Geometrie für Geodäsie und Geoinformation MA9506 Vorlesung von PD Dr. Carsten Lange an der Technischen Universität München im Sommersemester 2018

Größe: px
Ab Seite anzeigen:

Download "Geometrie für Geodäsie und Geoinformation MA9506 Vorlesung von PD Dr. Carsten Lange an der Technischen Universität München im Sommersemester 2018"

Transkript

1 Geometrie für Geodäsie und Geoinformation MA9506 Vorlesung von PD Dr. Carsten Lange an der Technischen Universität München im Sommersemester 2018

2 1 Übersicht Kleine Vorlesung: 3 Semesterwochenstunden mit integrierten Übungen eventuell mit zusätzlichlichen Übungen? Große Wünsche der Ingenieurfakultät Bau Geo Umwelt! Voraussetzungen für aufbauende Vorlesungen!

3 Inhalt der Vorlesung: 1. Das, was man früher in der Schule lernte: Kegelschnitte Quadriken 2. Dazu: Differentialgeometrie Kurven Flächen Krümmungen

4 Was kann ich machen? 1. Nur Geometrie! Die Numerik macht der Computer. 2. Kaum Beweise! Vieles werde ich nur erzählen, nicht beweisen. 3. Fast alles vereinfacht! Rechnungen in der Ebene - Rechnungen im Raum analog.

5 2 Beispiel: Wie funktioniert GPS (Global Positioning System)? (sehr stark vereinfacht) Gegeben: Drei Satelliten S 1, S 2, S 3 Laufzeiten der Funksignale von den Satelliten zum Navi Somit auch: Entfernungen zu den Satelliten Gesucht: Position des Navis

6 Das Problem hat folgende einfache Lösung: Lege um Satellit S i eine Kugel mit gegebenem Radius, erhalten drei Kugeln K 1, K 2, K 3 K 1 K 2 ist ein Kreis k k K 3 liefert zwei Punkte P 1, P 2 Ein Punkt scheidet aus, weil er (z.b.) im Weltall liegt Im anderen Punkt liegt das Navi. Aber: Die Uhr des Navi ist nicht genügend genau! Navi kennt nicht Laufzeit des Funksignals von Satellit S i Navi kennt nur Laufzeitunterschiede der Funksignale! Mit anderen Worten: Navi kennt nur die Entfernungsunterschiede zu den Satelliten.

7 Stark Vereinfachtes Problem, geometrischer Kern: Gegeben: Zwei Punkte F 1, F 2 in der Ebene ein Abstand d R 0, d.h. eine nichtnegative reelle Zahl d Gesucht: Menge aller Punkte der Ebene, so dass die Differenz der Abstände zu F 1 und zu F 2 gleich d ist Mit anderen Worten: Wir suchen M := { P E 2 d(p, F1 ) d(p, F 2 ) = d }, wobei d(x, Y ) der Abstand (die Distanz) zwischen X und Y ist.

8 Was haben wir vereinfacht? 1. Wir nehmen nicht drei Satelliten sondern nur zwei Punkte. 2. Wir betrachten ein ebenes Problem, kein räumliches. 3. Wir haben in der Gleichung Betragsstriche gesetzt. Das ist der geometrische Kern eines Teilproblems. Wenn wir dieses Problem gelöst haben, sehen wir weiter.

9 3 Die Hyperbel in einem geeigneten Koordinatensystem Gegeben: Zwei Punkte F 1, F 2 in der Ebene ein Abstand d R 0, d.h. eine nichtnegative reelle Zahl d Gesucht: h := { P E 2 d(p, F1 ) d(p, F 2 ) = d } h ist eine Kurve, die von den Griechen Hyperbel genannt wurde. Tafelskizze:

10 3.1 Gleichung der Hyperbel h = { P E 2 d(p, F1 ) d(p, F 2 ) = d } Wir beschreiben h mit einem geeigneten Koordinatensystem: x-achse: durch F 1 und F 2 y-achse: Mittellot der Strecke F 1 F 2 In diesem Koordinatensystem gilt für die Punkte F 1 und F 2 : F 1 = ( c, 0) und F 2 = (c, 0) Nach Pythagoras: (x, y) h (x ( c)) 2 + y 2 (x c) 2 + y 2 = d bzw. (x, y) h (x + c) 2 + y 2 (x c) 2 + y 2 = d

11 Wegen der Betragsstriche ändert Quadrieren nichts an der Lösung: ( (x + c) 2 + y 2 (x c) 2 + y 2 ) 2 = d 2 Zweite binomische Formel: (x + c) 2 + y 2 2 (x + c) 2 + y 2 (x c) 2 + y 2 + (x c) 2 + y 2 = d 2 Wurzel isolieren, erste und zweite binomische Formel: 2x 2 + 2c 2 + 2y 2 d 2 = 2 (x + c) 2 + y 2 (x c) 2 + y 2 Erneutes Quadrieren und binomische Formeln: 4x 4 + 4c 4 + 4y 4 + d 4 + 8x 2 c 2 + 8x 2 y 2 4x 2 d 2 + 8c 2 y 2 4c 2 d 2 4y 2 d 2 = 4(x 2 + c 2 + y 2 + 2xc)(x 2 + c 2 + y 2 2xc)

12 Binomische Formeln: 4x 4 + 4c 4 + 4y 4 + d 4 + 8x 2 c 2 + 8x 2 y 2 4x 2 d 2 + 8c 2 y 2 4c 2 d 2 4y 2 d 2 = 4(x 2 + c 2 + y 2 ) 2 4(2xc) 2 Ausmultiplizieren: 4x 4 + 4c 4 + 4y 4 + d 4 + 8x 2 c 2 + 8x 2 y 2 4x 2 d 2 + 8c 2 y 2 4c 2 d 2 4y 2 d 2 = 4x 4 + 4c 4 + 4y 4 + 8x 2 c 2 + 8x 2 y 2 + 8c 2 y 2 16x 2 c 2 Das gibt: d 4 4x 2 d 2 4c 2 d 2 4y 2 d 2 = 16x 2 c 2

13 d 4 4x 2 d 2 4c 2 d 2 4y 2 d 2 = 16x 2 c 2 Sortieren nach x 2 und y 2 : 4(4c 2 d 2 )x 2 4d 2 y 2 = d 2 (4c 2 d 2 ) 4x 2 d 2 4y2 4c 2 d 2 = 1 x 2 ( d2 ) 2 Substitution a := d 2 und b := c 2 a 2 : y 2 c 2 ( d 2 ) 2 = 1 x 2 a 2 y2 b 2 = 1

14 Ergebnis: Normalform der Hyperbel h = { P E 2 d(p, F1 ) d(p, F 2 ) = d } wobei h : ( x ) 2 ( ) y 2 x 2 = 1 bzw. h : a b a 2 y2 b 2 = 1 a := d 2 und b := c 2 a 2 geeignetes Koordinatensystem: F 1 = ( c, 0) und F 2 = (c, 0) Folgerung 1: Symmetrie der Hyperbel h h ist symmetrisch bezüglich der x-achse h ist symmetrisch bezüglich der y-achse h ist punktsymmetrisch zum Ursprung

15 Alternative Beschreibung der Hyperbel h : ( x a ) 2 ( y b) 2 = 1 h : ( ) x a + y b ( ) x a y b = 1 Folgerung 2: Asymptoten der Hyperbel h Für (dem Betrag nach) große x und y gilt für Hyperbelpunkte (Warum?) x a + y b << 1 oder x a y b << 1 Die beiden Geraden mit den Gleichungen: x a + y b = 0 und x a y b = 0 heißen Asymptoten von h. bx + ay = 0 und bx ay = 0

16 3.2 Parameterdarstellung der Hyperbel h : ( x a ) 2 ( y b) 2 = 1 Erinnerung: Hyperbelfunktionen Kosinus hyperbolicus cosh x := ex + e x 2 cosh ist gerade Funktion, der Graph ist achsensymmetrisch zur y-achse. lim x cosh x = + lim x cosh x = + cosh 0 = 1 d dx cosh x = sinh x Sinus hyperbolicus sinh x := ex e x 2 sinh ist ungerade Funktion, der Graph ist punktsymmetrisch zum Ursprung. lim x sinh x = lim x sinh x = + sinh 0 = 0 d dx sinh x = cosh x Skizzen cosh 2 x sinh 2 x = 1

17 Setzen wir für t R x(t) := a cosh t und y(t) := b sinh t, so erhalten wir Punkte ( x(t), y(t) ), für die gilt: x(t) 2 a 2 y(t)2 b 2 = cosh 2 t sinh 2 t = 1. Folgerung: Für a, b > 0 ist durch x(t) := a cosh t und y(t) := b sinh t (t R) eine Parameterdarstellung (PD) einer ebenen Kurve definiert, die in der Hyperbel h mit der Normalform enthalten ist. Beschreibt die PD ganz h? Skizze x 2 a 2 y2 b 2 = 1

18 4 Die Ellipse in einem geeigneten Koordinatensystem Gegeben: Zwei Punkte F 1, F 2 in der Ebene ein Abstand d R 0, d.h. eine nichtnegative reelle Zahl d Gesucht: e := { P E 2 d(p, F1 ) + d(p, F 2 ) = d } e ist eine Kurve, die von den Griechen Ellipse genannt wurde. Sie kann mir der sogenannten Gärtner-Konstruktion leicht gezeichnet werden. Die Gerade durch F 1 und F 2 ist die Hauptachse von e und das Mittellot der Strecke F 1 F 2 ist die Nebenachse von e. Die Hauptachse schneidet die Nebenachse im Mittelpunkt von e. Die Schnittpunkte der Hauptachse mit e sind die Hauptscheitel von e und ihr Abstand zum Mittelpunkt heißt große Halbachse. Die Schnittpunkte der Nebenachse mit e sind die Nebenscheitel von e, ihr Abstand zum Mittelpunkt heißt kleine Halbachse.

19 4.1 Gleichung der Ellipse e := { P E 2 d(p, F1 ) + d(p, F 2 ) = d } Analog zum Vorgehen bei der Hyperbel wird die Ellipse e in einem geeigneten Koordinatensystem durch ihre Normalform ( ) x 2 ( ) y 2 e : + = 1 a b bzw. x 2 e : a 2 + y2 b 2 = 1 beschrieben. Dabei gilt a := d 2 und b := c 2 a 2 geeignetes Koordinatensystem: F 1 = ( c, 0) und F 2 = (c, 0) Folgerung: Symmetrie der Ellipse e h ist symmetrisch bezüglich der x-achse (Hauptachse) h ist symmetrisch bezüglich der y-achse (Nebenachse) h ist punktsymmetrisch zum Ursprung (Mittelpunkt) Tafelskizze

20 4.2 Eine Parameterdarstellung und eine Gleichung der Ellipse Erinnerung: trigonometrische Funktionen Kosinus cos ist gerade Funktion, der Graph ist achsensymmetrisch zur y-achse. cos 0 = 1 d dx cos x = sin x Sinus sin ist ungerade Funktion, der Graph ist punktsymmetrisch zum Ursprung. sin 0 = 0 d dx sin x = cos x cos 2 x + sin 2 x = 1 Skizzen dazu am Einheitskreis und für die Graphen

21 Für beliebige a, b > 0 und t R setzen wir x(t) := a cos t und y(t) := b sin t, Dann gilt für die Punkte (x(t), y(t)): x(t) 2 a 2 + y(t)2 b 2 = cos 2 t + sin 2 t = 1. Folgerung: Für a, b > 0 ist durch x(t) := a cos t und y(t) := b sin t (t R) eine Parameterdarstellung (PD) einer ebenen Kurve definiert, die in der Ellipse e mit der Normalform enthalten ist. Beschreibt die PD ganz e? Skizze x 2 a 2 + y2 b 2 = 1

22 Bemerkungen: Die Parameterdarstellungen x(t) := a cos t und y(t) := b sin t (t [0; 2π]) und x(t) := a cos t und y(t) := b sin t (t [ π; π]) beschreiben ebenfalls die gesamte Ellipse. Für a = b = r hat man eine PD eines Kreises vom Radius r: x(t) := r cos t und y(t) := r sin t (t [0; 2π]) Statt x(t) := a cos t und y(t) := b sin t schreiben wir oft kürzer x := a cos t und y := b sin t (t [0; 2π]). Üblich ist auch die Vektorschreibweise ( ) a cos t x (t) := (t [0, 2π]). b sin t

23 4.2 Die Ellipse als normal-affines Kreisbild Die Abbildungen x := b a x und y = y überführen die PD in die PD x := a cos t und y := b sin t (t [0; 2π]). x := b cos t und y := b sin t (t [0; 2π]). Die PD einer Ellipse mit Halbachsen a und b wird also in eine PD eines Kreises vom Radius b transformiert. Dieselben Abbildungen überführen die Gleichung x 2 a 2 + y2 b 2 = 1 in x 2 b 2 + y 2 b 2 = 1. Die Gleichung der Ellipse wird also in eine Kreisgleichung transformiert.

Kegelschnitte. Mathematik I ITB. Kegelschnitte. Prof. Dr. Karin Melzer

Kegelschnitte. Mathematik I ITB. Kegelschnitte. Prof. Dr. Karin Melzer Kegelschnitte 10.11.08 Kegelschnitte: Einführung Wir betrachten,,,. Literatur: Brücken zur Mathematik, Band 1 Grundlagen, Analytische Geometrie Kreis Denition als geometrischer Ort: Der geometrische Ort

Mehr

1 Die Strahlensätze 2. 2 Winkel 3. 3 Rechtwinklige Dreiecke 3. 4 Kreise 6. 5 Trigonometrische Funktionen 8. 6 Kurven in Parameterdarstellung 10

1 Die Strahlensätze 2. 2 Winkel 3. 3 Rechtwinklige Dreiecke 3. 4 Kreise 6. 5 Trigonometrische Funktionen 8. 6 Kurven in Parameterdarstellung 10 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Geometrie Inhaltsverzeichnis 1 Die Strahlensätze 2 2 Winkel 3 3 Rechtwinklige

Mehr

Brüche, Polynome, Terme

Brüche, Polynome, Terme KAPITEL 1 Brüche, Polynome, Terme 1.1 Zahlen............................. 1 1. Lineare Gleichung....................... 3 1.3 Quadratische Gleichung................... 6 1.4 Polynomdivision........................

Mehr

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016 Mathematik II FS 6. März 6 Lösung zu Serie Bemerkung: Die Aufgaben der Serie sind der Fokus der Übungsstunden vom./3. März.. a y = x und es wird die ganze Parabel einmal durchlaufen, denn x nimmt alle

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

x 1 Da y nur in der 2.Potenz vorkommt, ist die Kurve achsensymmetrisch zur x-achse.

x 1 Da y nur in der 2.Potenz vorkommt, ist die Kurve achsensymmetrisch zur x-achse. .6. Klausur Kurs Ma Mathematik Lk Lösung Gegeben ist die Gleichung x y y x. [] Verschaffen Sie sich einen Überblick über den Kurvenverlauf, indem Sie die Kurve auf Asymptoten und waagrechte sowie senkrechte

Mehr

Übung 1. Man nde die gesuchten Funktionswerte. (ii) f(x, y) = sin(xy)

Übung 1. Man nde die gesuchten Funktionswerte. (ii) f(x, y) = sin(xy) Man nde die gesuchten Funktionswerte. Übung (i) f(, ) = + 3 f(, ) f(, ) f(, 3) f( 3, ) f(, ) = sin() f(, π/6) f( 3, π/) f(π, /) f( π/, 7) Übung Man nde und skizziere den enitionsbereich und nde den Wertebereich

Mehr

D-BAUG Analysis I HS 2014 Dr. Meike Akveld. Serie

D-BAUG Analysis I HS 2014 Dr. Meike Akveld. Serie D-BAUG Analysis I HS 2014 Dr. Meike Akveld Serie 12 1. Für die Hyperbel mit der Gleichung x 2 y 2 = 1 (siehe Abbildung 1) betrachten wir die Parametrisierung ( ) ( ) x(t) cosh t r : R R 2, r(t) = =. y(t)

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

Vorkurs Mathematik WiSe 2017/18

Vorkurs Mathematik WiSe 2017/18 Vorkurs Mathematik WiSe 2017/18 S. Bernstein, S. Dempe, M. Helm Fakultät für Mathematik und Informatik Die Vorlesungen und Tutorien des Vorkurses wurden als Teil des Brückenkurses I teilweise durch das

Mehr

Definition von Sinus und Cosinus

Definition von Sinus und Cosinus Definition von Sinus und Cosinus Definition 3.16 Es sei P(x y) der Punkt auf dem Einheitskreis, für den der Winkel von der positiven reellen Halbachse aus (im Bogenmaß) gerade ϕ beträgt (Winkel math. positiv,

Mehr

Kegelschnitte im Schülerseminar

Kegelschnitte im Schülerseminar Schülerseminar Klasse 8 10, Universität Stuttgart, Seite 1 Kegelschnitte im Schülerseminar Die nachfolgend aufgeführten 6 Stundenentwürfe wurden im Schülerseminar für die Klassenstufen 8 10 an der Uni

Mehr

Schwerpunktfach AM/PH, 2011 KEGELSCHNITTE

Schwerpunktfach AM/PH, 2011 KEGELSCHNITTE Schwerpunktfach AM/PH, 011 KEGELSCHNITTE 5. Kreis und Ellipse 5.1. Grundkonstruktionen am Kreis Konstruktion 1: Konstruiere einen Kreis, welcher durch die gegebenen 3 Punkte A,B und C verläuft: C B A Konstruktionsbericht:

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 8

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 204): Lineare Algebra und analytische Geometrie 8 8. (Herbst 202, Thema 3, Aufgabe 4) Bestimmen Sie die euklidische Normalform der Quadrik Q, gegeben

Mehr

Einige Bemerkungen zu den verallgemeinerten Kegelschnitten von Zvonimir Durčević

Einige Bemerkungen zu den verallgemeinerten Kegelschnitten von Zvonimir Durčević Definition 1. Es seien B, D Punkte und c eine Gerade oder ein Kreis in einer Ebene ε siehe Abb. 1 bzw.. Lässt man einen Punkt auf c laufen, dann durchläuft der Schnittpunkt X der Geraden g : D mit der

Mehr

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft FS 2010 Roger Burkhardt roger.burkhardt@fhnw.ch 1/39 3 Roger Burkhardt

Mehr

Mathematisches Denken. Übungsserie 1. γ : [0, 2] IR 2,t r(t) := 2t 1

Mathematisches Denken. Übungsserie 1. γ : [0, 2] IR 2,t r(t) := 2t 1 Studiengang Architektur Mathematisches Denken Übungsserie 1 HS 2007 Abgabe der (z.t. mit dem TR) gelösten Aufgaben: Freitag 26. Oktober 2007 in der Vorlesung 1. Durch die folgende Parameterdarstellung

Mehr

Demo-Text für Hyperbolische Funktionen. Sinus hyperbolicus Kosinus hyperbolicus Tangens hyperbolicus. u. a.

Demo-Text für   Hyperbolische Funktionen. Sinus hyperbolicus Kosinus hyperbolicus Tangens hyperbolicus. u. a. Höhere Analysis Hyperbolische Funktionen Sinus hyperbolicus Kosinus hyperbolicus Tangens hyperbolicus u. a. Tet Nr. 50 Stand: 5. Mai 08 Demo-Tet für FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Aufgabe E 1 (8 Punkte)

Aufgabe E 1 (8 Punkte) Aufgabe E (8 Punkte) Auf einem Billardtisch (bei dem die Koordinatenachsen x = 0 und y = 0 als Banden dienen) liegen zwei Kugeln P( ) und Q(3 ) Die Kugel P soll so angestoßen werden, dass sie nach Reflexion

Mehr

Prüfer: Dr. M. Lenz, Prof. Dr. M. Rumpf. Klausurdauer: 180 Minuten. Bitte Namen, Vornamen und Matrikel-Nr. einsetzen. Name:... Vorname:...

Prüfer: Dr. M. Lenz, Prof. Dr. M. Rumpf. Klausurdauer: 180 Minuten. Bitte Namen, Vornamen und Matrikel-Nr. einsetzen. Name:... Vorname:... Klausur zum Modul Ingenieurmathematik II (B22) 20. März 2014 für den Bachelorstudiengang Geodäsie und Geoinformation In der Klausur können 10 Punkte pro Aufgabe, also insgesamt 100 Punkte erreicht werden.

Mehr

31. Kurven in Ebene und Raum

31. Kurven in Ebene und Raum 31. Kurven in Ebene und Raum Für ebene Kurven (also Kurven im R gibt es mehrere Darstellungsmöglichkeiten: implizite Darstellung : F (x, y = explizite Darstellung : y = f(x oder x = g(y Parameterdarstellung

Mehr

Lösung: Serie 7 - Hyperbelfunktionen Newton-Verfahren

Lösung: Serie 7 - Hyperbelfunktionen Newton-Verfahren a Lösung: Serie 7 - Hyperbelfunktionen Newton-Verfahren y ex +e x e x ye x + 0 e x y ± y Da y ist, ist die Wurzel auf der rechten Seite immer reell Wir interessieren uns nur für nichtnegative x Der Logarithmus

Mehr

SYMMETRIE FRANZ LEMMERMEYER

SYMMETRIE FRANZ LEMMERMEYER SYMMETRIE FRANZ LEMMERMEYER Symmetrie ist ein außerordentlich wichtiges Konzept in der Mathematik und der Physik. Ist beispielsweise (x, y) eine Lösung des Gleichungssystems x + y = 5, xy = 1, so muss

Mehr

4 Ein wenig analytische Geometrie. 4.1 Einige Grundgebilde der projektiven Geometrie Geraden in homogenen Koordinaten

4 Ein wenig analytische Geometrie. 4.1 Einige Grundgebilde der projektiven Geometrie Geraden in homogenen Koordinaten 4 Ein wenig analytische Geometrie 4.1 Einige Grundgebilde der projektiven Geometrie 4.1.1 Geraden in homogenen Koordinaten (a) Im Raum/Ebene in Parameterform Siehe Figur-4-1-1-a (ohne X g = P Q) P ( p),

Mehr

Symmetrien, gerade und ungerade Funktionen

Symmetrien, gerade und ungerade Funktionen Symmetrien, gerade und ungerade Funktionen Wir Menschen fühlen uns von Symmetrien angezogen. 1-E1 1-E2 Vorausgesetzte Kenntnisse Definition einer Funktion, einer Relation, des Definitionsbereiches einer

Mehr

Volumen und Oberflächeninhalt der Kugel 10_01

Volumen und Oberflächeninhalt der Kugel 10_01 Volumen und Oberflächeninhalt der Kugel 10_01 Alle Punkte (des dreidimensionalen Raums), die von einem Punkt M die gleiche Entfernung r besitzen, liegen auf einer Kugel mit Mittelpunkt M und Radiuslänge

Mehr

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß).

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß). Trigonometrie. Winkel: Gradmaß oder Bogenmaß In der Schule lernt man, dass Winkel im Gradmass, also als Zahlen zwischen 0 und 60 Grad angegeben werden. In der Mathematik arbeitet man lieber mit dem Bogenmaß,

Mehr

Spiralen DEMO. Text Nr Stand 9. März 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Spiralen DEMO. Text Nr Stand 9. März 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Spiralen Text Nr. 5435 Stand 9. März 06 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 5435 Spiralen Vorwort Es gibt eine ganze Reihe von spiralähnlichen Kurven. Einige davon habe ich für diesen

Mehr

Kreis, Ellipse, Hyperbel, Parabel

Kreis, Ellipse, Hyperbel, Parabel Kreis, Ellipse, Hyperbel, Parabel Hörsaalanleitung Dr. E. Nana Chiadjeu 23. 11. 2011 Kreis Die Gleichung des Kreises um den Punkt P = (α, β) (Mittelpunkt) mit dem Radius R ist durch folgende Gleichung

Mehr

Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 016 Dr. Andreas Steiger Lösung - Serie 7 1. MC-Aufgaben Online-Abgabe 1. Gegeben sind die Kurven K 1 links und K rechts, die beide für wachsenden Parameter t von aussen nach

Mehr

Kegelschnitte - Teil 7

Kegelschnitte - Teil 7 7.1 Kegelschnitte - Gemeinsame Gleichung Kegelschnitte - Teil 7 Die verschiedenen Kegelschnitte entstehen, indem die Schnittebene eine verschiedene Neigung zur Hauptachse des Kreiskegels hat. Von senkrecht

Mehr

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche" Punkte mit inhomogenen K

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche Punkte mit inhomogenen K Kapitel IV Projektive Geometrie In diesem Kapitel wird eine kurze Einführung in die projektive Geometrie gegeben. Es sollen unendlich ferne Punkte mit Hilfe von homogene Koordinaten eingeführt werden und

Mehr

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $ Mathematische Probleme, SS 15 Montag 6 $Id: quadratischtex,v 111 15/06/ 1:08:41 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen In der letzten Sitzung hatten wir die Normalform (1 ɛ )x + y pɛx p =

Mehr

1. ( e -x + e -(- x) 1. . ( e x + e - x ) . ( e x - e - x 2. Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Analysis Übung 15 Folie 1

1. ( e -x + e -(- x) 1. . ( e x + e - x ) . ( e x - e - x 2. Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Analysis Übung 15 Folie 1 04.03.04 Übung 5a Analysis, Abschnitt.5, Folie Definition der hyperbolischen Funktionen: sinus hyperbolicus: sinh( ). ( e - e - ) cosinus hyperbolicus: cosh( ). ( e + e - ) tangens hyperbolicus: sinh(

Mehr

Kegelschnitte. Evelina Erlacher 13. & 14. M arz 2007

Kegelschnitte. Evelina Erlacher 13. & 14. M arz 2007 Workshops zur VO Einfu hrung in das mathematische Arbeiten im SS 2007 Kegelschnitte Evelina Erlacher 13. & 14. M arz 2007 Denken wir uns einen Drehkegel, der nach oben als auch nach unten unbegrenzt ist.

Mehr

Mathematik für Naturwissenschaften Aufgaben mit Ergebnissen Differenzialrechnung

Mathematik für Naturwissenschaften Aufgaben mit Ergebnissen Differenzialrechnung Hans Walser Mathematik für Naturwissenschaften Aufgaben mit sen 3 3 4 4 5 5 6 6 7 Differenzialrechnung Differenzialrechnung, Aufgaben ii Inhalt Steigung... Beweis?... 3 Spiel mit Eponenten... 4 Ableitung...

Mehr

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS 1

Inhaltsverzeichnis INHALTSVERZEICHNIS 1 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4

Mehr

Kugel - Kugelgleichung, Lagebeziehungen

Kugel - Kugelgleichung, Lagebeziehungen . Kugelgleichung. Lage Punkt / Kugel 3. Lage Gerade / Kugel 3. Standardverfahren 3. Alternative Kugel - Kugelgleichung, Lagebeziehungen. Lage Ebene / Kugel 5. Lage Kugel / Kugel (Schnittkreis, Berührungspunkt).

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Ganzrationale Funktionen Eine Metallwerkstatt möchte aus 60 cm langen und 40 cm breiten Metallblechen kleine Schachteln herstellen (siehe Skizze). Die Schachteln sollen möglichst groß sein. Stellen Sie

Mehr

Kreis - Kreisgleichung (+ Lagebeziehung Punkt / Kreis)

Kreis - Kreisgleichung (+ Lagebeziehung Punkt / Kreis) Kreis - Kreisgleichung (+ Lagebeziehung Punkt / Kreis. Kreisgleichung. Kreis durch 3 Punkte 3. Lage Punkt / Kreis. Kreisgleichung Ein Kreis mit dem Mittelpunkt M - Ortsvektor m - und dem Radius r ist beschrieben

Mehr

Serie 1: Repetition von elementaren Funktionen

Serie 1: Repetition von elementaren Funktionen D-ERDW, D-HEST, D-USYS Mathematik I HS 15 Dr. Ana Cannas Serie 1: Repetition von elementaren Funktionen Bemerkung: Die Aufgaben der Serie 1 bilden den Fokus der Übungsgruppen in der zweiten Semesterwoche

Mehr

Angewandte Geometrie Semestralprüfung am 5. Juli 2005, Uhr

Angewandte Geometrie Semestralprüfung am 5. Juli 2005, Uhr Technische Universität München SS 2005 Zentrum Mathematik Blatt 7 apl. Prof. Dr. J. Hartl Angewandte Geometrie Semestralprüfung am 5. Juli 2005, 12.00-1.0 Uhr 1. In einem dreidimensionalen euklidischen

Mehr

ETH Zürich Repetitionsprüfung D-MAVT, D-MATL Analysis I/II Prof. Dr. Urs Lang

ETH Zürich Repetitionsprüfung D-MAVT, D-MATL Analysis I/II Prof. Dr. Urs Lang EH Zürich Repetitionsprüfung..7 D-MA, D-MAL Analysis I/II Prof. Dr. Urs Lang. [6 Punkte] Gegeben sei die attelfläche = {(x, y, z) R : z = x y } sowie der Punkt Q = (,, 5). Bestimmen ie die kleinste Zahl

Mehr

Die Ellipse gehört so wie der Kreis, die Hyperbel und die Parabel zu den Kegelschnitten.

Die Ellipse gehört so wie der Kreis, die Hyperbel und die Parabel zu den Kegelschnitten. DIE ELLIPSE Die Ellipse gehört so wie der Kreis, die Hyperbel und die Parabel zu den Kegelschnitten. Die Ellipse besteht aus allen Punkten, für die die Summe der Abstände von zwei festen Punkten - den

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen Hannover, den 7. Februar 2002 Aufgabe. Übungsblatt: Lineare Algebra II Abgabe: 8./9.4.2002 in den Übungsgruppen (2, 2, 3 Punkte) Der Vektorraum V = C[, ] sei mit dem üblichen Skalarprodukt f, g = f(t)g(t)

Mehr

G13 KLAUSUR 1. (1) (2 VP) Bilden Sie die erste Ableitung der Funktion f mit. f(x) = e 2x+1 x

G13 KLAUSUR 1. (1) (2 VP) Bilden Sie die erste Ableitung der Funktion f mit. f(x) = e 2x+1 x G3 KLAUSUR PFLICHTTEIL Aufgabe 2 3 4 5 6 7 8 Punkte (max) 2 2 3 3 5 3 5 3 Punkte () (2 VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = e 2x+. x (2) (2 VP) Gegeben ist die Funktion f mit f(x)

Mehr

x(t) t x(t) = y(t) x(t) = v H t y(t) = h + v V t g 2 t2, x/v H

x(t) t x(t) = y(t) x(t) = v H t y(t) = h + v V t g 2 t2, x/v H Ebene Kurven Definition: Eine parametrisierte ebene Kurve ist eine stetige Abbildung x(t) t x(t) = y(t) eines Intervalls [a, b] nach R. Dabei heißt t [a, b] der Kurvenparameter. Beide Komponentenabbildungen

Mehr

Rekonstruktion eines teilweise entschlüsselten babylonischen Keilschrifttextes aus der Zeit um 2000 v. Chr.

Rekonstruktion eines teilweise entschlüsselten babylonischen Keilschrifttextes aus der Zeit um 2000 v. Chr. Rekonstruktion eines teilweise entschlüsselten babylonischen Keilschrifttextes aus der Zeit um 2000 v. Chr. 16 9 25 4 3 5 144 25 169 12 13 49 625 24 7 25 9 25 3 64 100 8 225 64 289 15 144 225 15 1296 225

Mehr

Übungen zu Einführung in die Analysis

Übungen zu Einführung in die Analysis Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung

Mehr

Übungen zur Ingenieur-Mathematik I WS 2017/2018 Blatt Aufgabe 33: Zeigen Sie, dass für die Funktionen

Übungen zur Ingenieur-Mathematik I WS 2017/2018 Blatt Aufgabe 33: Zeigen Sie, dass für die Funktionen Übungen zur Ingenieur-Mathematik I WS 7/8 Blatt 8..7 Aufgabe : Zeigen Sie, dass für die Funktionen a b gilt: cosh x = (ex + e x und sinh x = (ex e x a (cosh x = sinh x, b (sinh x = cosh x, c cosh x sinh

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = = 360 360 Das Bogenmaß eines Winkels ist

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = 2 = 360 360 Das Bogenmaß eines Winkels ist

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische

Mehr

Lösung - Serie 8. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Was für eine Kurve stellt die Parametrisierung

Lösung - Serie 8. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Was für eine Kurve stellt die Parametrisierung D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Steiger Lösung - Serie 8 MC-Aufgaben Online-Abgabe 1. Was für eine Kurve stellt die Parametrisierung sin1 t rt = cos1 t, t R dar? a Ein Kreis. Es gilt x t +

Mehr

1.7. Die indirekte (umgekehrte) Proportionalität. a x heisst umgekehrte (indirekte) Proportionalität.

1.7. Die indirekte (umgekehrte) Proportionalität. a x heisst umgekehrte (indirekte) Proportionalität. 34 1.7. Die indirekte (umgekehrte) Proportionalität a Die Funktion f : y = a 0, 0 heisst umgekehrte (indirekte) Proportionalität. Spezialfall a = 1: f: Bilde den Kehrwert der gegebenen Zahl. An der Stelle

Mehr

1. Definition der trigonometrischen Funktionen für beliebige Winkel

1. Definition der trigonometrischen Funktionen für beliebige Winkel 1 Trigonometrie 2 1. Definition der trigonometrischen Funktionen für beliebige Winkel In einem Kreis mit Mittelpunkt M(0,0) und Radius r ist der zunächst spitze Winkel α gezeichnet. α legt auf dem Kreis

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius r gilt für einen Kreissektor mit Mittelpunktswinkel α: Länge des Kreisbogens Fläche des Kreissektors b = α α 2rπ A = 360 360 πr2 Das Bogenmaß

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 8

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 8 Dr. Erwin Schörner Klausurenkurs zum Staatseamen (SS 205): Lineare Algebra und analtische Geometrie 8 8. (Herbst 202, Thema 3, Aufgabe 4) Bestimmen Sie die euklidische Normalform der Quadrik Q, gegeben

Mehr

Anwendung v. symmetrischen Matrizen: Hauptachsentransformation

Anwendung v. symmetrischen Matrizen: Hauptachsentransformation Anwendung v. symmetrischen Matrizen: Hauptachsentransformation Einleitende Bemerkungen: Gl. für Kreis: Gl. für Elllipse: (gestauchter Kreis) Gl. für Kugel: Gl. für Elllipsoid: (gestauchter Kugel) Diese

Mehr

Mathematik I (MATHE1) Klausuren lineare Algebra & analytische Geometrie

Mathematik I (MATHE1) Klausuren lineare Algebra & analytische Geometrie Mathematik I (MATHE1) Klausuren lineare Algebra & analytische Geometrie Prof. Dr. Thomas Risse www.weblearn.hs-bremen.de/risse/mai www.weblearn.hs-bremen.de/risse/mai/docs Fakultät Elektrotechnik & Informatik

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Serie 8

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Serie 8 D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Steiger Serie 8 Die ersten Aufgaben sind Multiple-Choice-Aufgaben (MC, die online gelöst werden. Bitte schicken Sie Ihre Lösungen zu den Online MC-Fragen bis

Mehr

Lösungen zur Serie 5

Lösungen zur Serie 5 Dr. P. Thurnheer Grundlagen der Mathematik I ETH Zürich D-CHAB, D-BIOL (Analysis B) FS 10 Lösungen zur Serie 5 1. a) Die erste Kurve ist eine Kardioide (Herzkurve). i) Wenn man t durch t erstezt, kriegt

Mehr

Spezielle Klassen von Funktionen

Spezielle Klassen von Funktionen Spezielle Klassen von Funktionen 1. Ganzrationale Funktionen Eine Funktion f : R R mit f (x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, n N 0 und a 0, a 1,, a n R, (a n 0) heißt ganzrationale Funktion n

Mehr

Mathematisches Kaleidoskop WS15/16 Materialien Teil 2

Mathematisches Kaleidoskop WS15/16 Materialien Teil 2 Mathematisches Kaleidoskop WS15/16 Materialien Teil 2 Dr. Hermann Duerkop E-Mail: hd@nabla.de 1 1.2.7 Papierstreifenmethode zur Zeichnung einer Ellipse Die Gärtnermethode zum Zeichnen einer Ellipse war

Mehr

a) Begründen Sie, dass der Graph von f symmetrisch zum Punkt S 0 2 f) Ermitteln Sie eine Gleichung der Tangente im Punkt B

a) Begründen Sie, dass der Graph von f symmetrisch zum Punkt S 0 2 f) Ermitteln Sie eine Gleichung der Tangente im Punkt B I. Wendepunkte 1. Bestimmen Sie Art und Lage der Extrempunkte sowie die Wendepunkte des Graphen der Funktion f mit der angegebenen Funktionsgleichung. a) f(x) 1 b) 12 (x + 1) (x 2) (x + 6) f(x) 1 4 x4

Mehr

Aufgabenkomplex 4: Vektorfunktionen, Differenzialgleichungen, Eigenwertprobleme

Aufgabenkomplex 4: Vektorfunktionen, Differenzialgleichungen, Eigenwertprobleme Technische Universität Chemnitz 04. Juni 00 Fakultät für Mathematik Höhere Mathematik I. Aufgabenkomple 4: Vektorfunktionen, Differenzialgleichungen, Eigenwertprobleme Letzter Abgabetermin:. Juni 00 (in

Mehr

Kreis - Übungen. 1) Die y-achse ist am Punkt A eine Tangente an den Kreis. Mit dem noch nicht bekannten "Zwischenwert"

Kreis - Übungen. 1) Die y-achse ist am Punkt A eine Tangente an den Kreis. Mit dem noch nicht bekannten Zwischenwert Kreis - Übungen Wenn die "Kreisgleichung" gesucht ist, sind der Mittelpunkt und der Radius anzugeben. Es ist möglich, dass mehrere Kreise eine Aufgabenstellung erfüllen. 1) Ein Kreis berührt die y-achse

Mehr

Die Bedeutung der Areafunktionen

Die Bedeutung der Areafunktionen Die Bedeutung der Areafunktionen Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 8. März 003 Die Umkehrfunktionen der hyperbolischen Funktionen heißen Areafunktionen. Woher dieser Name kommt, und

Mehr

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007 Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben.

Mehr

Elementare Funktionen. Analysis I November 28, / 101

Elementare Funktionen. Analysis I November 28, / 101 Elementare Funktionen Analysis I November 28, 2017 76 / 101 Exponentialfunktion Buch Kap. 2.3 Exponentialfunktionen f(x) = a x, a > 0, D = R. Ist a = e (Eulerzahl e = 2, 71828...), sprechen wir von der

Mehr

Proseminar über multimediale Lineare Algebra und Analytische Geometrie Wintersemester 2008/2009

Proseminar über multimediale Lineare Algebra und Analytische Geometrie Wintersemester 2008/2009 Proseminar über multimediale Lineare Algebra und Analytische Geometrie Wintersemester 008/009 Aufgabe 6: Projektion einer Kreisbahn im R in die (x,y)-ebene Seminarleitung: Dr. M. Kaplan Ausarbeitung: Günther

Mehr

Kreise DEMO. Text Nr Stand 22. September 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Kreise DEMO. Text Nr Stand 22. September 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Kreise Tet Nr. 5050 Stand. September 016 DEO FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULATHEATIK 5050 Kreis Vorwort Der Kreis ist ein Standardthema im Schulunterricht. Daher kommt er in der Internetbibliothek

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +

Mehr

Vorkurs Mathematik 2016

Vorkurs Mathematik 2016 Vorkurs Mathematik 2016 Natürliche Zahlen Der grundlegende Zahlenbereich ist die Menge der natürlichen Zahlen N = {1, 2, 3,...}. In vielen Fällen ist es sinnvoll die Zahl 0 mit einzubeziehen: N 0 = N [

Mehr

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif 14 Oktober 2008 1 Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof Dr Ulrich Reif Inhalt: 1 Vektorrechnung 2 Lineare Gleichungssysteme 3 Matrizenrechnung 4 Lineare Abbildungen 5 Eigenwerte

Mehr

Serie 8 - Parametrisierte Kurven

Serie 8 - Parametrisierte Kurven Analysis D-BAUG Dr Meike Akveld HS 05 Serie 8 - Parametrisierte Kurven Geben Sie für die folgenden Bewegungen eines Punktes jeweils eine parametrisierte Darstellung I [0, ] R xt, t yt an Lösung a Geradlinige

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 16 Dr. Ana Cannas. MC-Serie 3. Kurven in der Ebene Einsendeschluss: 18. März 2016, 16 Uhr (MEZ)

D-ERDW, D-HEST, D-USYS Mathematik II FS 16 Dr. Ana Cannas. MC-Serie 3. Kurven in der Ebene Einsendeschluss: 18. März 2016, 16 Uhr (MEZ) D-ERDW, D-HEST, D-USYS Mathematik II FS 16 Dr. Ana Cannas MC-Serie 3 Kurven in der Ebene Einsendeschluss: 18. März 216, 16 Uhr (MEZ) Bei allen Aufgaben ist genau eine Antwort richtig. Sie dürfen während

Mehr

Anwendung v. symmetrischen Matrizen: Hauptachsentransformation

Anwendung v. symmetrischen Matrizen: Hauptachsentransformation Zusammenfassung: Eigenwerte, Eigenvektoren, Diagonalisieren Eigenwertgleichung: Bedingung an EW: Eigenwert Eigenvektor charakteristisches Polynom Für ist ein Polynom v. Grad, Nullstellen. Wenn EW bekannt

Mehr

1 Einleitung. 2 Sinus. Trigonometrie

1 Einleitung. 2 Sinus. Trigonometrie 1 Einleitung Die Trigonometrie (trigonon - griechisch für Dreieck) und die trigonometrischen Funktionen sind wichtige mathematische Werkzeuge zur Beschreibung der Natur. In der Physik werden trigonometrische

Mehr

ELEMENTAR-MATHEMATIK

ELEMENTAR-MATHEMATIK WILLERS ELEMENTAR-MATHEMATIK Ein Vorkurs zur Höheren Mathematik 13., durchgesehene Auflage von Dr.-Ing. G. Opitz und Dr. phil. H. Wilson Mit 189 Abbildungen VERLAG THEODOR STEINKOPFF DRESDEN 1968 Inhaltsverzeichnis

Mehr

Technische Universität München Fakultät für Mathematik. Klausur. Geometriekalküle. Modul MA März 2018, 16:00 17:00 Uhr

Technische Universität München Fakultät für Mathematik. Klausur. Geometriekalküle. Modul MA März 2018, 16:00 17:00 Uhr Technische Universität München Fakultät für Mathematik Klausur Geometriekalküle Modul MA2203 1. März 2018, 16:00 17:00 Uhr Prof. Dr. Dr. Jürgen Richter-Gebert Musterlösung Aufgabe 1. Kegelschnitt mit Parameter

Mehr

Winkelteilung 1 Worum geht es? 2 Mit Zirkel und Lineal 3 Winkeldrittelung 3.1 Konstruktion einer Kurve

Winkelteilung 1 Worum geht es? 2 Mit Zirkel und Lineal 3 Winkeldrittelung 3.1 Konstruktion einer Kurve Hans Walser, [208084] Winkelteilung Anregung: Jo Niemeyer, Berlin Worum geht es? Es wird eine Methode besprochen, einen Winkel in eine ungerade Anzahl gleicher Teile zu unterteilen. 2 Mit Zirkel und Lineal

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

8. DIE ABLEITUNG EINER VEKTORFUNKTION

8. DIE ABLEITUNG EINER VEKTORFUNKTION 75 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

Grundwissen Jahrgangsstufe 9. Lösungen. Berechne ohne Taschenrechner: a) 2, a) = -1, b) = = = 4000

Grundwissen Jahrgangsstufe 9. Lösungen. Berechne ohne Taschenrechner: a) 2, a) = -1, b) = = = 4000 Grundwissen Jahrgangsstufe 9 Berechne ohne Taschenrechner: a),5 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) -x² = -5 c) x² + 50 = 0 Sind folgende

Mehr

Abitur 2013 Mathematik Infinitesimalrechnung II

Abitur 2013 Mathematik Infinitesimalrechnung II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 213 Mathematik Infinitesimalrechnung II Teilaufgabe Teil 1 1 (5 BE) Geben Sie für die Funktion f mit f(x) = ln(213 x) den maximalen Definitionsbereich

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure (Wintersemester 2008/09) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 9. November 2008) Die

Mehr

4.5. Ganzrationale Funktionen

4.5. Ganzrationale Funktionen .5. Ganzrationale Funktionen Definition Eine Funktion der Gestalt f(x) = a n x n a n 1 x n 1... a 2 x 2 a 1 x a 0 mit reellen Koeffizienten a n, a n 1,... und a n 0 heißt ganzrationale Funktion n-ten Grades

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 10

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 10 RMG Haßfurt Grundwissen Mathematik Jahrgangsstufe 0 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 0 Wissen und Können. Berechnungen am Kreis Bogenmaß Das Bogenmaß ist das zu

Mehr

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Komplexe Zahlen Lösungshinweise. Sei z = + i und z = i. Berechnen Sie z + z, z z, z z, z z, z /z, z + z, z z, z z, z

Mehr

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie19. sind weder parallel noch stehen sie senkrecht aufeinander.

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie19. sind weder parallel noch stehen sie senkrecht aufeinander. -MAVT/-MATL FS 8 r. Andreas Steiger Analysis IILösung - Serie9. ie Fläche S sei einerseits durch die Parameterdarstellung (u, v) r(u, v) und andererseits durch die Gleichung f(x, y, z) = gegeben. Wir betrachten

Mehr

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Institut für Mathematik Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Ausführliches Inhaltsverzeichnis mit thematischen Links Prof. Dr. Konrad Engel PD Dr. Roger Labahn {konrad.engel, roger.labahn}@uni-rostock.de.09.

Mehr

Inhaltsverzeichnis. geometrischer Objekte auszufüllen. Die Liste der Lösungen kann auch eine ABC Liste zu diesen Themen sein.

Inhaltsverzeichnis. geometrischer Objekte auszufüllen. Die Liste der Lösungen kann auch eine ABC Liste zu diesen Themen sein. Lückentexte 1 zu den Themen: I. Der Kreis als Figur in der Ebene II. Der Kreis als Figur im Raum III. Die Kugel Multiple Choice Aufgabe zum Thema IV. Ebene Schnitte einer Kugel Kreuzworträtsel zu den Themen:

Mehr