmännische Berufsmatura 2016 Prüfungsdauer: 150 Minuten Hilfsmittel: Bedingungen: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt. Unbelegte Resultate werden nicht berücksichtigt

Mehr

max 16x x 2 (1) 4x 1 + 2x (2) 10x (3) 2x 1 + 4x (4) 2x (5) x 1, x 2 0 (6)

max 16x x 2 (1) 4x 1 + 2x (2) 10x (3) 2x 1 + 4x (4) 2x (5) x 1, x 2 0 (6) Aufgabe 1 (33 Punkte, ca. 20 Minuten) Ein Konditor stellt zu Ostern besonders exklusive Osterhasen (x 1 ) und Ostereier (x 2 ) her. Diese bestehen aus einer Schokoladengrundmasse und werden mit weiteren

Mehr

ist ein Polyeder. c) Sei F eine Seite von P. Wann ist f 1 (F ) eine Seite von f 1 (P )? Begründen Sie Ihre Antwort. x 1. x = max{ x i i N n }.

ist ein Polyeder. c) Sei F eine Seite von P. Wann ist f 1 (F ) eine Seite von f 1 (P )? Begründen Sie Ihre Antwort. x 1. x = max{ x i i N n }. alteklausuraufgaben 1 LinOpt Klausur Sommersemester 05 Aufgabe 1 a) Definieren Sie den Begriff der konischen Hülle. b) Sei S R n. Zeigen Sie: Cone S = Lin S x S : x Cone (S \ {x}). Aufgabe 2 a) Definieren

Mehr

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Kapitel 1 Unimodularität Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Inhalt 1 Unimodularität Total unimodulare Matrizen Inzidenzmatrix Optimierungsprobleme auf Graphen Peter

Mehr