1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist"

Transkript

1 . Ohm = LED leuchtet wenn chlter gedrückt ist 2. Ohm = NICH ( = NO ) LED leuchtet wenn chlter nicht gedrückt ist = ist die Negtion von? Gibt es so einen kleinen chlter (Mikrotster)? 2. Ohm = UND LED leuchtet dnn, wenn chlter UND gedrückt ist = ( = AND ) UND 3. Ohm = ODER LED leuchtet dnn, wenn entweder chlter ODER gedrückt ist = ( = OR ) ODER 4. Negtor Wert Negtion von Wert mbol Negtor = NICH ( = NO ) LED leuchtet wenn chlter nicht gedrückt ist = ist die Negtion von entspr. entspr. 6. = ( ODER ) negiert LED leuchtet dnn, wenn kein chlter gedrückt ist; Wenn weder noch gedrückt wird. = NO ( ) = = NOR (, ) 5. = ( UND ) negiert LED leuchtet dnn, wenn kein chlter oder ein chlter gedrückt ist; LED leuchtet nicht, wenn beide chlter gedrückt werden. = NO ( ) = = NAND (, )

2 Verwendung des Busteins 4 7. ¼ Bustein Die chltung funktioniert nicht, d lle Eingänge ein undefiniertes ignl erhlten. Auch wenn der chlter gedrückt wird, bleibt der obere undefiniert. Die Lösung zeigt die nächste chltung. 8. ¼ Bustein PullDown Widerstnd = NO ( ) = NO ( ) = Ges.: = PullUp ¼ Bustein Widerstnd 9. PullDown Widerstnd = NO ( ) = NO ( ) = Ges.2: = PullDown Widerstnd ¼ Bustein = NO ( ) = NO ( ) =. PullDown Widerstnd LED leuchtet immer Ges.3: =. ¼ Bustein = NO ( ) = = NAND (, )

3 2. ¼ Bustein ¼ Bustein = = AND (, ) Ges.4: = AND us NAND s erzeugen 3. ¾ Bustein = OR (, ) = = > = ODER us NAND s erzeugen Ges.5: = (Erweiterung der chltung zu NOR ist ebenflls möglich) 5. = = 3fch NAND us NAND s mit 2 Eingängen erzeugen = ndere chreibweise = wird in der Folge nun weggelssen ODER chltg = = = = Die beiden Negtionen heben sich uf (s. Ges.4) können entfllen

4 5. ¾ Bustein = = Nur wenn lle 3 chlter gedrückt sind ist ds Ergebnis sonst 3fch AND us NAND s mit 2 Eingängen erzeugen = = = = = = = Negtion = NAND NAND 6. Negtion 4/4 Bustein = = Nur wenn lle 3 chlter gedrückt sind ist ds Ergebnis sonst

5 7. = XOR (, ) bzw. Antivlenz =... = = = Die chltung ist ein eil eines Addierwerkes eines Computers, denn es gilt: ummnd ummnd 2 = Ergebnis Übertrg Die chltung ist noch nicht komplett, d uch der Übertrg von der Vorstelle berücksichtigt werden muss! Der Übertrg selbst knn mit einem UND erzeugt werden, denn nur wenn beide Eingänge sind, ist uch = Rückkopplung 8. rückgekoppelte digitle chltung ndere Drstellung n chltung ht zwei Eingänge (R und ) und zwei Ausgänge ( und n). Beim Drücken von chlter erscheint m Ausgng eine, die uch bestehen bleibt, wenn mn den chlter wieder losläßt (nlog bei R und n), die chltung speichert den eingestellten Wert. Diese Anordnung knn lso genu Bit speichern. But mn (lso: 6 ) solcher chltungen uf, ht mn den gnz bruchbren RAMHuptspeicher eines Computers von 2GBte (sttisches RAM wird mit dnmischen RAM relisiert, stt. RAM im Cche).. Die technische Bezeichnung ist: RLtch R = n

6 Die chltung, ds Ltch, knn folgende Zustände nnehmen: n R Ds ist ein Zustnd speichern ; die chlter sind nicht betätigt Forml ht sich nichts geändert, es ist jedoch der et Zustnd, der Ausgng wird uf gesetzt, ws er schon wr. Ds ist der Reset Zustnd, der Ausgng wird zurück uf gesetzt, n zeigt jetzt den negierten Wert. Läßt mn dnch den chlter wieder los kommt mn wieder in den peicherzustnd von den jetzt eingestellten Werten.?? Drückt mn beide chlter, entsteht uch ein Ausgngssignl, ds ist grntiert flsch, d unerlubt. teuerung mit Pegel Ds oben beschriebene Ltch wird mit gesteuert. Ds funktioniert zwr, entspricht ber nicht den Vorschriften, es soll mit gesteuert werden. Ds knn mn mit den vorhndenen NANDGttern des Busteins uch relisieren: 9. n R?? et Reset unerlubt R n Die in der belle gezeigten Zustände entsprechen nun ekt der heorie. Unerlubt bedeutet, dss ds möglich ist, ber flsche Ergebnisse bringt. Insbesondere wenn dnch der peicher Zustnd folgt, ist der Wert für und n undefiniert. Anwendung: z.b. Ein Ausschlter; teuerung von Lichtsignlen uf Modellbhnen; steuert mn gleichzeitig ein Relis mit n, knn uch eine Fhrstrombschltung erfolgen

7 2. R ktzustnd gesteuertes RLtch n R?? et Reset unerlubt R n Wenn der chlter offen ist, liegt n den ersten beiden Gttern n einem Eingng immer eine n, der Ausgngswert dieser Gtter wird lso immer sein, denn und ist und drüber die Negtion ist, die chltung bleibt immer im peicherzustnd! Nur wenn gedrückt wird, lso gleich ist, knn der Zustnd des Ltch verändert werden. Diese chltung ist wichtig in der Rechentechnik, es wird beim peichern erst ds Einschwingen der Dtenleitungen bgewrtet, dnn durch = die Übernhme in den peicher vollzogen. Auch in nderen chltkreisen, wie beispielsweise chieberegister oder Decoder wird ähnlich verfhren. Ds ignl heißt zumeist dnn trobe. chltungssmbol für ein ktzustndsgesteuertes RLtch Anwendung: Verriegelung von chltern 2. ktzustnd gesteuertes DLtch n Vorteil der Anordnung ist, dss es keine unerlubte Eingngsbelegung gibt. Immer wenn ds ktsignl nliegt, wird ds RLtch entsprechend gesetzt. Ist ds ktsignl, wird die Einstellung gespeichert. D n D Fll Fll2 chltungssmbol für ein ktzustndsgesteuertes DLtch D

8 ktflnken gesteuerte Kippschltung FlipFlop 22. 4,7uF C 5K 75K R n In R Die veränderte chltung m kteingng wird ls Hochpß bezeichnet. Wird ngelegt, fällt die pnnung über R etws b. Der Kondenstor wird über R2 ufgelden, so dss ds proportionle ignl zum trom n R2 zur Verfügung steht. D der trom nur gnz kurz den mimlen Wert nnimmt und dnch rsch uf zurückgeht, entsteht ein Ndelimpuls für den kteingng. C R2 Out chlter ein pnnung n R t trom durch bzw. pnnung n R2 t D für die Gtter nun nur noch einen kleinen Augenblick lng eine bereitgestellt wird, wird nur für diese kleine Zeit der Zustnd des Ltch verändert. Mn sgt, dss die chltung mit positiver Flnke gesteuert wird. Für diese chltung gibt es eine neue Bezeichnung: FlipFlop Der Zeitpunkt der Umschltung knn nun gnz genu festgelegt werden. Zur Kontrolle knn mn m Punkt C eine weitere LED nschließen, diese blitzt bei Betätigung von miniml uf RFlipFlop Flnken gesteuert R Mit nsteigender Flnke gesteuertes RFlipFlop

9 ktflnken gesteuerte rigger Kippschltung 23. 4,7uF C R R2 5K 75K R n FlipFlop D die Erzeugung des Ndelimpulses nur eine Erstzlösung ist, funktioniert ds Gnze zuweilen schlecht. Es gibt einen speziellen chltkreis mit 2 JKFlipFlops (427), der brucht ntürlich viel mehr Gtter und funktioniert sehr gut. Hier soll nur ml gezeigt werden, dss lle Kippglieder nur durch Veränderte äußere Beschltung des RLtsch erzeugt werden können und ds lles mit einem einzigen chltkreis. Die chltung kippt bei Betätigung des sters (positive Flnke) zwischen = und = (entspr. n= und n=) hin und her. Problem ist, welcher Zustnd sich beim Einschlten der Betriebsspnnung einstellt? Hier ist eine ResetMöglichkeit notwendig. Würde mn nstelle des Impulses ds schon beknnte längere ktsignl zur teuerung nutzen, würde die chltung pusenlos hin und herkippen. Ds ist schlecht ber Bsis für schwingende chltungen, wie Blinklicht oder onerzeugung, ber uch für JKFlipFlops. Anwendung: In Kombintion mit Relis ls Lichtschlter 24. Atbiler Multivibrtor Blinkschltung / ongenertor 22uF 22uF n Die chltung unterscheidet sich vom R Ltch nur wenig. Der zweite Eingng wird über einen Kondenstor gesteuert, der seinerseits über einen Widerstnd entlden wird. Umgeschltet wird nur dnn, wenn mindest ein Eingng uf liegen. Ht der Ausgng unten eine, so sind beide eiten des Kondenstors. Lngsm wird der Kondenstor entlden, kommt er zum Pegel, erschein m Ausgng oben eine ( und = negiert ), der ndere Kondenstor wird ufgelden usw. Die chltung blinkt mit etw 2Hz. Werden die Kondenstoren und die Widerstände verkleinert, schwingt die chltung mit höherer Frequenz. Ab einer bestimmten Frequenz knn mn die chwingungen hören wir hben einen ongenertor mit Rechecksignl.

10 24. Atbiler Multivibrtor unterbrechbr 22uF Unterbrechbr ist ds Blinken, indem die Verbindung zu einem Widerstnd zur Msse (nch ) unterbrochen wird. Anstelle eines chlters knn uch der Ausgng eine nderen Gtters geschltet werden, somit ist ds Blinken über eine vorgeschltete Logik steuerbr. 22uF n K 22uF n Monotbiler Multivibrtor Bei Betätigung des chlters kippt die chltung in den nderen Zustnd. Mit Entldung des Kondenstors kippt die chltung nch einer gewissen Zeit, bestimmt durch den Kondenstor und den Widerstnd 75K wieder in den Ausgngszustnd zurück und bleibt in diesem Zustnd. Nch etw 6sec ist wieder der Ausgngszustnd erreicht. Grundzustnd: Ausg. oben, unten Eing. unten und ( und = negiert ) chlter: unten und = negiert Eing. oben beide, Ausg., der oberste wird über den Widerstnd lngsm ( und = negiert ) chltung kippt zurück. Anwendungen: Nchlufschltung, reppenlicht usw.

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik Boole'sche Algebr Binäre Funktionen, Boole'sche Algebren, Schltlgebr Inhltsübersicht Verknüpfungen der mthemtischen Logik Boole sche Algebren Grundelemente der Schltlgebr Regeln der Schltlgebr Normlformen

Mehr

Aufgabe 1: Diskutieren Sie die Unterschiede bzw. die Vorteile und Nachteile der Mealy- und Moore- Zustandsmaschinen.

Aufgabe 1: Diskutieren Sie die Unterschiede bzw. die Vorteile und Nachteile der Mealy- und Moore- Zustandsmaschinen. Üungen zur Vorlesung Technische Informtik I, SS 2 Strey / Guenkov-Luy / Prger Üungsltt 3 Asynchrone Schltungen / Technologische Grundlgen / Progrmmierre Logische Busteine Aufge : Diskutieren Sie die Unterschiede

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Technische Informatik 2

Technische Informatik 2 TiEl-F Sommersemester 24 Technische Informtik 2 (Vorlesungsnummer 2625) 23--- TiEl-F Prof. Dr.-Ing. Jürgen Doneit Zimmer E29 Tel.:73 54 455 doneit@fh-heilronn.de 23--- TiEl-F35 Digitltechnik 23--3- . Digitlschltungen,

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Digitaltechnik. 3 Sequenzielle. Schaltungen. Revision 1.1

Digitaltechnik. 3 Sequenzielle. Schaltungen. Revision 1.1 igitltechnik 3 Sequenzielle Schltungen A Revision 1.1 Trnsitionssysteme Synchroner sequenzieller Entwurf Timing-Anlyse Pipelining Mely und Moore Mschinen Zustndsmschinen in Verilog Sequentielle Schltungen

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

5.4 CMOS Schaltungen und VLSIDesign

5.4 CMOS Schaltungen und VLSIDesign Kp5.fm Seite 447 Dienstg, 7. Septemer 2 :55 3 5.4 CMOS Schltungen und VLSI Design 447 r u u r id + + A. 5.39: Progrmmierrer Gitterustein 5.4 CMOS Schltungen und VLSIDesign Die Boolesche Alger eginnt mit

Mehr

Aufbau und Funktionsweise eines Computers

Aufbau und Funktionsweise eines Computers Aufbu und Funktionsweise eines Computers Ein Überblick Vorlesung m 27..5 Folien von A.Weber und W. Küchlin, überrbeitet von D. Huson Digitle Logik und Boolesche Algebr Wie werden logische und rithmetische

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

18. Algorithmus der Woche Der Euklidische Algorithmus

18. Algorithmus der Woche Der Euklidische Algorithmus 18. Algorithmus der Woche Der Euklidische Algorithmus Autor Friedrich Eisenrnd, Universität Dortmund Heute ehndeln wir den ältesten ereits us Aufzeichnungen us der Antike eknnten Algorithmus. Er wurde

Mehr

7.9A. Nullstellensuche nach Newton

7.9A. Nullstellensuche nach Newton 7.9A. Nullstellensuche nch Newton Wir hben früher bemerkt, dß zur Auffindung von Nullstellen einer gegebenen Funktion oft nur Näherungsverfhren helfen. Eine lte, ber wirkungsvolle Methode ist ds Newton-Verfhren

Mehr

Technische Informatik - Hardware

Technische Informatik - Hardware Inhltsverzeichnis Hns-Georg Beckmnn 22 Technische Informtik - Hrdwre Teil : Grundlgen Vorbemerkungen 2 Dezimlzhlen, Dulzhlen, Hexzhlen 3 Umrechnen in Zhlensystemen 4 Addieren zweier Dulzhlen 6 Hlbddierer

Mehr

>1 z. a b. a b. a b. log. 0. a b. Übung 3: Schaltnetze. VU Technische Grundlagen der Informatik

>1 z. a b. a b. a b. log. 0. a b. Übung 3: Schaltnetze. VU Technische Grundlagen der Informatik VU Technische Grundlgen der Informtik Üung 3: Schltnetze 83.579, 205W Üungsgruppen: Mo., 6.. Mi., 8..205 Allgemeiner Hinweis: Die Üungsgruppennmeldung in TISS läuft von Montg, 09.., 20:00 Uhr is Sonntg,

Mehr

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer!

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer! hben Freunde Deine Zähne sind wie deine sportmnnschft und du bist der Triner! Und jeder Triner weiß, wie wichtig jeder einzelne Spieler ist eine wichtige und schöne Aufgbe! Drum sei nett zu deinen Zähnen

Mehr

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf:

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf: Aufgbe : ) Lösen Sie die folgenden Gleichungen nch uf: = kein Problem einfch die Wurel iehen und ds ± nicht vergessen.. = = ±, b) + 5 = 0 Hier hben wir bei jedem Ausdruck ein, lso können wir usklmmern:

Mehr

Grundlagen der Technischen Informatik. Bausteine der Digitaltechnik - Binäre Schalter und Gatter. Kapitel 7.1

Grundlagen der Technischen Informatik. Bausteine der Digitaltechnik - Binäre Schalter und Gatter. Kapitel 7.1 Busteine er Digitltehnik - Binäre Shlter un Gtter Kpitel 7. Dr.-Ing. Stefn Wilermnn ehrstuhl für rwre-softwre-co-design Entwurfsrum - Astrktionseenen SYSTEM-Eene + MODU-/RT-Eene (Register-Trnsfer) ogik-/gatter-eene

Mehr

Grundlagen zu Datenstrukturen und Algorithmen Schmitt, Schömer SS 2001

Grundlagen zu Datenstrukturen und Algorithmen Schmitt, Schömer SS 2001 Grundlgen zu Dtenstrukturen und Algorithmen Schmitt, Schömer SS 001 http://www.mpi-sb.mpg.de/~sschmitt/info5-ss01 U N S A R I V E R S A V I E I T A S N I S S Lösungsvorschläge für ds 4. Übungsbltt Letzte

Mehr

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x Bltt 1: Hilfe zur Umformung von Gleichungen mit vielen Vriblen Im Mthemtikunterricht hben Sie gelernt, wie mn Gleichungen mit einer Vriblen umformt, um diese Vrible uszurechnen. Meistens hieß sie. In Physik

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunktion eines NFA (Folien 107 und 108) Wie sieht die Üerführungsfunktion us? δ : Z Σ P(Z) Ds heißt, jedem Pr us Zustnd

Mehr

Mikro-Controller-Pass 1

Mikro-Controller-Pass 1 Mikro-Conroller-Pss Lernsyseme MC 85 eie: rdl. Logik_B rundlgen logische Verknüpfungen Inhlserzeichnis Vorwor eie Binäre Aussgen in der Technik eie Funkionseschreiungen der Digilechnik eie 5 Funkionselle

Mehr

Hausaufgabe 2 (Induktionsbeweis):

Hausaufgabe 2 (Induktionsbeweis): Prof. Dr. J. Giesl Formle Sprhen, Automten, Prozesse SS 2010 Üung 3 (Age is 12.05.2010) M. Brokshmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden

Mehr

1 Räumliche Darstellung in Adobe Illustrator

1 Räumliche Darstellung in Adobe Illustrator Räumliche Drstellung in Adobe Illustrtor 1 1 Räumliche Drstellung in Adobe Illustrtor Dieses Tutoril gibt Tips und Hinweise zur räumlichen Drstellung von einfchen Objekten, insbesondere Bewegungspfeilen.

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:

Mehr

Lösung zur Bonusklausur über den Stoff der Vorlesung Grundlagen der Informatik II (45 Minuten)

Lösung zur Bonusklausur über den Stoff der Vorlesung Grundlagen der Informatik II (45 Minuten) Institut für Angewndte Informtik und Formle Beschreiungsverfhren 15.01.2018 Lösung zur Bonusklusur üer den Stoff der Vorlesung Grundlgen der Informtik II (45 Minuten) Nme: Vornme: Mtr.-Nr.: Semester: (WS

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen

Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen Teil 1: Rechenregeln us der Mittelstufe Allgemeine Termumformungen Kommuttivgesetz: Bei reinen Produkten oder Summen ist die Reihenfolge egl x y z = z y x = x z y =.. x+y+z = z+y+x = x+z+y =.. Ausklmmern:

Mehr

A.25 Stetigkeit und Differenzierbarkeit ( )

A.25 Stetigkeit und Differenzierbarkeit ( ) A.5 Stetigkeit / Differenzierbrkeit A.5 Stetigkeit und Differenzierbrkeit ( ) Eine Funktion ist wenn die Kurve nicht unterbrochen wird, lso wenn mn sie zeichnen knn, ohne den Stift vom Bltt bzusetzen.

Mehr

Mitschrift Repetitorium Theoretische Informatik und Logik

Mitschrift Repetitorium Theoretische Informatik und Logik Mitschrift Repetitorium Theoretische Informtik und Logik Teil 1: Formle Sprchen, 15.01.2010, 1. Edit Allgemeine Hinweise für die Prüfung Ds Pumping-Lemm für kontextfreie Sprchen kommt nicht (sehr wohl

Mehr

Antworten auf Anfragen von Kursteilnehmern. Zu folgender Aussage aus den Multiple-Choice-Aufgaben: f (n) (a) (x a) n n! n=0

Antworten auf Anfragen von Kursteilnehmern. Zu folgender Aussage aus den Multiple-Choice-Aufgaben: f (n) (a) (x a) n n! n=0 Ferienkurs Anlysis 1 WS 11/12 Florin Drechsler Antworten uf Anfrgen von Kursteilnehmern Zu Tylorreihen Zu folgender Aussge us den Multiple-Choice-Aufgben: Es gibt Funktionen f C (R) mit konvergenter Tylorreihe

Mehr

Berechnung von Flächen unter Kurven

Berechnung von Flächen unter Kurven Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 015/16 Bltt 4 09.11.015 Übungen zur Vorlesung Differentil und Integrlrechnung I Lösungsvorschlg 13. Zu betrchten ist die durch 0 = 1 und

Mehr

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich!

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich! Versuchsplnung 22 CRGRAPH www.crgrph.de Grundlgen Die Aufgbe ist es Versuche so zu kombinieren, dss die Zusmmenhänge einer Funktion oder eines Prozesses bestmöglich durch eine spätere Auswertung wiedergegeben

Mehr

Grundbegriffe der Informatik Aufgabenblatt 5

Grundbegriffe der Informatik Aufgabenblatt 5 Grundegriffe der Informtik Aufgenltt 5 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 20. Novemer 2013 Age: 29. Novemer 2013, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Geäude 50.34

Mehr

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen. Trnsformtionsstz von Sebstin üller Integrtion über Normlgebiete Allgemein knn mn im R n ein Normlgebiet wie folgt definieren: G : { R n 1 b, ϕ 1 ( 1 ) ψ 1 ( 1 ), ϕ ( 1, ) 3 ψ ( 1, ),... ϕ n 1 ( 1,...,

Mehr

8. Abtastung. Kontinuierliches Signal: Signalspektrum: Abgetastetes Signal: ( t) Abtastfunktion: 1 f a. Spektrum der Abtastfunktion:

8. Abtastung. Kontinuierliches Signal: Signalspektrum: Abgetastetes Signal: ( t) Abtastfunktion: 1 f a. Spektrum der Abtastfunktion: Pro. Dr.-In. W.-P. Buchwld Sinl- und Sysemheorie 8. Absun Koninuierliches Sinl: u() Sinlspekrum: U() Abesees Sinl: ( ) = u( ) ( ) u Absunkion: + n= ( ) = δ ( n ) Spekrum der Absunkion: + n= Spekrum des

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: Prof. Dr. J. Pnnek Dynmics in Logistics Vorkurs Mthemtik für Ingenieur Innen WS 207/208 Übung 3 Aufgbe : Trigonometrie () Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Mehr

Einführung in die Schaltalgebra

Einführung in die Schaltalgebra Einführung in die chltlger GUNDBEGIFFE: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 ECHENEGELN - - - - - - - - - - - - - - - - - - - - - - - -

Mehr

BINOMISCHE FORMELN FRANZ LEMMERMEYER

BINOMISCHE FORMELN FRANZ LEMMERMEYER BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentru Mthetik PROF DRDR JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mthetik für Infortiker II Soerseester 2004 Lösungen zu Aufgbenbltt 6 27 Mi 2004

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

Lehrgang: Digitaltechnik 1 ( Grundlagen ) - Im Lehrgang verwendete Gatter ( Übersicht ) Seite 3

Lehrgang: Digitaltechnik 1 ( Grundlagen ) - Im Lehrgang verwendete Gatter ( Übersicht ) Seite 3 Lehrgng: Digitltechnik ( Grundlgen ) Dtum: Nme: Seite: Inhltsverzeichnis: Im Lehrgng verwendete Gtter ( Üersicht ) Seite 3 Aufu von Zhlensystemen deziml, dul ( Infoseite ) Seite 4 ( Areitsltt ) Seite 5

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Limit Texas Hold em. Meine persönlichen Erfahrungen

Limit Texas Hold em. Meine persönlichen Erfahrungen Limit Texs Hold em Meine persönlichen Erfhrungen Dominic Dietiker c Drft dte 21. September 2010 Inhltsverzeichnis 1. Spielnleitung...................................... 1 1.1 Der Spielverluf....................................

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

nach der FIT-Methode HANDBALL LEKTÜRE Mannhard Bech Malte Gertenbach Mehr Stabilität Mehr Kraft Mehr Leistung

nach der FIT-Methode HANDBALL LEKTÜRE Mannhard Bech Malte Gertenbach Mehr Stabilität Mehr Kraft Mehr Leistung Mnnhrd Bech Mlte Gertenbch Athletiktrining nch der FIT-Methode Mehr Stbilität Speziell für den Hndbllsport entwickelt Für bessere Körperbeherrschung, Leistungssteigerung und Verletzungsprävention Ab der

Mehr

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren.

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren. .. Orthogonle Bsen und Schmistsche Orthogonlisierungsverfhren. Definition.. Eine Bsis B = { b, b,..., b n } heit orthogonl, wenn die Vektoren b i, i =,,..., n, prweise orthogonl sind, d.h. bi b j = fur

Mehr

x usw., wie oben unter 1.) behauptet.]

x usw., wie oben unter 1.) behauptet.] [Anmerkung zur Berechnung im Beispiel: Ersetzen wir die Zhlen der AzM durch die Koeffizienten, 2, 2 und 22, so lässt sich die Rechnung sowohl für ) ls uch b) gnz nlog durchführen, und es ergibt sich z.

Mehr

Elektrischer Widerstand und Strom-Spannungs-Kennlinien

Elektrischer Widerstand und Strom-Spannungs-Kennlinien Versuch 6 Elektrischer Widerstnd und Strom-Spnnungs-Kennlinien Versuchsziel: Durch biochemische ektionen ufgebute Potentildifferenzen (Spnnungen) bewirken elektrische Ströme im Orgnismus, die n einer Vielzhl

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

5.2 BASIC MSC (BMSC) BASIC MSC. Kommunikation zwischen Instanzen. Message Sequence Charts

5.2 BASIC MSC (BMSC) BASIC MSC. Kommunikation zwischen Instanzen. Message Sequence Charts BASIC MSC Ein System besteht us Instnzen. Eine Instnz ist eine bstrkte Einheit, deren Interktion mit nderen Instnzen oder mit der Umgebung mn (teilweise) beobchten knn. Instnzen kommunizieren untereinnder

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: heusler@biologie.uni-muenchen.e Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

Versuchsumdruck. Schaltungsvarianten des Operationsverstärkers

Versuchsumdruck. Schaltungsvarianten des Operationsverstärkers Hchschule STDIENGANG Wirtschftsingenieurwesen Bltt n 6 Aschffenburg Prf. Dr.-Ing.. Bchtler, Armin Huth Versuch 2 Versin. m 23.3.2 Versuchsumdruck Schltungsrinten des Opertinserstärkers Inhlt Verwendete

Mehr

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik erbundstudiengng Wirtschftsingenieurwesen (Bchelor) Prktikum Grundlgen der Elektrotechnik und Elektronik ersuch Spnnungsteiler Teilnehmer: Nme ornme Mtr.-Nr. Dtum der ersuchsdurchführung: Spnnungsteiler

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration Integrieren Regeln (f() + g())d = f()d + g()d c f()d = c f()d b f()d = f()d b Einige Integrle die mn uswendig kennen sollte s d = s + s+ + C (für s ) d = ln + C cos d = sin + C sin d = cos + C sinh d =

Mehr

Inhaltsverzeichnis. Modul Produktion + Steuerungstechnik Grundlagen. Zusammenfassung Wintersemester 05/06

Inhaltsverzeichnis. Modul Produktion + Steuerungstechnik Grundlagen. Zusammenfassung Wintersemester 05/06 Inhltsverzeichnis Modul Produktion + Steuerungstechnik Grundlgen Zusmmenfssung Wintersemester 05/06 Inhltsverzeichnis... 2 1. Einleitung... 3 1.1 Einordnung... 3 1.2.1 Steuern... 3 1.2.2 Regeln... 3 1.2.3

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

Brüche gleichnamig machen

Brüche gleichnamig machen Brüche gleichnmig mchen L Ds Erweitern von Brüchen (siehe L ) ist lediglich ein Instrument, ds vorwiegend eingesetzt wird, um Brüche mit unterschiedlichem Divisor gleichnmig zu mchen. Brüche gleichnmig

Mehr

Präfixcodes und der Huffman Algorithmus

Präfixcodes und der Huffman Algorithmus Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben

Mehr

9 Üben X Prismen und Zylinder 1401

9 Üben X Prismen und Zylinder 1401 9 Üben X Prismen und Zylinder 40. Entscheide begründend: ) Gibt es Prismen mit Ecken? b) Gibt es Prismen mit Knten? c) Knn es ein Prism mit 7 Flächen geben?. Bestimme je einen Term, der die Anzhl der Knten

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

Keil Telecom Homepage - Hersteller von Isdn Tk Anlagen und Türsprechsystemen für Heim und Bü...

Keil Telecom Homepage - Hersteller von Isdn Tk Anlagen und Türsprechsystemen für Heim und Bü... Keil Telecom Homepge - Hersteller von Isdn Tk Anlgen und Türsprechsystemen für Heim und Bü... Seite 1 von 1 Einutürlutsprecher esonders kleine und kompkte Buform Einu üerll dort wo Pltz knpp ist Briefkästen,

Mehr

Übungsblatt 4 - Lösung

Übungsblatt 4 - Lösung Formle Sprchen und Automten Üungsltt 4 - Lösung 26. M 2013 1 Whr oder flsch? Begründe kurz dene Antwort! 1. In enem determnstschen endlchen Automten gt es für jedes Wort w Σ mxml enen kzepterenden Pfd.

Mehr

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen.

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.1.017 Themen: Reelle Zhlen, Qudrtwurzeln LGS mit drei Unbeknnten Checkliste Ws ich lles können soll Ich knn LGS mit drei Gleichungen und drei Unbeknnten

Mehr

Logische Grundschaltungen

Logische Grundschaltungen Elektrotechnisches Grundlgen-Lor II Logische Grundschltungen Versuch Nr. 9 Erforderliche Geräte Anzhl Bezeichnung, Dten GL-Nr. 1 Voltmeter 335 1 Steckrett SB 1 1 Steckrett SB 2 mit 5V Netzteil 1 Steckrett

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunction eines DFA (Folie 92) Wie sieht die Üerführungfunktion us? δ : Z Σ Z Ds heißt: Ein Pr us Zustnd und Alphetsymol

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

a Z1 a 1 a 1,2 Diese Matrix hat genau dann Rang 2, ist also genau dann invertierbar, wenn a 2,2 a 1,2a 2,1

a Z1 a 1 a 1,2 Diese Matrix hat genau dann Rang 2, ist also genau dann invertierbar, wenn a 2,2 a 1,2a 2,1 18 Determinnten 207 18 Determinnten Nchdem wir nun schon recht usführlich Mtrizen und linere Gleichungssysteme studiert hben, wollen wir jetzt die sogennnten Determinnten einführen, die beim Rechnen mit

Mehr

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt Metrische Räume Sei X eine nichtleere Menge. Definition.. Eine Abbildung: d : X X R heißt Metrik uf X, flls für lle x, y, z X gilt (i) d(x, y) 0, (ii) d(x, y) = d(y, x), (iii) d(x, y) d(x, z) + d(z, y)

Mehr

Nutzung der Abwärme aus Erneuerbare-Energie-Anlagen

Nutzung der Abwärme aus Erneuerbare-Energie-Anlagen 5 2014 Sonderdruck us BWK 5-2014 Wichtige Kennzhlen und effiziente Plnung für die dezentrle Wärmewende Nutzung der Abwärme us Erneuerbre-Energie-Anlgen Wichtige Kennzhlen und effiziente Plnung für die

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmnn W Wu Herbstsemester 206 Linere Algebr und Numerische Mthemtik für D-BAUG Beispiellösung für Serie 5 ETH Zürich D-MATH Aufgbe 5 5) Seien u und v Lösungen des LGS Ax = b mit n Unbeknnten

Mehr

Definition Suffixbaum

Definition Suffixbaum Suffix-Bäume Definition Suche nch einer Menge von Mustern Längste gemeinsme Zeichenkette Pltzreduktion Suffixbäume für Muster Alle Pre Suffix-Präfix Übereinstimmung Sich wiederholende Strukturen Definition

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Ingenieure II, SS 29 Dienstg 9.5 $Id: uneigentlich.te,v.5 29/5/9 6:23:8 hk Ep $ $Id: prmeter.te,v.2 29/5/9 6:8:3 hk Ep $ 3 Uneigentliche Integrle Mn knn die eben nchgerechnete Aussge e d =,

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen Klusur zur Vorlesung Grundegriffe der Informtik 10. März 2009 mit Lösungsvorschlägen Klusurnummer Nme: Vornme: Mtr.-Nr.: Aufge 1 2 3 4 5 6 7 mx. Punkte 4 2 7 8 8 8 9 tts. Punkte Gesmtpunktzhl: Note: Aufge

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 6 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 6 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle ysteme, utomten, Prozesse 2010 M rockschmidt, F Emmes, C Fuhs, C Otto, T tröder Hinweise: Die Husufgben sollen in Gruppen von je 2 tudierenden us dem gleichen Tutorium berbeitet

Mehr

Informatik I Modul 3: Schaltnetze

Informatik I Modul 3: Schaltnetze Herbstsemester 2, Institut für Informtik IFI, UZH, Schweiz Informtik I Modul 3: Schltnetze 2 Burkhrd Stiller M3 Modul 3: Schltnetze Einführung in die formlen Grundlgen logischer Beschreibungen Boolesche

Mehr

Serie 13 Lösungsvorschläge

Serie 13 Lösungsvorschläge D-Mth Mss und Integrl FS 204 Prof. Dr. D. A. Slmon Serie 3 Lösungsvorschläge. Sei I := [, b] R ein kompktes Intervll und sei B 2 I die Borel-σ-Algebr. Def. Eine Funktion f : I R heisst von beschränkter

Mehr

Sponsored Search Markets

Sponsored Search Markets Sponsored Serch Mrkets ngelehnt n [EK1], Kpitel 15 Seminr Mschinelles Lernen, WS 21/211 Preise Slots b c Interessenten y z 19. Jnur 211 Jn Philip Mtuschek Sponsored Serch Mrkets Folie 1 Them dieses Vortrgs

Mehr

1 Ergänzungen zur Differentialrechnung

1 Ergänzungen zur Differentialrechnung $Id: nlytisch.te,v 1.3 2011/04/13 11:01:11 hk Ep $ 1 Ergänzungen zur Differentilrechnung Dieses einleitende Kpitel wollen wir verwenden um den Anschluss n ds vorige Semester herzustellen. Eine direkte

Mehr

Übung Grundbegriffe der Informatik

Übung Grundbegriffe der Informatik Üung Grundegriffe der Informtik 11. Üung Krlsruher Institut für Technologie Mtthis Jnke, Geäude 50.34, Rum 249 emil: mtthis.jnke ät kit.edu Mtthis Schulz, Geäude 50.34, Rum 247 emil: schulz ät ir.uk.de

Mehr

S 1. Definition: Ein endlicher Automat ist ein 5-Tupel. Das endliche Eingabealphabet

S 1. Definition: Ein endlicher Automat ist ein 5-Tupel. Das endliche Eingabealphabet Der endliche Automt Modell: Eingend rechtsseitig unegrenzt F F F F F F F F F F F F F F Lesekopf S 1 Definition: Ein endlicher Automt ist ein 5-Tupel A = ( Σ;S;F;s 0 ; ϕ ) Dei ist Σ= {e 1;e 2...e n} Ds

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Verlauf Material LEK Glossar Lösungen. In acht Leveln zum Meister! Exponentialgleichungen lösen. Kerstin Langer, Kiel VORANSICHT

Verlauf Material LEK Glossar Lösungen. In acht Leveln zum Meister! Exponentialgleichungen lösen. Kerstin Langer, Kiel VORANSICHT Eponentilgleichungen lösen Reihe 0 S Verluf Mteril LEK Glossr Lösungen In cht Leveln zum Meister! Eponentilgleichungen lösen Kerstin Lnger, Kiel Klsse: Duer: Inhlt: Ihr Plus: 0 (G8) 5 Stunden Eponentilgleichungen

Mehr

$Id: kurven.tex,v /12/03 19:13:57 hk Exp hk $ K ds = F (γ(t)) γ Summation des Vektorfeldes F in Bewegungsrichtung der Kurve γ

$Id: kurven.tex,v /12/03 19:13:57 hk Exp hk $ K ds = F (γ(t)) γ Summation des Vektorfeldes F in Bewegungsrichtung der Kurve γ Mthemtik für Ingenieure III, WS 9/1 Mittwoch.1 $Id: kurven.tex,v 1. 9/1/3 19:13:57 hk Exp hk $ 3 Kurven 3.3 Kurvenintegrle zweiter Art Wir htten ds vektorielle Kurvenintegrl ls K ds F ((t Summtion des

Mehr

ist ein Quotient ganzer Zahlen m,n Z und n = 0. Dabei heißt m Zähler und n Nenner. Wegen m 1 = m ist Z eine Teilmenge von Q. Zwei Brüche sind gleich:

ist ein Quotient ganzer Zahlen m,n Z und n = 0. Dabei heißt m Zähler und n Nenner. Wegen m 1 = m ist Z eine Teilmenge von Q. Zwei Brüche sind gleich: Vorlesung 4 Zhlenbereiche 4.1 Rtionle Zhlen Wir hben gesehen, dss nicht jedes Eleent us Z ein ultipliktives Inverses besitzt. Dies führt zur Einführung der rtionlen Zhlen Q, obei der Buchstbe Q für Quotient

Mehr

Copyright, Page 1 of 5 Der Faktorraum

Copyright, Page 1 of 5 Der Faktorraum www.mthemtik-netz.de Copright, Pge of 5 Der Fktorrum Ein sehr wichtiges Konstrukt, welches üerll in der Mthemtik Verwendung findet, ist der Fktorrum, oft uch Quotientenrum gennnt. Dieser ist selst ein

Mehr

4. Lineare Gleichungen mit einer Variablen

4. Lineare Gleichungen mit einer Variablen 4. Linere Gleichungen mit einer Vrilen 4. Einleitung Werden zwei Terme einnder gleichgesetzt, sprechen wir von einer Gleichung. Enthlten eide Terme nur Zhlen, so entsteht eine Aussge, die whr oder flsch

Mehr

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge.

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge. Reltionen zwischen Mengen/uf einer Menge! Eine Reltion R A B (mit A B) ist eine Reltion zwischen der Menge A und der Menge B, oder uch: von A nch B. Drstellung: c A! Wenn A = B, d.h. R A A, heißt R eine

Mehr