10.2 Dualitätstheorie Operations Research. In der Standardform eines Maximierungsproblem: b e ) mit ( w) + a ej ) x j + x g = ( b g + g G

Größe: px
Ab Seite anzeigen:

Download "10.2 Dualitätstheorie Operations Research. In der Standardform eines Maximierungsproblem: b e ) mit ( w) + a ej ) x j + x g = ( b g + g G"

Transkript

1 48 0 Operations Research In der Standardform eines Maximierungsproblem: Max ( w) mit ( w) + u. d. N. z + x l + n ( a gj + j= g G e E n d j x j = z 0 j= n a l j x j = b l für alle l L j= x g n + a gj x j x g = b e für alle j= a ej ) x j + x g = ( b g + g G g G e E g G x e n + a ej x j = b e für alle e E j= x j 0 x l,x g 0 x g,x e 0 z frei Unzulässigkeitsfunktion, alternativer Name für die zweite Zielfunktion. Ihr Wert ist ein Maß für die Summe aller Unzulässigkeiten. Je kleiner der Wert der Unzulässigkeitsfunktion, desto stärker nähert sich die Lösung dem zulässigen Bereich. Mithilfe der Simplex-Methode kann man das neue Problem lösen, indem die ursprüngliche Zielfunktion wie eine Nebenbedingung mit umgerechnet wird, allerdings mit der Maßgabe, dass die entsprechende Zeile niemals Pivotzeile werden darf. Das heißt, diese Nebenbedingung darf nicht restriktiv werden, sodass die Zielvariable z als freie Variable behandelt werden muss. Zulässige Lösung, der Lösungsprozess endet mit dem minimalen Wert der Funktion w = 0. Keine zulässige Lösung, der Lösungsprozess endet mit dem minimalen Wert der Funktion w > 0. b e ) 0. Dualitätstheorie Dualität linearer Programme, das paarweise Auftreten von LP-Problemen. Zu jedem LP-Problem existiert ein zweites, das als das duale Problem des ersteren bezeichnet wird. Bei Zwei-Personen-Nullsummenspielen wird besonders deutlich, dass der Gewinn des einen Spielers gleich dem Verlust des anderen Spielers ist. Das heißt, es muss sich dieselbe Lösung ergeben, wenn man den Mindestgewinn des Spielers A maximiert oder den Maximalverlust des Spielers B minimiert. Die entsprechenden linearen Programme sind dual zueinander. In der Produktionsprogrammplanung ist mit jedem Ressourcen-Allokations-Problem ein Preisproblem verbunden. Das heißt, der Faktoreinsatz wird davon abhängig gemacht, welche Erlöse sich mit ihm erzielen lassen. Das Problem, die Ressourcen so einzusetzen, dass sich ein maximaler Gewinn ergibt, ist dual zu dem Problem, Verrechnungspreise für die Faktoren zu bestimmen, so dass die Kosten ihres Einsatzes minimiert werden.

2 0. Dualitätstheorie 49 Duale Entsprechungen, die gegenseitigen Entsprechungen des primalen und des dualen Problems. Primales Problem Duales Problem Zielfunktion Rechte Seite Rechte Seite Zielfunktion Koeffizientenmatrix Transponierte Matrix (ohne Vorzeichen) Variable (Spalte) Nebenbedingung (Zeile) Nebenbedingung (Zeile) Variable (Spalte) Das Mengenproblem lautet in allgemeiner Schreibweise: x x x =. x n der Vektor der herzustellenden Mengen c T = (c,c,...,c n ) der Vektor der Deckungsbeiträge a a a n a A = a a n..... die Matrix der Produktionskoeffizienten. a m a m a mn b b b =. b n der Vektor der Kapazitätsangebote Mit diesen Bezeichnungen ergibt sich im Folgenden das als PRIMAL bezeichnete LP-Problem: Max z mit z = c T x u. d. N. A x b x 0 Das Preisproblem ergibt sich, wenn man allen Faktoren i Preise u i zuordnet: u u u =. u m Als Wert aller verfügbaren Faktoren erhält man: der Vektor der Faktorbewertungen m w = b i u i = b T u i= Die Preise sind so zu bestimmen, dass die Bewertung aller vorhandenen Faktoren minimal ist.

3 40 0 Operations Research Bei der Berechnung der Preise soll in jedem Fall sichergestellt sein, dass der Wert der eingesetzten Faktoren in einer Aktivität den Deckungsbeitrag c j des Aktivitätenoutputs nicht unterschreitet: m a ij u i c j für alle j =,,...,n i= Restriktionen zusammengefasst: A T u c Keine negativen Preise: u 0 Zusammengefasst ergibt sich das LP-Problem: DUAL Min w mit w = b T u u. d. N. A T u c u 0 Allgemeines duales Problem, ergibt sich aus folgender Synopse, die von links nach rechts zu interpretieren ist, wenn das primale Problem ein Maximierungsproblem ist, sonst von rechts nach links, wobei die so genannte Punktnotation für die i-te Zeile A i bzw. für die j-te Spalte A j der Matrix A verwendet wurde: PRIMAL (DUAL) DUAL (PRIMAL) Kriterium: Max Kriterium: Min Variablen: x j ; j =,,...,n Funktionen: A T j u ; j =,,...,n Funktionen: A T i x ; i =,,...,m Variablen: u i ; i =,,...,m Zielfunktion: z = c T x + z 0 Rechte Seite: c Rechte Seite: b Zielfunktion: w = b T u + z0 Nebenbed.: A l x b l l L A e = b e e E A T g b g g G Variablen: x i 0 i I x j frei j J x k 0 k K Variablen: u l 0 l L u e frei e E u g 0 g G Nebenbed.: A T i u c i i I A T j u = c j j J A T k u c k k K Zwischen den jeweils paarweise auftretenden LP-Problemen bestehen enge Beziehungen. Sie sind im Folgenden in Form von Eigenschaften zusammengestellt, auf die im weiteren Text Bezug genommen wird. Wir halten zunächst fest, dass es sich bei den beiden dualen Problemen Max z mit z = c T x u. d. N. A x b x 0 Min w mit w = b T u u. d. N. A T u c u 0 um zwei verschiedene Probleme handelt! Sie werden i. d. R. unterschiedliche Dimensionen besitzen und durch die Nebenbedingungen sind völlig verschiedene Polyeder beschrieben.

4 0. Dualitätstheorie 4 Die zulässigen Lösungen des einen Problems haben mit den zulässigen Lösungen des anderen Problems im Prinzip nichts gemeinsam. Eigenschaften dualer Probleme: Duales Problem des dualen: Das duale Problem des dualen Problems ergibt das primale Problem. Schwache Dualität: Es seien x eine zulässige Lösung des primalen Max-Problems und u eine zulässige Lösung des dualen Min-Problems: z(x ) = c T x b T u = w(u ) Der Zielfunktionswert einer zulässigen Lösung des Maximierungsproblems ist also stets kleiner oder gleich dem Zielfunktionswert einer zulässigen Lösung des dazugehörenden Minimierungsproblems. Aus der schwachen Dualität ergeben sich wichtige Folgerungen: Der Zielfunktionswert einer zulässigen Lösung des Min-Problems stellt eine obere Schranke für die optimale (und zulässige) Lösung des Max-Problems dar. Analog ist der Zielfunktionswert einer zulässigen Lösung des Max-Problems eine untere Schranke für die optimale Lösung des Min-Problems. Ist die Lösung des Max-Problems zulässig und nach oben unbeschränkt, so gibt es keine zulässige Lösung des Min-Problems. Ist die Lösung des Min-Problems zulässig und nach unten unbeschränkt, so gibt es keine zulässige Lösung des Max-Problems. Falls das Min-Problem keine und das Max-Problem mindestens eine zulässige Lösung besitzt, so ist das Max-Problem nach oben unbeschränkt. Hat das Max-Problem keine und das Min-Problem mindestens eine zulässige Lösung, so ist das Min-Problem nach unten unbeschränkt. Hinreichende Bedingung der Optimalität: In einem Paar dualer LP-Probleme sei x eine zulässige Lösung des (primalen) Max-Problems und u eine zulässige Lösung des (dualen) Min-Problems. z(x ) und w(u ) seien die entsprechenden Zielfunktionswerte und es gelte z(x ) = w(u ). Dann ist x die optimale Lösung des Max-Problems und u die optimale Lösung des Min-Problems. Starke Dualität: Besitzt in einem Paar dualer LP-Probleme eines der beiden Probleme eine (endliche) Optimallösung, dann auch das andere und die Zielfunktionswerte beider Probleme sind im Optimum gleich. Neben zahlreichen theoretischen Folgerungen ergibt sich die folgende auch für den praktischen Einsatz relevante Konsequenz. Es wird angenommen, dass für ein Paar zueinander dualer Probleme jeweils eine zulässige Basislösung bekannt ist. Beide LP-Probleme sollen also unabhängig voneinander gelöst werden, wobei in beiden Fällen zunächst die Zulässigkeit angestrebt wird. Wegen der schwachen Dualität ist der Zielfunktionswert: des Min-Problems obere Schranke für das Max-Problem des Max-Problems untere Schranke für das Min-Problem. Der einzige gemeinsame (zulässige) Wert beider Probleme ergibt sich wegen des starken Dualitätssatzes im Optimum. Complementary Slackness-Bedingung: Für ein Paar dualer LP-Probleme gilt: x und u sind dann und nur dann optimale Lösungen der

5 4 0 Operations Research jeweiligen Probleme, wenn sie die Complementary Slackness-Bedingung u T (b A x ) = 0 bzw. (A T u c) T x = 0 erfüllen. Die CS-Bedingung ist identisch mit der ökonomischen Aussage, dass nur diejenigen Faktoren einen Schattenpreis ( = Dualvariable!) ungleich null haben, die knapp sind, bei denen also die Nebenbedingung als Gleichung gilt. Umgekehrt ist der Schattenpreis gleich null, wenn die Nebenbedingung nicht restriktiv ist, d. h. das Ungleichheitszeichen gilt. 0.. Duale Simplex-Methode Die primale Simplex-Methode arbeitet in der Optimierungsphase nach dem folgenden Prinzip: Sie startet mit einer (primal) zulässigen Lösung. In jeder Iteration wird eine andere Basislösung berechnet, die die Eigenschaft hat,. nach wie vor zulässig zu sein und. hinsichtlich des Zielfunktionswertes besser, zumindest aber nicht schlechter zu sein. Dieses (primale) Prinzip strebt also von einer zulässigen Lösung ausgehend die Optimalität an, wobei sichergestellt wird, dass die einmal gewonnene Zulässigkeit nicht mehr verloren geht. Alle bis auf die letzte Basislösung sind zulässig, aber nicht optimal; nach den zuvor erarbeiteten Ergebnissen kann man also feststellen: Sie sind primal, jedoch nicht dual zulässig. Die Lösungsstrategie besteht dabei darin, eine (primal) zulässige Lösung stetig zu verbessern, bis sie auch dual zulässig, also optimal ist. Duale Strategie, geht genau umgekehrt vor, d. h. startet mit einer dual zulässigen Lösung und strebt primale Zulässigkeit an. Ist sie erreicht, so ist man am Ziel, d. h. die erste (primal) zulässige Lösung ist dann die gesuchte. Wir gehen hierzu wieder von der Standardform aus: Ausgangstableau: Max x j x s RS z d j d s z 0 x r a rj b r x i a ij a is b i Die zugehörige Basislösung sei optimal (dual zulässig), d. h. d j, d s 0, jedoch nicht (primal) zulässig, d. h., es existiere mindestens eine Zeile i mit b i < 0. Duale Simplex-Methode (Standardform) Input: Output: Vereinbarung: Schritt : Simplextableau mit dual zulässiger (= optimaler) Ausgangslösung Simplextableau mit optimaler und primal zulässiger Basislösung oder dem Nachweis, dass keine zulässige Lösung existiert. Umgerechnete Koeffizienten sind durch einen Stern (*) gekennzeichnet. Auswahl der Pivotzeile r Es sei b r = min b i i Falls b r 0 ist, dann ist eine zulässige Lösung erreicht; die Rechnung ist beendet. Andernfalls wähle die Zeile r als Pivotzeile.

6 0. Dualitätstheorie 43 Schritt : Auswahl der Pivotspalte s Berechne: d { s = min d j j a rj a rj < 0} Wähle Spalte s als Pivotspalte. Bei mehreren minimalen Quotienten wähle die Spalte s unter den entsprechenden Zeilen beliebig aus. Falls kein a rj < 0 existiert, gibt es keine zulässige Lösung; die Rechnung endet. Schritt 3: Pivotoperation bzgl. < 0 3.: Pivotzeile r a rj = a rj für alle j s, 3.: Pivotspalte s a is = a is für alle i r, b r = b r d s = d s 3.3: Pivotelement a rs = 3.4: Alle übrigen Elemente a ij = a ij a is a rj = a ij a is a rj für alle i r und j s b i = b i a is b r = b i a is b r für alle i r d j = d j d s a rj = d j d s a rj für alle j s z 0 = z 0 d s b r = z 0 d s b r 3.: Vertauschung der Variablen Tausche x r gegen x s und gehe nach Schritt. Beispiel: Gesucht ist die Lösung des nachstehenden Minimierungsproblems. Min z mit z = x +4x +x 3 u. d. N. x +x +3x 3 9 x +3x +x 3 x +x +4x 3 x,x,x 3 0 Max x x x 3 RS ( z) 4 0 x x 3 x 6 4 Max x 6 x x 3 RS ( z) x 4 3 x 3 3 x

7 44 0 Operations Research Max x 6 x x 4 RS ( z) 33 x 3 3 x x 3 9 Max x x x 4 RS ( z) x 3 x 6 x Revidierte Simplex-Methode Klassische Simplex-Methode: In jeder Iteration wird das gesamte Tableau umgerechnet. Dabei sind bei größeren Problemen u. U. außerordentlich viele Operationen des Typs a = a b c, d. h. der zentralen d linearen Transformation, auszuführen, was mit folgenden, z. T. gravierenden Nachteilen verbunden ist: Speicherplatz: Die Koeffizientenmatrizen sind groß, jedoch meist nur dünn besetzt. Bei der vollständigen Umrechnung ändert sich die Verteilung der Nichtnull-Elemente, sodass eine kompakte Speicherung nicht infrage kommt. Die vollständige Speicherung der Koeffizientenmatrix kann nicht im Arbeitsspeicher vorgenommen werden, weshalb bei externer Speicherung sehr viele Input/Output-Operationen anfallen, was die Lösungszeit stark belastet. Rechenzeit: Gerade wenn es sich um große Probleme mit i. d. R. sehr viel mehr Aktivitäten (Spalten) als Nebenbedingungen (Zeilen) handelt, werden letztendlich nicht alle, sondern i. Allg. sogar nur relativ wenige Aktivitäten bewegt, d. h. nur ein geringer Teil der Spalten wird tatsächlich Pivotspalte. Würde man diese a priori kennen, so könnte auf die Darstellung und Umrechnung solcher Aktivitäten, die sich für den Entscheidungsprozess als irrelevant herausstellen, ganz verzichtet werden. Das Problem ist, dass man über dieses Wissen ex ante nicht verfügt. Rundungsfehler: Durch die wiederholte Umrechnung eines jeden Koeffizienten kommt es häufig vor, dass ein Nullelement ungleich null wird und - bei exakter Rechnung - in einer späteren Iteration wieder verschwindet (d. h. = 0 wird). Für die interne Darstellung einer Gleitkommazahl stehen jedoch nur begrenzt viele Stellen zur Verfügung, sodass gerundet und abgeschnitten werden muss, weshalb Koeffizienten, die im fortgeschrittenen Rechenstadium eigentlich gleich null wären, fälschlicherweise einen Wert ungleich null haben und als Pivotelement gewählt werden. Revidierte Simplex-Methode, alternative Implementierung der Simplex-Methode, bei der nur derjenige Teil des Simplex-Tableaus umgerechnet wird, der für den nächsten Schritt unbedingt erforderlich ist. Alle anderen Daten werden bei Bedarf aktualisiert. Basisinverse, derjenige Teil der Koeffizientenmatrix, mit dem alle anderen Daten umgerechnet werden müssen. Sie wird im Wesentlichen aktuell gehalten. Je nach Form der Inversen gibt es verschiedene Varianten der revidierten S. M.: Revidierte S. M. mit Explizitform der Inversen Revidierte S. M. mit Produktform der Inversen Revidierte S. M. mit LU-Form der Inversen Blockpivoting, Matrizendarstellung des Pivotprozesses, liefert die Rechenregeln für die Aktualisierung der in jeder Iteration benötigten Daten. z x L x B x N 0 T d T B d T N = 0 E A B A N Ausgangstableau z x L x B x N d T B A B 0 T d T N dt B A B A N 0 A B E A B A N Tableau auf kanonische Form zur Basis B

Dualitätssätze der linearen Optimierung

Dualitätssätze der linearen Optimierung Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =

Mehr

Eigenschaften von LPs

Eigenschaften von LPs 2 Lineare Programmierung Eigenschaften von LPs Eigenschaften von LPs Definition 24 Eine Menge K IR n heißt konvex gdw für je zwei Punkte Punkte x (1) K und x (2) K auch jeder Punkt mit 0 λ 1 zu K gehört

Mehr

Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m)

Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m) Minimumproblem Definition 4.7 Ein LP der Form nx Minimiere Z = c j x j j=1 unter den Nebenbedingungen nx d ij x j b i (i =1,...,m) j=1 und den Vorzeichenbedingungen x j 0(j =1,...,n) heißt Minimumproblem.

Mehr

Lösung allgemeiner linearer Programme

Lösung allgemeiner linearer Programme Lösung allgemeiner linearer Programme Bisher: Für Anwendung des Simplexalgorithmus muss eine primal oder eine dual zulässige Basislösung vorliegen. Für allgemeine lineare Programme können wir dies direkt

Mehr

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 18. VO A&D WS 08/09 18.12.2008 1 Literatur

Mehr

4.3.3 Simplexiteration

4.3.3 Simplexiteration 7. Januar 2013 53 4.3.3 Simplexiteration Eine Simplexiteration entspricht dem Übergang von einer Ecke des zulässigen Bereiches in eine benachbarte Ecke Dabei wird genau eine Nichtbasisvariable (die zugehörige

Mehr

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 4 Simplex-Verfahren Peter Becker (H-BRS) Operations Research I Sommersemester 24 86 / 298 Inhalt Inhalt 4 Simplex-Verfahren Dualer Simplexalgorithmus Vermeidung von Zyklen Peter Becker (H-BRS)

Mehr

Lineare Optimierung Teil 2

Lineare Optimierung Teil 2 Lineare Optimierung Teil 2 Primale Degeneration Duale Degeneration = Mehrdeutigkeit Normalform kanonische Form Duale Simplexmethode HTW-Berlin FB3 Prof. Dr.F. Hartl 1 Primale Degeneration/1 Besitzt eine

Mehr

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Dr. Nico Düvelmeyer Freitag, 24. Juni 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Dualität Motivation Duales LP Dualitätssätze

Mehr

Operations Research. Die Simplexmethode. LP-Dualität. Die Simplexmethode. Rainer Schrader. 18. Juni Zur Erinnerung: Gliederung

Operations Research. Die Simplexmethode. LP-Dualität. Die Simplexmethode. Rainer Schrader. 18. Juni Zur Erinnerung: Gliederung Operations Research Rainer Schrader Die Simplexmethode Zentrum für Angewandte Informatik Köln 18 Juni 00 1 / 1 / 1 Gliederung LP-Dualität ein lineares Produktionsmodell der Simplexalgorithmus Phase I Endlichkeit

Mehr

Der Simplex-Algorithmus

Der Simplex-Algorithmus 5 Lineare Programmierung Simplex-Algorithmus Der Simplex-Algorithmus Standardverfahren zur Lösung von LPs, von G B Dantzig entwickelt Grundidee: Versuche ausgehend von einer Startecke mit einer Ausgangsbasis

Mehr

Zugeordneter bipartiter Graph

Zugeordneter bipartiter Graph Zugeordneter bipartiter Graph Für ein Transportproblem sei A = {A 1,...,A m } die Menge der Fabriken und B = {B 1,...,B n } sei die Menge der Warenhäuser. Wir ordnen nun einem Transportproblem einen bipartiten

Mehr

3.2.5 Dualität der linearen Optimierung I

3.2.5 Dualität der linearen Optimierung I 3..5 Dualität der linearen Optimierung I Jedem linearen Programm in Standardform kann ein sogenanntes duales Programm zugeordnet werden. Es entsteht dadurch, daß man von einem Minimierungsproblem zu einem

Mehr

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme Optimierungsprobleme Häufig in Alltagssituationen anzutreffen (z.b. Kauf eines Gerätes) Optimierungsprobleme (OPs) sind Probleme, die i.a. viele zulässige Lösungen besitzen Jeder Lösung ist ein bestimmter

Mehr

Kap. 4.2: Simplex- Algorithmus

Kap. 4.2: Simplex- Algorithmus Kap. 4.: Simplex- Algorithmus Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Literatur für diese VO V. Chvatal: Linear Programming D. ertsimas:

Mehr

Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen. Kapitel IV: Grundlagen der Linearen Optimierung

Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen. Kapitel IV: Grundlagen der Linearen Optimierung Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen Kapitel IV: Grundlagen der Linearen Optimierung Inhaltsverzeichnis Abschnitt 3-5 3 Der Simplexalgorithmus 58 3.1 Grundlagen..............................

Mehr

4. Dualität Dualität 4.1 Dualität von LPs und der Dualitätssatz. Die duale Form eines LP in allgemeiner Form. Herleitung der dualen Form

4. Dualität Dualität 4.1 Dualität von LPs und der Dualitätssatz. Die duale Form eines LP in allgemeiner Form. Herleitung der dualen Form 2... 22 4.2 Die Bedingungen vom komplementären Schlupf... 23 4.3 Das Kürzeste-Wege-Problem und zugehörige duale Problem... 24 4.4 Das Farkas Lemma... 25 4.5 Duale Information im Tableau... 26 4.6 Der duale

Mehr

Übung 3, Simplex-Algorithmus

Übung 3, Simplex-Algorithmus Übung 3, 21.6.2011 Simplex-Algorithmus Aufgabe 3.1 Lösen Sie das folgende Optimierungsproblem (von Aufgabe 2.3) graphisch. Substituieren Sie dazu z = 5 y um ein 2-dimensionales Problem zu erhalten. Rechnung

Mehr

mit. Wir definieren (Skalarprodukt = Winkel).

mit. Wir definieren (Skalarprodukt = Winkel). 1 Grundidee des Simplexverfahrens (von George Dantzig): Man bestimmt eine beliebige Ecke (Extremalpunkt) einer Lösungsmenge eines Ungleichungssystems. Nun geht man an den Kanten vom Punkt entlang und kontrolliert

Mehr

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 96 H. Meyerhenke: Kombinatorische Optimierung Dualität bei linearen Programmen Def.: Es sei (L): c T x max

Mehr

Sensitivitätsanalyse in der Linearen Optimierung

Sensitivitätsanalyse in der Linearen Optimierung Sensitivitätsanalyse in der Linearen Optimierung Bei der Sensitivitätsanalyse werden i. allg. Größen des Ausgangsproblems variiert, und es wird untersucht, welche Wirkung eine derartige Modifikation auf

Mehr

Aufgabe 5.3 Duale Simplexverfahren

Aufgabe 5.3 Duale Simplexverfahren Aufgabe 5.3 Knut Krause Thomas Siwczyk Stefan Tittel Technische Universität Dortmund Fakultät für Informatik Algorithmen und Datenstrukturen 15. Januar 2009 Gliederung 1 Aufgabenstellung und Motivation

Mehr

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck Lemma 15 KLP 1 ist genau dann lösbar, wenn das dazugehörige LP KLP 2 eine Lösung mit dem Wert Z = 0 besitzt. Ist Z = 0 für x 0, x 0, dann ist x eine zulässige Lösung von KLP 1. Beweis von Lemma 15: Nach

Mehr

Optimierung für Wirtschaftsinformatiker: Lineare Programme

Optimierung für Wirtschaftsinformatiker: Lineare Programme Optimierung für Wirtschaftsinformatiker: Lineare Programme Dr. Nico Düvelmeyer Dienstag, 31. Mai 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Lineare Programme Allgemeine Form 2 Spezielle Darstellungen

Mehr

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1 1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme Duales Problem Lemma 1.4. Das zum Transportproblem duale Problem lautet: max unter den Nebenbedingungen m a i u i + i=1

Mehr

6 Korrektheit des Simplexalgorithmus

6 Korrektheit des Simplexalgorithmus 6 Korrektheit des Simplexalgorithmus Folgerung: Es sei L: Ax = b, c T x max LP und A B nicht-degenerierte PZB von L und es gebe c r := c r c B A B A r > 0 a) Falls a r := A B a r 0, dann L unbeschränkt

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Lineare Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Lineares Programm (LP) in Standardform

Mehr

1 Der Simplex Algorithmus I

1 Der Simplex Algorithmus I 1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier

Mehr

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 7 Lineare Programmierung II 1 Lineare Programme Lineares Programm: Lineare Zielfunktion Lineare Nebenbedingungen (Gleichungen oder Ungleichungen) Spezialfall der konvexen Optimierung

Mehr

1 Lineare Optimierung, Simplex-Verfahren

1 Lineare Optimierung, Simplex-Verfahren 1 Lineare Optimierung, Simplex-Verfahren 1.1 Einführung Beispiel: In einer Fabrik werden n Produkte A 1, A 2,..., A n hergestellt. Dazu werden m Rohstoffe B 1, B 2,..., B m (inklusive Arbeitskräfte und

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 17.10.2012 Bernhard Hanke 1 / 9 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche

Mehr

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 5 Dualität Peter Becker (H-BRS) Operations Research I Sommersemester 2014 241 / 298 Inhalt 5 Dualität Dualitätssätze Zweiphasen-Simplexalgorithmus Peter Becker (H-BRS) Operations Research I Sommersemester

Mehr

Optimale Steuerung 1 Prozessoptimierung 1

Optimale Steuerung 1 Prozessoptimierung 1 Optimale Steuerung 1 Prozessoptimierung 1 Kapitel 2: Lineare Optimierung Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Lineare Algebra (Mathematische Grundlagen) 2 Beispiel: Produktionsplanung

Mehr

z = c T x : Ax = b, x 0 }, - die Darstellung der Nichtbasisvektoren durch die Basis ist

z = c T x : Ax = b, x 0 }, - die Darstellung der Nichtbasisvektoren durch die Basis ist Kapitel 5 Die Simplexmethode Es werden folgende Bezeichnungen verwendet: - das untersuchte Problem ist min x R n { z = c T x : Ax = b, x 0 }, - die erste zulässige Basislösung sei x = x 1, x 2,, x m, 0,,

Mehr

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 3 Wiederholung! Lineare Programme häufig geeignete Modellierung von Optimierungsproblemen! Verschiedene Darstellungen sind

Mehr

Das Lagrange-duale Problem

Das Lagrange-duale Problem Das Lagrange-duale Problem Tobias Kulke 29. April 2010 1 Einführung Für jedes Paar (λ, ν) mit λ 0 liefert die Langrange-duale Funktion ( ) p g(λ, ν) = inf L(x, λ, ν) = inf f 0 (x) + λ i f i (x) + ν i h

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 18.10.2012 Alexander Lytchak 1 / 12 Lineare Gleichungssysteme Wir untersuchen nun allgemeiner Gleichungssysteme der

Mehr

Aufgaben zu Kapitel 23

Aufgaben zu Kapitel 23 Aufgaben zu Kapitel 23 Aufgaben zu Kapitel 23 Verständnisfragen Aufgabe 23 Bestimmen Sie grafisch die optimale Lösung x der Zielfunktion z = c T x unter den Nebenbedingungen mit dem Zielfunktionsvektor

Mehr

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn Optimierung Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus 1 Resource Allocation Beispiel aus Vorlesung 6 Primales LP: Duales LP: max 3 4 2 2 4 2 8 3 6 0, 0, 0 min 4 8 6 2 3 3 4 2 2 0, 0,

Mehr

Kap. 4: Lineare Programmierung

Kap. 4: Lineare Programmierung Kap. 4: Lineare Programmierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO A&D WS 08/09 27.11./2.12.2008 Petra Mutzel Alg. & Dat.

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

Wiederholung. Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b

Wiederholung. Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b Wiederholung Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b x 0. x R n heißt Basislösung, wenn Ax = b und rang(a J ) = J, wobei J = {j x (j) 0}; Basislösung

Mehr

Schranken für zulässige Lösungen

Schranken für zulässige Lösungen Schranken für zulässige Lösungen Satz 5.9 Gegeben seien primales und duales LP gemäß der asymmetrischen Form der Dualität. Wenn x eine zulässige Lösung des primalen Programms und u eine zulässige Lösung

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 7 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 200 Prof. Dr. Klaus Höllig (IMNG)

Mehr

Lineares Optimieren. W. Kippels 12. April Inhaltsverzeichnis. 1 Einleitung 2. 2 Die Beispielaufgabe 2. 3 Einführung von Schlupfvariablen 2

Lineares Optimieren. W. Kippels 12. April Inhaltsverzeichnis. 1 Einleitung 2. 2 Die Beispielaufgabe 2. 3 Einführung von Schlupfvariablen 2 Lineares Optimieren W. Kippels 1. April 015 Inhaltsverzeichnis 1 Einleitung Die Beispielaufgabe Einführung von Schlupfvariablen 4 Die Simplex-Methode 5 Das Basis-Austauschverfahren 4 6 Fortsetzung der

Mehr

Berufliches Gymnasium (WG, EG, AG, SG) Hauptprüfung 2008 Teil 2, Lineare Optimierung, Aufgabe 2 Baden-Württemberg

Berufliches Gymnasium (WG, EG, AG, SG) Hauptprüfung 2008 Teil 2, Lineare Optimierung, Aufgabe 2 Baden-Württemberg Berufliches Gymnasium (WG, EG, AG, SG) Hauptprüfung 8 Teil, Lineare Optimierung, Aufgabe Baden-Württemberg.. Ein Fertigungsbetrieb für Frottierartikel stellt unter anderem Handtücher und Badetücher her.

Mehr

Probeklausur Optimierung

Probeklausur Optimierung Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Dr. Nico Düvelmeyer Hamburg, 4. Juli 2011 Probeklausur Optimierung Bitte selber ausfüllen: Name: (darf anonymisiert werden)

Mehr

3. Schnittebenenverfahren

3. Schnittebenenverfahren 3. Schnittebenenverfahren Themen 3. Schnittebenenverfahren Ganzzahlige lineare Programmierung Schnittebenenverfahren Konstruktion von Schnittebenen Auswahl von Schnittrestriktionen Operations Research

Mehr

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle.

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle. Nachschlag:Transposition von Matrizen Sei Explizit: Def: "Transponierte v. A": (tausche Zeilen mit Spalten d.h., spiegle in der Diagonale) m Reihen, n Spalten n Reihen, m Spalten z.b. m=2,n=3: Eigenschaft:

Mehr

Lineare Gleichungssysteme - Grundlagen

Lineare Gleichungssysteme - Grundlagen Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente

Mehr

Operations Research. Linearoptimierung. Bearbeitet von Peter Stingl

Operations Research. Linearoptimierung. Bearbeitet von Peter Stingl Operations Research Linearoptimierung earbeitet von Peter Stingl Auflage 22 uch 76 S Hardcover ISN 978 446 228 8 Format ( x L): 4,5 x 2 cm Gewicht: 26 g Wirtschaft > etriebswirtschaft: Theorie & Allgemeines

Mehr

Lineare Programmierung (2)

Lineare Programmierung (2) Inhalt Rückblick Motivation - linearen Programmierung Flussprobleme Multiple Warenflüsse Fortsetzung Simplex Algorithmus Initialisierung Fundamentalsatz der linearen Programmierung schwache Dualität Dualität

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Vektor-Additions-Systeme und Invarianten

Vektor-Additions-Systeme und Invarianten Vektor-Additions-Systeme und Invarianten http://www.informatik.uni-bremen.de/theorie/teach/petri Renate Klempien-Hinrichs Stellen- und Transitions-Vektoren T -Invarianten S-Invarianten Bezug zu erreichbaren

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe Lösungen zu den Übungsaufgaben im Kapitel 1 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier 1. Lösen Sie die folgende lineare Optimierungsaufgabe

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr

Inhaltsübersicht für heute:

Inhaltsübersicht für heute: Inhaltsübersicht für heute: Dualität Anwendung: Spieltheorie Komplementarität und Sensitivitätsanalyse Spaltengenerierung Schnittebenenverfahren Welchen Simplex wann? Inhaltsübersicht für heute: Dualität

Mehr

7.1 Matrizen und Vektore

7.1 Matrizen und Vektore 7.1 Matrizen und Vektore Lineare Gleichungssysteme bestehen aus einer Gruppe von Gleichungen, in denen alle Variablen nur in der 1. Potenz vorkommen. Beispiel Seite 340 oben: 6 x 2 = -1 + 3x 2 = 4 mit

Mehr

Teil I. Lineare Optimierung

Teil I. Lineare Optimierung Teil I Lineare Optimierung 5 Kapitel 1 Grundlagen Definition 1.1 Lineares Optimierungsproblem, lineares Programm. Eine Aufgabenstellung wird lineares Optimierungsproblem oder lineares Programm genannt,

Mehr

6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode

6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode 6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode In diesem Kapitel orientieren wir uns stark an den Büchern: 1. Knut Sydsæter, Peter Hammond, Mathematik für Wirtschaftswissenschaftler,

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Zuordnungsproblem. Beispiele. Mathematisches Modell. Lösungsmethoden. auch Ernennungs-, Zuweisungs-, Assignmentproblem

Zuordnungsproblem. Beispiele. Mathematisches Modell. Lösungsmethoden. auch Ernennungs-, Zuweisungs-, Assignmentproblem Zuordnungsproblem auch Ernennungs-, Zuweisungs-, Assignmentproblem Beispiele Mathematisches Modell Lösungsmethoden HTW-Berlin FB3 Prof. Dr. F. Hartl 1 2 Anwendungen Zuordnung von - 1 ME von A i nach B

Mehr

Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme

Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Kapitel 11 Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Wir betrachten folgendes Optimierungsproblem z = c T x min! Ax = b (11.1) (11.2) x j ganz für j = 1,..., n 1 n, (11.3)

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen

Mehr

4 Lineare Optimierung

4 Lineare Optimierung 4 Lineare Optimierung In diesem Kapitel werden wir uns mit effizienten Verfahren im Bereich der linearen Optimierung beschäftigen. 4.1 Einführung Als Einführung betrachten wir das Beispiel einer Erdölraffinerie.

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

TEIL II LINEARE ALGEBRA

TEIL II LINEARE ALGEBRA TEIL II LINEARE ALGEBRA 1 Kapitel 10 Lineare Gleichungssysteme 101 Motivation Sei K ein fest gewählter Körper (zb K = R, C, Q, F p ) Betrachten das lineare Gleichungssystem (L) α 11 x 1 + α 12 x 2 + +

Mehr

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,...

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,... Cramersche Regel Satz 2.4. Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei A j := (a,...,a j,b,a j+,...,a n ) also die Matrix, die entsteht, wenn in A die j-spalte durch den

Mehr

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V.

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V. Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung falls und nur falls ist bijektiv, d.h. ihre Matrix ist invertierbar, (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Zeilenstufenform eines Gleichungssystems

Zeilenstufenform eines Gleichungssystems Zeilenstufenform eines Gleichungssystems Ein lineares Gleichungssystem mit einer m n-koeffizientenmatrix lässt sich mit Gauß-Transformationen auf Zeilenstufenform (Echelon-Form) transformieren: Ax = b...

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Operations Research. Flüsse in Netzwerken. Flüsse in Netzwerken. Unimodularität. Rainer Schrader. 2. Juli Gliederung.

Operations Research. Flüsse in Netzwerken. Flüsse in Netzwerken. Unimodularität. Rainer Schrader. 2. Juli Gliederung. Operations Research Rainer Schrader Flüsse in Netzwerken Zentrum für Angewandte Informatik Köln 2. Juli 2007 1 / 53 2 / 53 Flüsse in Netzwerken Unimodularität Gliederung Netzwerke und Flüsse bipartite

Mehr

Übungsaufgaben. Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler. Teil 1: Lineare Algebra und Optimierung.

Übungsaufgaben. Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler. Teil 1: Lineare Algebra und Optimierung. Übungsaufgaben Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler Teil : Lineare Algebra und Optimierung Wintersemester Matrizenrechnung Aufgabe ( 3 0 Gegeben sind die Matrizen A = 2 5 2 4 D =

Mehr

Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber

Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Sitzplatznr.: Wiederholungsklausur zur Vorlesung Operations Research im Wintersemester

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 3 und lineare Gleichungssysteme und

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

1. Entscheidung bei Unsicherheit

1. Entscheidung bei Unsicherheit Prof. Dr. Ma C. Wewel Lösungen zu den Übungsaufgaben Management Science Seite. Entscheidung bei Unsicherheit A. B. C. 6 km 6 km 6 km D. a) Nutzenmatri (Kundenanteile von K in %) u(k A,M A ), 6 +, 6 +,

Mehr

8. Lineare Optimierung

8. Lineare Optimierung 8. Lineare Optimierung 1 Einführung (1) Praktische Probleme sind oft Probleme mit Nebenbedingungen, z.b.: Ein Produktionsprozess hängt von Lieferterminen ab Die Menge der verstaubaren Güter ist durch die

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Lineare Optimierungsmodelle

Lineare Optimierungsmodelle Lineare Optimierungsmodelle Simplex-Methode Vortragender: Michael Schneider Agenda Motivation Operations Research Aufbau linearer Optimierungsmodelle Simplex-Methode Ausblick 2 Problemstellung Futtermischung

Mehr

Optimalitätsbedingungen

Optimalitätsbedingungen Optimalitätsbedingungen Nadja Irmscher 28. Mai 2010 1 Nachweis von Suboptimalität und Abbruchkriterien Über das gegebene Programm minimiere f 0 (x) über x D sodass f i (x) 0, i = 1,..., m h i (x) = 0,

Mehr

Sattelpunkt-Interpretation

Sattelpunkt-Interpretation Sattelpunkt-Interpretation Vinzenz Lang 14. Mai 2010 Die Sattelpunkt-Interpretation befasst sich mit der Interpretation der Lagrange- Dualität. Sie wird im weiteren Verlauf des Seminars nicht noch einmal

Mehr

4. Lösung linearer Gleichungssysteme

4. Lösung linearer Gleichungssysteme 4. Lösung linearer Gleichungssysteme a x + : : : + a m x m = b a 2 x + : : : + a 2m x m = b 2 : : : a n x + : : : + a nm x m = b n in Matrix-Form: A~x = ~ b (*) mit A 2 R n;m als Koe zientenmatrix, ~x

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung Operations Research Rainer Schrader Konvexe Funktionen Zentrum für Angewandte Informatik Köln 4. Juni 2007 1 / 84 2 / 84 wir haben uns bereits mit linearen Optimierungsproblemen beschäftigt wir werden

Mehr

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Grundlagen der Optimierung. Übung 6

Grundlagen der Optimierung. Übung 6 Technische Universität Chemnitz Chemnitz, 2. November 24 Prof. Dr. R. Herzog, J. Blechschmidt, A. Schäfer Abgabe am 28. November 24 Grundlagen der Optimierung Übung 6 Aufgabe 2: Verschiedene Verfahren

Mehr

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Kapitel 1 Unimodularität Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Inhalt 1 Unimodularität Total unimodulare Matrizen Inzidenzmatrix Optimierungsprobleme auf Graphen Peter

Mehr

Optimierung. Nürnberg, Oktober 2015

Optimierung. Nürnberg, Oktober 2015 1 Optimierung Nürnberg, Oktober 2015 Prof. Dr. Yvonne Stry Technische Hochschule Nürnberg Fakultät Angewandte Mathematik, Physik und Allgemeinwissenschaften Keßlerplatz 12 90461 Nürnberg Germany 1 Beispiel

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

OPERATIONS RESEARCH I LINEARE PLANUNGS RECHNUNO UND NETZPLANTECHNIK

OPERATIONS RESEARCH I LINEARE PLANUNGS RECHNUNO UND NETZPLANTECHNIK BODO RUNZHEIMER OPERATIONS RESEARCH I LINEARE PLANUNGS RECHNUNO UND NETZPLANTECHNIK SIMPLEX-METHODE -TRANSPORT-METHODE STRUKTURANALYSE ZEITPLANUNG ZEIT-KOSTEN PLANUNG- ANWENDUNGSMÖGLICHKEITEN 5., VERBESSERTE

Mehr

Klausurkolloquium. Musterlösung Produktionscontrolling: Lineare Programmierung

Klausurkolloquium. Musterlösung Produktionscontrolling: Lineare Programmierung Klausurkolloquium Musterlösung Produktionscontrolling: Lineare Programmierung Fallstudie Die GOGO GmbH ist ein mittelständisches gewinnorientiertes Unternehmen. Das taktische Produktionsprogramm einer

Mehr