Tutorial. Mediationsanalyse mit PROCESS. Das Konzept Mediation

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Tutorial. Mediationsanalyse mit PROCESS. stefan.pfattheicher@uni-ulm.de. Das Konzept Mediation"

Transkript

1 Tutorial Mediationsanalyse mit PROCESS Das Konzept Mediation Ein Mediator (folgend M) erklärt den Zusammenhang zwischen unabhängiger Variable (folgend X) und einer abhängigen Variable (folgend Y). Dementsprechend wird bei einer Mediation der Zusammenhang zwischen X und Y erklärt, der Mediator stellt damit den verantwortlichen Prozess dar. Beispielsweise kann man annehmen, dass Mitleid (vs. kein Mitleid) mit einer leidenden Person (die unabhängige Variable X) Hilfeverhalten (die abhängige Variable Y) erhöht. Dann kann man die Frage stellen Warum sollte das so sein? womit man die Frage nach dem Mediator stellt. Im Beispiel könnte das Empathic Concern sein (d.h. besorgte Gedanken für den Leidenden). Also: Warum führt Mitleid zu Hilfeverhalten? Weil Mitleid zu Empathic Concern führt, und Empathic Concern zu Hilfeverhalten. Das Mediationsmodel sieht dementsprechend folgendermaßen aus: a b c c (wenn M kontrolliert) Wenn man X manipuliert und M misst, beispielsweise durch eine Skala, die Empathic Concern abbildet, wird folgendes Verfahren vorgeschlagen, um eine Mediation zu testen (vgl. Hayes, 2013: Mediation, Moderation, and Conditional Process Analysis). 1. Man etabliert den a-pfad (das ist der Pfad zwischen X und M). D.h. man testet den a-pfad auf Signifikanz. Der a-pfad sollte ungleich Null sein, also p < Man etabliert den b-pfad (das ist der Pfad zwischen M und Y unter Kontrolle von X). Dieser gibt an, ob M mit Y zusammenhängt, und zwar unabhängig von X. 3. Schließlich wird der gesamte Pfad a b simultan auf Signifikanz getestet (mit PROCESS, siehe unten). Wenn a b 0 spricht man von einem en indirekten Effekt oder einer Mediation. Eine Debatte gibt es zur Signifikanz des c-pfads (vgl. Zhao et al., 2010, JCR). Eigentlich müsste dieser auch gezeigt werden. Denn wenn X zu M und M zu Y führt, so sollte auch X zu Y führen. Es gibt allerdings inhaltliche und statistische Argumente, warum das manchmal nicht der Fall ist. Die beiden wichtigsten sind sicherlich Suppressionseffekte (d.h. ein gegenläufiger a b Pfad, bzw. eine Variable M2, welche den Zusammenhang XY unterdrückt; vgl. MacKinnon et al., 2000, Prevention Science) und substantielle Powernachteile beim statistischen Testen des c-pfads im Vergleich zum a b Pfad (vgl. Kenny & Judd, 2014, PS). Als Fazit kann man festhalten: Wenn man keine Suppressoren annimmt, dann sollte der c Pfad in einer Studienreihe mal gezeigt werden. Allerdings, und so ist der Standpunkt führender Mediationsexperten (bspw. Hayes und Zhao) ist ein er c-pfad keine Voraussetzung für eine Mediation. Natürlich ist das schönste Ergebnis, wenn man einen en c-pfad aufzeigen kann und dann zudem zeigt, dass dieser gegen Null geht (also c nahe Null) wenn man für M kontrolliert (und vorher den a-pfad etabliert hat). Der Pfad c (XY unter Kontrolle von M) gibt ja den kontrafaktischen Zustand an: Wie würde XY aussehen wenn es M nicht gäbe; dann nämlich dürfte es auch XY (also c ) nicht geben (bzw. kleiner werden) wenn XY (also c) durch M mediiert wird. Kommentar [SP1]: man kann M auch manipulieren, um einen Mediator zu etablieren, vgl. Jacoby und Sassenberg, 2011, EJSP, und Spencer, Zanna, und Fong, 2005, JPSP Kommentar [SP2]: was einer einfachen Korrelation, einem t-test oder einer linearen Regression zwischen X und M entspricht; natürlich liefern alle Tests exakt dasselbe Ergebnis hinsichtlich der Signifikanz Kommentar [SP3]: allerdings reicht es für den gesamten indirekten Effekt, also a b, auch manchmal aus, in die Nähe von p =.05 zu kommen (vgl. Hayes, 2013) Kommentar [SP4]: wenn man für X nicht kontrolliert wäre X durch die Korrelation mit M im Zusammenhang MY drin. Kommentar [SP5]: das ist der indirekte Effekt; dieser entspricht exakt c minus c ; also der Reduktion von XY bei Hinzunahme von M

2 Das Vorgehen mit PROCESS Andrew Hayes hat ein wunderbares SPSS Makro geschrieben. Mit diesem kann man die verschiedensten und abgefahrensten le testen (vgl. das PDF Dokument PROCESS, welches die Dokumentation des Makros enthält; download: Bei uns geht es um 4 (vgl. S.20 in der Dokumentation). Dazu öffnet man als erstes (den Datensatz hat man schon offen) die Syntax Process (process.sps). Diese lässt man durchlaufen (STRG + A dann STRG + R). Dann kann man das Syntax- Fenster (process.sps) schließen. Im Output müsste dann folgendes erscheinen: Auf Seite 20 der Dokumentation steht unten auf der Seite die relevante Syntax für unser (das 4): PROCESS vars = xvar mvlist yvar/y=yvar/x=xvar/m=mvlist/model=4. Diese passt man dem eigenen Datensatz an, bspw. PROCESS vars = BEDINGUNG MEDIATOR AV /y=av/x= BEDINGUNG /m= MEDIATOR /model=4. Man kann auch mehrere Mediatoren simultan testen indem man mehrere Mediatoren hintereinander schreibt, bspw.: PROCESS vars = BEDINGUNG MEDIATOR MEDIATOR2 AV /y=av/x= BEDINGUNG /m= MEDIATOR MEDIATOR2 /model=4. Die AV kann auch 01 kodiert sein (bspw. Hilfeverhalten ja vs. nein), PROCESS rechnet dann automatisch logistische Regressionen und keine lineare. In dem Beispieldatensatz, den ich folgend verwende heißt xvar (also X, die unabhängige Variable) BEDINGUNG (0 = Compassion nein, 1 = Compassion ja). mvlist (also M, der Mediator) ist CONCERN (höhere Werte = höherer Concern). yvar (also Y, die abhängige Variable) ist PROSOCIAL (höhere Werte = stärkeres Hilfeverhalten). Die Syntax sieht also folgendermaßen aus: PROCESS vars = BEDINGUNG CONCERN PROSOCIAL /y= PROSOCIAL /x= BEDINGUNG /m= CONCERN /model=4.

3 Dann die Syntax markieren und STRG + R drücken. Der Output sieht folgendermaßen aus: Run MATRIX procedure: ************* PROCESS Procedure for SPSS Release 2.01 beta **************** Written by Andrew F. Hayes, Ph.D. = 4 Y = PROSOCIA X = BEDINGUN M = CONCERN Kommentar [SP6]: Im Output werden die unstandardisierten Regressionskoeffizienten angegeben. Sample size 30 Outcome: CONCERN Kommentar [SP7]: Der folgende Abschnitt testet den a-pfad Summary constant BEDINGUN Summary constant CONCERN BEDINGUN ******************** DIRECT AND INDIRECT EFFECTS ************************* Direct effect of X on Y Indirect effect of X on Y Effect Boot SE BootLLCI BootULCI CONCERN ******************** ANALYSIS NOTES AND WARNINGS ************************* Number of bootstrap samples for bias corrected bootstrap confidence intervals: 1000 Level of confidence for all confidence intervals in output: END MATRIX Kommentar [SP8]: Der a-pfad ist Kommentar [SP9]: Der a-pfad ist Kommentar [SP10]: Der folgende Abschnitt testet den b-pfad und den c - Pfad Kommentar [SP11]: Der b-pfad ist Kommentar [SP12]: Der b-pfad ist Kommentar [SP13]: Der c -Pfad ist Kommentar [SP14]: Der c -Pfad ist aber nicht Kommentar [SP15]: = c Kommentar [SP16]: kennen wir schon von oben (unstandardisierter Regressionskoeffizient von c ) Kommentar [SP17]: = a b also der indirekte Effkt / Mediation, das hier ist der entscheidende Test! Kommentar [SP18]: Das hier ist entscheidend. Das Konfidenzintervall für a b darf nicht die Null enthalten, dies ist hier der Fall, zwischen ist die Null nicht drin. Damit kann man davon ausgehen dass a b 0, damit hat man einen indirekten Effekt, also eine Mediation. Die Konfidenzintervalle sind bootstrapped (vgl. Andy Fields Abschnitt zu Bootstarpping in Field, 2013, Discovering Statistics Using SPSS). Prima: Bootsrapping ist ein nicht-parametrischer Test. Durch das Bootstrapping verändern sich die Konfidenzintervalle bei jeder neuen Berechnung (also bei wiederholtem Durchlauf der Syntax), davon soll man sich nicht irritieren lassen.

4 Im Output fehlt der c-pfad (der totale Effekt). Dies ist tatsächlich die Standardeinstellung von PROCESS und reflektiert die Idee, dass ein er c-pfad nicht essentiell ist, um eine Mediation zu zeigen. Man kann ihn sich leicht berechnen (aus a b = c c folgt c = a b + c also c = = ). Man kann ihn sich auch leicht ausgeben lassen, indem man /total=1 an die Syntax hängt: PROCESS vars = BEDINGUNG CONCERN PROSOCIAL /y= PROSOCIAL /x= BEDINGUNG /m= CONCERN /model=4/total=1. Output: Run MATRIX procedure: ************* PROCESS Procedure for SPSS Release 2.01 beta **************** Written by Andrew F. Hayes, Ph.D. = 4 Y = PROSOCIA X = BEDINGUN M = CONCERN Sample size 30 Outcome: CONCERN Summary constant BEDINGUN Summary constant CONCERN BEDINGUN ************************** TOTAL EFFECT MODEL **************************** Kommentar [SP19]: c ist kleiner als c (c siehe unten) Summary constant BEDINGUN ***************** TOTAL, DIRECT, AND INDIRECT EFFECTS ******************** Total effect of X on Y Kommentar [SP20]: Und siehe da, c = Kommentar [SP21]: c ist aber nicht Direct effect of X on Y

5 Indirect effect of X on Y Effect Boot SE BootLLCI BootULCI CONCERN ******************** ANALYSIS NOTES AND WARNINGS ************************* Number of bootstrap samples for bias corrected bootstrap confidence intervals: 1000 Level of confidence for all confidence intervals in output: END MATRIX In unserem Beispiel mediiert Empathic Concern also tatsächlich den Zusammenhang zwischen der Compassion Manipulation und prosozialem Verhalten: Die Compassion Manipulation erhöht Empathic Concern und diese hängt wiederum mit prosozialem Verhalten zusammen. Es gibt allerdings keinen en totalen Effekt, die Compassion Manipulation fördert nicht direkt prosoziales Verhalten, sondern nur indirekt über Empathic Concern. Wie oben erwähnt kann der nicht gefundene totale Effekt mehrere Gründe haben, die zwei wichtigsten zur Rekapitulation: Zum einen Suppressoren (der totale Effekt c wird durch einen Suppressor unterdrückt). So ist es möglich, dass die Compassion Manipulation gleichzeitig auch inhibitorische Tendenzen auslöst, welche prosoziales Verhalten hemmt (vgl. MacKinnon et al., 2000, Prevention Science). Zum anderen die erwähnten Power-Nachteile von c gegenüber a b (vgl. Kenny & Judd, 2014, PS). Bei weiteren Fragen:

Tutorial. Moderationsanalyse mit PROCESS

Tutorial. Moderationsanalyse mit PROCESS Tutorial Moderationsanalyse mit PROCESS stefan.pfattheicher@uni-ulm.de Das Konzept Moderation Ein Moderator verändert den Zusammenhang zwischen unabhängiger Variable (folgend X) und einer abhängigen Variable

Mehr

Mediatioranalyse & Moderatoranalyse How to do

Mediatioranalyse & Moderatoranalyse How to do Mediatioranalyse & Moderatoranalyse How to do Die folgende Zusammenfassung zeigt beispielhaft, wie eine Mediatoranalyse bzw. eine Moderatoranalyse mit SPSS durchgeführt wird und wie die Ergebnisse in einem

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

Datenanalyse mit SPSS spezifische Analysen

Datenanalyse mit SPSS spezifische Analysen Datenanalyse mit SPSS spezifische Analysen Arnd Florack Tel.: 0251 / 83-34788 E-Mail: florack@psy.uni-muenster.de Raum 2.015 Sprechstunde: Dienstags 15-16 Uhr 25. Mai 2001 2 Auswertung von Häufigkeitsdaten

Mehr

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang

Mehr

Übungsklausur Lineare Modelle. Prof. Dr. H. Toutenburg

Übungsklausur Lineare Modelle. Prof. Dr. H. Toutenburg Übungsklausur Lineare le Prof. Dr. H. Toutenburg Aufgabe Ein lineares Regressionsmodell mit der abhängigen Variablen Körpergröße und der unabhängigen Variablen Geschlecht wurde einmal mit der dummykodierten

Mehr

Kaplan-Meier-Schätzer

Kaplan-Meier-Schätzer Kaplan-Meier-Schätzer Ausgangssituation Zwei naive Ansätze zur Schätzung der Survivalfunktion Unverzerrte Schätzung der Survivalfunktion Der Kaplan-Meier-Schätzer Standardfehler und Konfidenzintervall

Mehr

Musterlösung zu Serie 14

Musterlösung zu Serie 14 Dr. Lukas Meier Statistik und Wahrscheinlichkeitsrechnung FS 21 Musterlösung zu Serie 14 1. Der Datensatz von Forbes zeigt Messungen von Siedepunkt (in F) und Luftdruck (in inches of mercury) an verschiedenen

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav)

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav) Zweifaktorielle Versuchspläne 4/13 Durchführung in SPSS (File Trait Angst.sav) Analysieren > Allgemeines Lineares Modell > Univariat Zweifaktorielle Versuchspläne 5/13 Haupteffekte Geschlecht und Gruppe

Mehr

Messung und Aufwandsschätzung bei der Entwicklung von Web Applikationen. Frederik Kramer // Folie 1 von 14

Messung und Aufwandsschätzung bei der Entwicklung von Web Applikationen. Frederik Kramer // Folie 1 von 14 Messung und Aufwandsschätzung bei der Entwicklung von Web Applikationen Frederik Kramer // Folie 1 von 14 Warum das ganze? Entwicklungskosten spielen eine immer wichtigere Rolle Messmethoden erlauben diese

Mehr

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...

Mehr

Erwin Grüner 09.02.2006

Erwin Grüner 09.02.2006 FB Psychologie Uni Marburg 09.02.2006 Themenübersicht Folgende Befehle stehen in R zur Verfügung: {}: Anweisungsblock if: Bedingte Anweisung switch: Fallunterscheidung repeat-schleife while-schleife for-schleife

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY 5.2. Nichtparametrische Tests 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY Voraussetzungen: - Die Verteilungen der beiden Grundgesamtheiten sollten eine ähnliche Form aufweisen. - Die

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Korrelationsanalysen Kovariation und Kovarianz Korrelation: - Interpretation

Mehr

Statistische Auswertung:

Statistische Auswertung: Statistische Auswertung: Die erhobenen Daten mittels der selbst erstellten Tests (Surfaufgaben) Statistics Punkte aus dem Punkte aus Surftheorietest Punkte aus dem dem und dem Surftheorietest max.14p.

Mehr

Statistischer Rückschluss und Testen von Hypothesen

Statistischer Rückschluss und Testen von Hypothesen Statistischer Rückschluss und Testen von Hypothesen Statistischer Rückschluss Lerne von der Stichprobe über Verhältnisse in der Grundgesamtheit Grundgesamtheit Statistischer Rückschluss lerne aus Analyse

Mehr

Inhaltsverzeichnis. Vorwort 1. Kapitel 1 Einführung 3. Kapitel 2 Messtheorie und deskriptive Statistik 13

Inhaltsverzeichnis. Vorwort 1. Kapitel 1 Einführung 3. Kapitel 2 Messtheorie und deskriptive Statistik 13 Inhaltsverzeichnis Vorwort 1 Kapitel 1 Einführung 3 1.1 Ziele... 4 1.2 Messtheorie und deskriptive Statistik... 8 1.3 Grundlagen der Wahrscheinlichkeitsrechnung... 9 1.4 Inferenzstatistik... 9 1.5 Parametrische

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest.

1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest. Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

11./ 12. April 2006. Andrea Ossig andrea.ossig@web.de. Prof. Dr. Helmut Küchenhoff kuechenhoff@stat.uni-muenchen.de

11./ 12. April 2006. Andrea Ossig andrea.ossig@web.de. Prof. Dr. Helmut Küchenhoff kuechenhoff@stat.uni-muenchen.de Einführung in SPSS 11./ 12. April 2006 Andrea Ossig andrea.ossig@web.de Prof. Dr. Helmut Küchenhoff kuechenhoff@stat.uni-muenchen.de Monia Mahling monia.mahling@web.de 1 Vor /Nachteile von SPSS +/ intuitiv

Mehr

Mediator 9 - Lernprogramm

Mediator 9 - Lernprogramm Mediator 9 - Lernprogramm Ein Lernprogramm mit Mediator erstellen Mediator 9 bietet viele Möglichkeiten, CBT-Module (Computer Based Training = Computerunterstütztes Lernen) zu erstellen, z. B. Drag & Drop

Mehr

Christian FG Schendera. Regressionsanalyse. mit SPSS. 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG

Christian FG Schendera. Regressionsanalyse. mit SPSS. 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG Christian FG Schendera Regressionsanalyse mit SPSS 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG Inhalt Vorworte V 1 Korrelation 1 1.1 Einführung 1 1.2 Erste Voraussetzung: Das Skalenniveau

Mehr

Lineare Strukturgleichungsmodelle (LISREL) Konfirmatorische Faktorenanalyse (CFA)

Lineare Strukturgleichungsmodelle (LISREL) Konfirmatorische Faktorenanalyse (CFA) Interdisziplinäres Seminar Lineare Strukturgleichungsmodelle (LISREL) Konfirmatorische Faktorenanalyse (CFA) WS 2008/09 19.11.2008 Julia Schiele und Lucie Wink Dozenten: Prof. Dr. Bühner, Prof. Dr. Küchenhoff

Mehr

Univariate/ multivariate Ansätze. Klaus D. Kubinger. Test- und Beratungsstelle. Effektgrößen

Univariate/ multivariate Ansätze. Klaus D. Kubinger. Test- und Beratungsstelle. Effektgrößen Univariate/ multivariate Ansätze Klaus D. Kubinger Effektgrößen Rasch, D. & Kubinger, K.D. (2006). Statistik für das Psychologiestudium Mit Softwareunter-stützung zur Planung und Auswertung von Untersuchungen

Mehr

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Einfaktorielle Versuchspläne 27/40 Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Abweichung Einfach Differenz Helmert Wiederholt Vergleich Jede Gruppe mit Gesamtmittelwert

Mehr

SAS-Vertiefung zur Statistischen Software im SS 2010 Übungsaufgaben

SAS-Vertiefung zur Statistischen Software im SS 2010 Übungsaufgaben SAS-Vertiefung zur Statistischen Software im SS 2010 Übungsaufgaben Helmut Küchenhoff, Cornelia Oberhauser, Monia Mahling, Armin Monecke Im Folgenden gibt es 4 Aufgabenblöcke. Block 1: Daten einlesen,

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

Studiendesign/ Evaluierungsdesign

Studiendesign/ Evaluierungsdesign Jennifer Ziegert Studiendesign/ Evaluierungsdesign Praxisprojekt: Nutzerorientierte Evaluierung von Visualisierungen in Daffodil mittels Eyetracker Warum Studien /Evaluierungsdesign Das Design einer Untersuchung

Mehr

Multinomiale logistische Regression

Multinomiale logistische Regression Multinomiale logistische Regression Die multinomiale logistische Regression dient zur Schätzung von Gruppenzugehörigkeiten bzw. einer entsprechenden Wahrscheinlichkeit hierfür, wobei als abhänginge Variable

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

Kapitel 5 FRAGESTELLUNG 1. Öffne die Datei alctobac.sav.

Kapitel 5 FRAGESTELLUNG 1. Öffne die Datei alctobac.sav. Kapitel 5 FRAGESTELLUNG 1 Öffne die Datei alctobac.sav. Zuerst werden wir ein Streudiagramm erstellen, um einen grafischen Überblick von diesem Datensatz zu erhalten. Gehe dazu auf Grafiken / Streudiagramm

Mehr

Fortgeschrittene Statistik Logistische Regression

Fortgeschrittene Statistik Logistische Regression Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E

Mehr

Die Auswertung dyadischer Daten anhand des Partner-Effekt-Modells

Die Auswertung dyadischer Daten anhand des Partner-Effekt-Modells Die Auswertung dyadischer Daten anhand des Partner-Effekt-Modells Dorothea E. Dette-Hagenmeyer Was sind dyadische Daten? Dyadische Daten sind Daten von zwei oder mehreren Personen, die etwas miteinander

Mehr

Leseprobe aus: Budischewski, Kriens, SPSS für Einsteiger, ISBN 978-3-621-28183-6 2015 Beltz Verlag, Weinheim Basel

Leseprobe aus: Budischewski, Kriens, SPSS für Einsteiger, ISBN 978-3-621-28183-6 2015 Beltz Verlag, Weinheim Basel http://www.beltz.de/de/nc/verlagsgruppe-beltz/gesamtprogramm.html?isbn=978-3-621-28183-6 Vorwort LiebeLeserin, lieber Leser, wir arbeiten seit vielen Jahren mit SPSS. Diese Erfahrung aus Vorlesungen, Abschlussarbeiten,

Mehr

Die Teilzeitansprüche im deutschen Arbeitsrecht:

Die Teilzeitansprüche im deutschen Arbeitsrecht: Die Teilzeansprüche im deutschen Arbesrecht: Eine empirische Analyse ihrer Wirkung auf den betrieblichen Einsatz Teilzebeschäftigter Sozioökonomische Berichterstattung, soeb Werkstatt 21 Hans-Dieter Gerner

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 3A Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Mit den Berechnungsfunktionen LG10(?) und SQRT(?) in "Transformieren", "Berechnen" können logarithmierte Werte sowie die Quadratwurzel

Mehr

Lineare Modelle in R: Einweg-Varianzanalyse

Lineare Modelle in R: Einweg-Varianzanalyse Lineare Modelle in R: Einweg-Varianzanalyse Achim Zeileis 2009-02-20 1 Datenaufbereitung Wie schon in der Vorlesung wollen wir hier zur Illustration der Einweg-Analyse die logarithmierten Ausgaben der

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

Nichtparametrische statistische Verfahren

Nichtparametrische statistische Verfahren Nichtparametrische statistische Verfahren (im Wesentlichen Analyse von Abhängigkeiten) Kategorien von nichtparametrischen Methoden Beispiel für Rangsummentests: Wilcoxon-Test / U-Test Varianzanalysen 1-faktorielle

Mehr

Einführung in statistische Testmethoden

Einführung in statistische Testmethoden Einführung in statistische Testmethoden und die Bearbeitung von Messdaten mit Excel 1. Beispielhafte Einführung in den Gebrauch von Testmethoden 2. Typen von Messwerten, Verteilungen 3. Mittelwert, Varianz,

Mehr

10 Anwenderfreundlich mit Makros

10 Anwenderfreundlich mit Makros 10 Anwenderfreundlich mit Makros»Ogni bel gioco dura poco. Alles Schöne hat einmal ein Ende.«Dies ist das letzte Kapitel, das sich schwerpunktmäßig mit Makros beschäftigt. Aber keine Angst, VBA ist ja

Mehr

Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X.

Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X. Lineare Regression Einfache Regression Beispieldatensatz: trinkgeld.sav Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X. H0: Y lässt sich nicht durch X erklären, das heißt

Mehr

Veranstaltungsort Bildungsherberge der Studierendenschaft der FernUniversität Hagen

Veranstaltungsort Bildungsherberge der Studierendenschaft der FernUniversität Hagen Bildungsurlaub-Seminare: Lerninhalte und Programm Seminartitel SPSS für Psychologen/innen (BH15113) Termin Mo, den 18.05.bis Fr, den 22.05.2015 (40 UStd.) Veranstaltungsort Bildungsherberge der Studierendenschaft

Mehr

Wertetabelle für eine Gleichung

Wertetabelle für eine Gleichung 1 Wertetabelle für eine Gleichung Wie läßt sich für eine gegebene Gleichung eine Wertetabelle erstellen? - um die Daten zu exportieren - um die Daten in einem Plot darzustellen Wir betrachten diese SigmaPlot-Funktionen

Mehr

8. Vergleich von zwei Gruppen

8. Vergleich von zwei Gruppen 8. Vergleich von zwei Gruppen Unabhängige und abhängige Gruppen Parametrische/Nichtparametrische Vergl. Für diskrete/qualitative Variablen 10 Binomialtest 10 Chiquadrat-Test 10 Fishers exakter Test Für

Mehr

Übungsserie Nr. 10 mit Lösungen

Übungsserie Nr. 10 mit Lösungen Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung:

Mehr

Kapitel 7: Varianzanalyse mit Messwiederholung

Kapitel 7: Varianzanalyse mit Messwiederholung Kapitel 7: Varianzanalyse mit Messwiederholung Durchführung einer einfaktoriellen Varianzanalyse mit Messwiederholung 1 Durchführung einer zweifaktoriellen Varianzanalyse mit Messwiederholung auf einem

Mehr

Entwurf von Algorithmen - Kontrollstrukturen

Entwurf von Algorithmen - Kontrollstrukturen Entwurf von Algorithmen - Kontrollstrukturen Eine wichtige Phase in der Entwicklung von Computerprogrammen ist der Entwurf von Algorithmen. Dieser Arbeitsschritt vor dem Schreiben des Programmes in einer

Mehr

Gesundheitsökonomische Forschung auf dem Gebiet der Depression: Status Quo und Perspektiven

Gesundheitsökonomische Forschung auf dem Gebiet der Depression: Status Quo und Perspektiven Gesundheitsökonomische Forschung auf dem Gebiet der Depression: Status Quo und Perspektiven Symposium 10 Jahre Depressionsforschung im Kompetenznetz Depression Suizidalität München, 5. November 2009 Prof.

Mehr

Mediator-Effekte in der Regressionsanalyse (direkte, indirekte und totale Effekte)

Mediator-Effekte in der Regressionsanalyse (direkte, indirekte und totale Effekte) Version 1.3; Januar 007 Mediator-Effekte in der Regressionsanalyse (direkte, indirekte und totale Effekte) von Dieter Urban und Jochen Mayerl 1 Zum Inhalt: In dieser Ergänzung werden auf praxisorientierte

Mehr

Quantitative Methoden der Bildungsforschung

Quantitative Methoden der Bildungsforschung Glieung Wieholung Korrelationen Grundlagen lineare Regression Lineare Regression in SPSS Übung Wieholung Korrelationen Standardisiertes Zusammenhangsmaß (unstandardisiert: Kovarianz) linearer Zusammenhang

Mehr

Univariate Lineare Regression. (eine unabhängige Variable)

Univariate Lineare Regression. (eine unabhängige Variable) Univariate Lineare Regression (eine unabhängige Variable) Lineare Regression y=a+bx Präzise lineare Beziehung a.. Intercept b..anstieg y..abhängige Variable x..unabhängige Variable Lineare Regression y=a+bx+e

Mehr

Auswerten mit Excel. Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro

Auswerten mit Excel. Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro Auswerten mit Excel Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro 1. Pivot-Tabellen erstellen: In der Datenmaske in eine beliebige Zelle klicken Registerkarte Einfügen

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS Sommersemester 2009, Statistik mit SPSS 28. August 2009 28. August 2009 Statistik Dozentin: mit Anja SPSS Mays 1 Überblick 1. Korrelation vs. Regression 2. Ziel der Regressionsanalyse 3. Syntax für den

Mehr

Dokumentation Projekt Virtuelles Tagebuch

Dokumentation Projekt Virtuelles Tagebuch Priv.Doz. Dr. Michael Hahsler Institut für Informationswirtschaft Dokumentation Projekt (Matr. Nr. 9806106) - 1 - 1 Problembeschreibung Das Ziel dieses Projektes ist es, ein Tagebuch in elektronischer

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 29. Mai 2006 Hinweise:

Mehr

High Definition SAP? Ein Erfahrungsbericht

High Definition SAP? Ein Erfahrungsbericht High Definition SAP? Ein Erfahrungsbericht Ich habe ein neues Notebook: Lenovo T540p. Ein tolles Gerät! Schnell, lautlos und eine Auflösung von 2880 1620 Bildpunkten. Bringt die hohe Auflösung etwas bei

Mehr

Nichtparametrische Analyse longitudinaler Daten in faktoriellen Experimenten. Frank Konietschke

Nichtparametrische Analyse longitudinaler Daten in faktoriellen Experimenten. Frank Konietschke Nichtparametrische Analyse longitudinaler Daten in faktoriellen Experimenten Frank Konietschke Abteilung für Medizinische Statistik Universität Göttingen 1 Übersicht Beispiele CGI (repeated measures) γ-gt

Mehr

Skript 2 Import Excel-Datei

Skript 2 Import Excel-Datei SPSS 22 Skript 2 Import Excel-Datei Ziel: Daten aus Excel-Dateien in SPSS öffnen Statistische Daten werden häufig im Excel-Format (.xls oder.xlsx) bereitgestellt, zum Beispiel vom statistischen Bundesamt

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Kapitel 3: Interpretationen

Kapitel 3: Interpretationen Kapitel 3: 1. Interpretation von Outputs allgemein... 1 2. Interpretation von Signifikanzen... 1 2.1. Signifikanztests / Punktschätzer... 1 2.2. Konfidenzintervalle... 2 3. Interpretation von Parametern...

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Fortgeschrittenes Programmieren mit R. Christoph Beck. Di, 14:00-15:30 (3065)

Fortgeschrittenes Programmieren mit R. Christoph Beck. Di, 14:00-15:30 (3065) Christoph Beck Di, 14:00-15:30 (3065) Packages / Pakete in R Pakete in R Erweiterungen der (Basis)-Funktionalitäten in R Basis-Pakete Zusätzliche Pakete Base packages base Base R functions (and datasets

Mehr

IBM SPSS Statistics Version 22. Konfigurieren von Technologie für behindertengerechte Bedienung

IBM SPSS Statistics Version 22. Konfigurieren von Technologie für behindertengerechte Bedienung IBM SPSS Statistics Version 22 Konfigurieren von Technologie für behindertengerechte Bedienung Inhaltsverzeichnis Assistive Technology Software..... 1 Windows-Software............ 1 Mac OS-Software.............

Mehr

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln Häufigkeitstabellen Menüpunkt Data PivotTable Report (bzw. entsprechendes Icon): wähle Data Range (Zellen, die die Daten enthalten + Zelle mit Variablenname) wähle kategoriale Variable für Spalten- oder

Mehr

17.1.2014 Einführung in die Programmierung Laborübung bei Korcan Y. Kirkici. 12.Übung 13.1. bis 17.1.2014

17.1.2014 Einführung in die Programmierung Laborübung bei Korcan Y. Kirkici. 12.Übung 13.1. bis 17.1.2014 17.1.2014 Einführung in die Programmierung Laborübung bei Korcan Y. Kirkici 12.Übung 13.1. bis 17.1.2014 1 BEFRAGUNG http://1.bp.blogspot.com/- waaowrew9gc/tuhgqro4u_i/aaaaaaaaaey/3xhl 4Va2SOQ/s1600/crying%2Bmeme.png

Mehr

Fortgeschrittene Statistik SPSS Einführung

Fortgeschrittene Statistik SPSS Einführung Fortgeschrittene Statistik SPSS Einführung Q U A N T I T A T I V E M E R K M A L E, Q U A L I T A T I V E M E R K M A L E, A U S P R Ä G U N G E N, C O D I E R U N G E N, S K A L E N N I V E A U, D A T

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Letzte Worte zur Inferenzstatistik, v. a. zu Signifikanztests Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische

Mehr

Titel anhand der der Präsentation. nicht fett geschrieben

Titel anhand der der Präsentation. nicht fett geschrieben Schätzung von Vollzeitäquivalenten Titel anhand der der Präsentation AHV-Lohndaten wenn nötig Jann Potteratmit und Monique Untertitel Graf Bundesamt für Statistik, Statistische Methoden METH nicht fett

Mehr

Pfadanalyse. 1. Grundlegende Verfahren. Bacher, SoSe2007

Pfadanalyse. 1. Grundlegende Verfahren. Bacher, SoSe2007 Pfadanalyse Bacher, SoSe2007 1. Grundlegende Verfahren Explorative Pfadanalyse: Kausale Beziehungen zwischen Variablen werden aufgedeckt, erforderlich ist eine kausale Anordnung der Variablen. Konfirmatorische

Mehr

Im Modell der Varianzanalyse (mit festen Effekten) ist das. aus dem Durchschnittsmesswert für y plus dem Effekt des.

Im Modell der Varianzanalyse (mit festen Effekten) ist das. aus dem Durchschnittsmesswert für y plus dem Effekt des. Einfatorielle Varianzanalyse Varianzanalyse untersucht den Einfluss verschiedener Bedingungen ( = nominalsalierte(r) Variable(r)) auf eine metrische Variable. Die Bedingungen heißen auch atoren und ihre

Mehr

Skizze zur Veranschaulichung der Legendretransformation

Skizze zur Veranschaulichung der Legendretransformation 9 Die thermodynamischen Funktionen G und H Ehe das Schema des vorherigen Abschnittes zur Konstruktion weiterer thermodynamischer Potentiale zu Ende gebracht wird, kurz einige Erläuterungen zur Legendretransformation.

Mehr

1.3 Die Beurteilung von Testleistungen

1.3 Die Beurteilung von Testleistungen 1.3 Die Beurteilung von Testleistungen Um das Testergebnis einer Vp zu interpretieren und daraus diagnostische Urteile ableiten zu können, benötigen wir einen Vergleichsmaßstab. Im Falle des klassischen

Mehr

Log-lineare Analyse I

Log-lineare Analyse I 1 Log-lineare Analyse I Einleitung Die log-lineare Analysemethode wurde von L.A. Goodman in den 60er und 70er Jahren entwickelt. Sie dient zur Analyse von Zusammenhängen in mehrdimensionalen Kontingenztafeln

Mehr

Waldwachstumsmodelle Silva und BWINPro

Waldwachstumsmodelle Silva und BWINPro Waldwachstumsmodelle Silva und BWINPro Jürgen Zell LV: Dynamische Modelle in der Waldökosystemforschung, 28.05.2013 Inhalt Durchmesserverteilung: Daten, Weibull-Anpassung, lineare Regression der Weibull-Parameter

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Einfache Varianzanalyse für abhängige

Einfache Varianzanalyse für abhängige Einfache Varianzanalyse für abhängige Stichproben Wie beim t-test gibt es auch bei der VA eine Alternative für abhängige Stichproben. Anmerkung: Was man unter abhängigen Stichproben versteht und wie diese

Mehr

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Aufgabe 1: Grundzüge der Wahrscheinlichkeitsrechnung 19 P. Als Manager eines großen

Mehr

Mediator- und Moderatoranalyse per multipler Regression mit SPSS

Mediator- und Moderatoranalyse per multipler Regression mit SPSS Universität Trier Zentrum für Informations-, Medienund Kommunikationstechnologie (ZIMK) Bernhard Baltes-Götz Mediator- und Moderatoranalyse per multipler Regression mit SPSS 5 (Rev. 576) Herausgeber: Zentrum

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 2 Multivariate Verfahren Musterlösung Aufgabe 1 (28 Punkte) Der Marketing-Leiter einer Lebensmittelherstellers möchte herausfinden, mit welchem Richtpreis eine neue Joghurt-Marke auf

Mehr

Varianzanalyse (ANOVA: analysis of variance)

Varianzanalyse (ANOVA: analysis of variance) Varianzanalyse (AOVA: analysis of variance) Einfaktorielle VA Auf der Basis von zwei Stichproben wird bezüglich der Gleichheit der Mittelwerte getestet. Variablen müssen Variablen nur nominalskaliert sein.

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

Erweiterung der Aufgabe. Die Notenberechnung soll nicht nur für einen Schüler, sondern für bis zu 35 Schüler gehen:

Erweiterung der Aufgabe. Die Notenberechnung soll nicht nur für einen Schüler, sondern für bis zu 35 Schüler gehen: VBA Programmierung mit Excel Schleifen 1/6 Erweiterung der Aufgabe Die Notenberechnung soll nicht nur für einen Schüler, sondern für bis zu 35 Schüler gehen: Es müssen also 11 (B L) x 35 = 385 Zellen berücksichtigt

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08 Computergestützte Methoden Master of Science Prof. Dr. G. H. Franke WS 07/08 1 Seminarübersicht 1. Einführung 2. Recherchen mit Datenbanken 3. Erstellung eines Datenfeldes 4. Skalenniveau und Skalierung

Mehr

Berechnung von Strukturgleichungsmodellen mit Amos. Im folgenden kurze Einführung: Arbeiten mit Amos Graphics

Berechnung von Strukturgleichungsmodellen mit Amos. Im folgenden kurze Einführung: Arbeiten mit Amos Graphics Oliver Schiling Handout:: Amos 6.0 / Graphics 1 Berechnung von Strukturgleichungsmodellen mit Amos Was kann Amos? Klassische Strukturgleichungsmodelle (Kovarianzstrukturanalysen, Pfadmodelle mit/ohne latente

Mehr

QuickStart. «/ Scores» Kurzanleitung

QuickStart. «/ Scores» Kurzanleitung QuickStart «/ Scores» Kurzanleitung 1. Anwendungsfelder Mit Scores bietet Ihnen onlineumfragen.com eine geniale, exklusive Funktion zur vierfältigen, multivariaten Summierung von antwortabhängigen Punktzahlen.

Mehr

Studiendesign und Statistik: Interpretation publizierter klinischer Daten

Studiendesign und Statistik: Interpretation publizierter klinischer Daten Studiendesign und Statistik: Interpretation publizierter klinischer Daten Dr. Antje Jahn Institut für Medizinische Biometrie, Epidemiologie und Informatik Universitätsmedizin Mainz Hämatologie im Wandel,

Mehr

Herzlich Willkommen zur Vorlesung Statistik

Herzlich Willkommen zur Vorlesung Statistik Herzlich Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Kovarianz und Korrelation Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Einfaktorielle Rangvarianzanalyse mit Messwiederholungen

Einfaktorielle Rangvarianzanalyse mit Messwiederholungen Einfaktorielle Rangvarianzanalyse mit Messwiederholungen Inhaltsverzeichnis Einfaktorielle Rangvarianzanalyse mit Messwiederholungen... 2 Lernhinweise... 2 Einführung... 3 Theorie (1-3)... 3 Teil 1 -

Mehr

1 Vom Problem zum Programm

1 Vom Problem zum Programm Hintergrundinformationen zur Vorlesung GRUNDLAGEN DER INFORMATIK I Studiengang Elektrotechnik WS 02/03 AG Betriebssysteme FB3 Kirsten Berkenkötter 1 Vom Problem zum Programm Aufgabenstellung analysieren

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Korrelation vs. Regression 2. Ziele der Regressionsanalyse 3. Syntax für

Mehr

Lösung zu Kapitel 11: Beispiel 1

Lösung zu Kapitel 11: Beispiel 1 Lösung zu Kapitel 11: Beispiel 1 Eine Untersuchung bei 253 Personen zur Kundenzufriedenheit mit einer Einzelhandelskette im Südosten der USA enthält Variablen mit sozialstatistischen Daten der befragten

Mehr

Punkt 1 bis 11: -Anmeldung bei Schlecker und 1-8 -Herunterladen der Software

Punkt 1 bis 11: -Anmeldung bei Schlecker und 1-8 -Herunterladen der Software Wie erzeugt man ein Fotobuch im Internet bei Schlecker Seite Punkt 1 bis 11: -Anmeldung bei Schlecker und 1-8 -Herunterladen der Software Punkt 12 bis 24: -Wir arbeiten mit der Software 8-16 -Erstellung

Mehr