Quantengravitation: Keine Experimente, aber Mathematik

Größe: px
Ab Seite anzeigen:

Download "Quantengravitation: Keine Experimente, aber Mathematik"

Transkript

1 Informatik/Mathematik/Komplexe Systeme Quantengravitation: Keine Experimente, aber Mathematik Fleischhack, Christian Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig Arbeitsbereich - Methoden der mathematischen Physik Korrespondierender Autor Fleischhack, Christian, Zusammenfassung Allgemeine Relativitätstheorie und Quantentheorie konnten bislang nicht zu einer konsistenten Theorie der Quantengravitation zusammengefasst werden. Leider stehen auch noch keine Experimente zur Verfügung, die Hinweise auf die vereinigte Theorie geben. Dennoch ist die Mathematik bereits in der Lage, fundierte Aussagen über mögliche Gestalten der Quantengravitation zu treffen. Abstract General relativity and quantum theory have not been merged into a consistent theory of quantum gravity yet. Unfortunately, to date, there are no experiments available that may disclose parts of the unified theory. Nevertheless, mathematics is already in a position to provide us with rigorous statements on how quantum gravity may look like. Kaum zwei andere Wissenschaften profitieren seit Jahrhunderten derart stark voneinander wie Mathematik und Physik. Vor allem das Suchen nach einer möglichst genauen Beschreibung der Natur durch möglichst einfache und möglichst wenige Prinzipien trieb die Entwicklung rasant voran. Spätestens seit Beginn des 20. Jahrhunderts sind viele Begriffe der Physik nicht mehr mit unseren Erfahrungen aus der täglichen Wahrnehmung unserer Umwelt vereinbar Raumzeit in der Relativitätstheorie, Welle-Teilchen-Dualismus in der Quantenmechanik und viele andere Dinge entziehen sich zunächst dem gesunden Menschenverstand. Sie wurden nur begreifbar, wenn sie mit Hilfe der Mathematik erklärt werden konnten. Dabei kam es häufig vor, dass die dazu notwendige mathematische Theorie noch nicht ausgereift oder noch gar nicht vorhanden war, so dass Physiker zu Vorreitern bei der Entwicklung neuer Teilgebiete der Mathematik wurden. Andererseits ist die Mathematik dank ihrer unschlagbaren Präzision in der Lage, fundamentale Zusammenhänge in der Natur aufzudecken, zugleich aber auch die genauen Grenzen ihrer Schlussfolgerungen zu bestimmen. Dies ist umso wichtiger in Bereichen, die experimentell bislang völlig unzugänglich sind, wie beispielsweise der Quantengravitation. Deren mathematische Grundlagen bilden einen Forschungsschwerpunkt am Max-Planck-Institut für Mathematik in den Naturwissenschaften in Leipzig. Quantengravitation: Warum? Die mächtigsten Stützpfeiler der modernen theoretischen Physik sind die Allgemeine Relativitätstheorie und die Quantentheorie. Sie beschreiben Phänomene im Großen bzw. im Kleinen mit unglaublicher Genauigkeit seien es Gestirne oder Elementarteilchen. Beiden Theorien gemein sind Gültigkeitsgrenzen: Die naive Annahme, sie wären in allen Größenordnungen uneingeschränkt gültig, führte zu äußerst merkwürdigen Effekten, ja Widersprüchen.

2 Tätigkeitsbericht 2006 Christian Fleischhack Quantengravitation: Keine Experimente, aber Mathematik Um dies zu verdeutlichen, führen wir das folgende Gedankenexperiment durch. Nehmen wir an, wir wollen irgendein Objekt untersuchen, welches innerhalb eines kleinen Kästchens lokalisiert ist. Um immer genauer feststellen zu können, wie groß das Objekt ist und wo es sich befindet, verkleinern wir das Kästchen sukzessive. Nach der Heisenbergschen Unschärferelation der Quantentheorie bedeutet dies, dass der Impuls des Teilchens immer ungenauer bestimmt ist, naiv also immer größer wird. Steigt der Impuls, so steigt die Energie, also nach der Speziellen Relativitätstheorie auch die Masse des Objekts an. Hohe Massenkonzentrationen führen schließlich nach der Allgemeinen Relativitätstheorie dazu, dass es für das Licht immer schwieriger wird, dieser Masse zu entfliehen; am Ende bildet sich ein so genannter Ereignishorizont aus, dessen Radius proportional zur umschlossenen Masse ist und aus dessen Innerem keine Information mehr nach außen dringen kann. Kurz: Wird das Kästchen kleiner, das Objekt also lokalisierter, so wird der Radius des Ereignishorizonts des Objekts größer. Das hat die verblüffende Konsequenz, dass irgendwann das Objekt hinter seinem eigenen Ereignishorizont verschwindet. Es wird prinzipiell unbeobachtbar. Sollte sich die Physik damit zufrieden geben? Ein Pragmatiker würde diese Frage zunächst bejahen. Denn Raumbereiche werden erst dann unzugänglich, wenn ihre Abmessungen die Plancklänge unterschreiten. Hierbei ist h das Plancksche Wirkungsquantum, G die Newtonsche Gravitationskonstante und c die Lichtgeschwindigkeit. Die Plancklänge selbst ist unvorstellbar klein. Sie liegt bei etwa m oder in Dezimalschreibweise bei etwa 0, m. Würde man einen Menschen beschreiben wollen, indem man ihn in kleine Würfel dieser Größe aufteilt, so entspricht dies ungefähr der Zerlegung einer Galaxis in atomkerngroße Bereiche. Es ist also im alltäglichen Leben kaum damit zu rechnen, dass Quantengravitationseffekte eine Rolle spielen. Physik beschäftigt sich aber nicht nur mit dem Alltäglichen. Jenseits des obigen Gedankenexperiments gibt es durchaus reale Situationen, in denen Gravitation und Quantentheorie an ihre Grenzen geraten. Einstein erkannte schon 1916, dass Elektronen aufgrund ihrer inneratomaren Bewegung Gravitationsenergie abstrahlen müssten, was letztlich zum Kollaps der Atome führen würde. Dieser wird aber nicht beobachtet. Hawking und Penrose fanden 1970, dass unter sehr allgemeinen Annahmen Singularitäten in der Raumzeit auftreten die Allgemeine Relativitätstheorie sagt ihren eigenen Zusammenbruch voraus. Am bekanntesten ist die Singularität des Universums, der Urknall. Hier ist das ganze Weltall in einem Raum zusammengepfercht, dessen Ausmaße weit kleiner sind als die Plancklänge. Quanteneffekte können dann nicht mehr vernachlässigt werden. Vielleicht sind diese wiederum für die Ausbildung von kosmischen Strukturen verantwortlich. Schließlich könnte die Gravitation auch die ständig auftretenden Unendlichkeiten in der Quantenfeldtheorie beseitigen, die durch die dort notwendige Integration über alle Energieskalen entstehen. Denn die Plancklänge ermöglicht die Einführung einer natürlichen unteren Schranke für die Länge, also auch einer oberen für die Energie. So könnte die Vereinigung von Allgemeiner Relativitätstheorie und Quantentheorie nicht nur zu neuen Erkenntnissen über die Natur führen, sondern zugleich auch die konzeptionellen und technischen Probleme der einzelnen Theorien klären Max-Planck-Gesellschaft

3 Gravitation und Quantentheorie Bislang gibt es noch keine experimentell bestätigte Theorie der Quantengravitation es gibt einfach noch keine Experimente. Deshalb können die bisherigen Theorien nur aus konzeptioneller Hinsicht bewertet werden. Die Allgemeine Relativitätstheorie besagt kurz: Gravitation ist Geometrie. Insbesondere gilt das Prinzip der allgemeinen Kovarianz, d. h., es gibt keinen ausgezeichneten Beobachter. Alle Koordinatensysteme, so krummlinig sie auch sein mögen, sind gleichberechtigt. Damit haben die einzelnen Punkte der Raumzeit keinerlei physikalische Relevanz. Es hat nur Sinn, Punkten eine physikalische Bedeutung zuzuordnen, wenn sie intrinsisch definiert sind, z. B. als Schnittpunkte zweier Weltlinien. Mathematisch bedeutet dies, dass die Allgemeine Relativitätstheorie invariant ist unter allen Transformationen, die die Raumzeit in sich selbst überführen, ohne sie zu zerreißen. Solche gummiartigen Abbildungen werden Diffeomorphismen genannt. Die Quantentheorie besagt kurz: Die Natur ist zufällig. Die möglichen Quantenzustände bilden einen Hilbertraum. Dies ist ein linearer Raum, der zugleich Skalarprodukte zwischen den Zuständen erlaubt. Die physikalischen Größen, wie Volumen oder Drehimpuls, werden quantisiert, indem sie durch Operatoren beschrieben werden. Diese bilden Zustände auf Zustände ab und kodieren in ihrem Spektrum die möglichen Messwerte der ihnen zugeordneten Größen. Zentrale dynamische Größe der Allgemeinen Relativitätstheorie ist die Metrik. Sie misst Abstände und bestimmt die Krümmung der Raumzeit. Sie ergibt sich aus dem Materie- und Energieinhalt der Raumzeit. Aus ihr ergeben sich Vorher und Nachher, also die kausalen Beziehungen in der Theorie. Die Quantentheorie dagegen untersucht die Wechselwirkung von Objekten, die wiederum von deren Abstand, also von der Raumzeitmetrik abhängig ist. Letztere wird als klassisch, d. h. nichtquantisiert, und nichtdynamisch angenommen. In einer Theorie der Quantengravitation müsste also eigentlich die quantisierte Raumzeitmetrik von der nichtquantisierten abhängen. Ist es trotz dieses eklatanten konzeptionellen Widerspruchs möglich, eine mathematisch konsistente und diffeomorphismeninvariante Quantentheorie zu konstruieren? Schleifen-Quantengravitation Die in den 1990er Jahren von Ashtekar, Lewandowski, Rovelli und Smolin entwickelte Schleifen- Quantengravitation (loop quantum gravity) ist einer der meistversprechenden Kandidaten für eine solche Theorie. Der Hilbertraum wird von den so genannten Spinnetzwerken gebildet, die bereits vor 40 Jahren von Penrose eingeführt worden waren. Dies sind endliche Graphen im Raum, deren Kanten halbzahlige Spinquantenzahlen zugeordnet sind. Anstelle der Raumzeitmetrik werden aber nun die von ihr abhängigen Größen, wie Flächeninhalt und Volumen, quantisiert. Dabei stellt sich heraus, dass diese nur noch diskrete Werte annehmen können. Zugleich ist diese Diskretisierung bereits auf atomaren Skalen unmessbar klein (die Differenz zwischen benachbarten Flächeninhalten beträgt nur Bruchteile von l 2 Pl), so dass sie in der Regel vernachlässigt werden kann. Dennoch bleibt die fundamentale Frage, ob die obige Wahl des Hilbertraums gerechtfertigt werden kann. Hierfür blicken wir zunächst noch 100 Jahre zurück.

4 Tätigkeitsbericht 2006 Christian Fleischhack Quantengravitation: Keine Experimente, aber Mathematik Quantenmechanik: Welche? Planck hatte 1900 die Existenz von Quanten postuliert, und man versuchte, diese mit der Mechanik in Verbindung zu bringen. Es gab eine Reihe von phänomenologischen Ansätzen, beispielsweise das Bohrsche Atommodell, doch es fehlte das mathematische Fundament. Ein Vierteljahrhundert nach Plancks Quantenhypothese kam es zum entscheidenden Durchbruch entwickelte Heisenberg die Matrizenmechanik, ein Jahr später Schrödinger die Wellenmechanik. Beide stellten die Hamiltonfunktion in den Mittelpunkt, die die Gesamtenergie eines mechanischen Systems in Abhängigkeit von Ort und Impuls beschreibt. In der Matrizenmechanik werden letztere durch Matrizen mit geeigneten Vertauschungsrelationen ersetzt, in der Wellenmechanik durch Differential- bzw. Multiplikationsoperatoren. Damit wird auch die Hamiltonfunktion zu einer Matrix bzw. einem Differentialoperator. Verblüffenderweise lieferten beide die gleichen Spektren, d. h. die gleichen quantisierten Energiewerte. Und in der Tat bewies Schrödinger kurz darauf, dass beide Herangehensweisen mathematisch äquivalent sind. Trotzdem blieb die Frage offen, ob es nicht noch weitere Quantenmechaniken geben könnte. Stone und von Neumann lösten dieses Problem fünf Jahre später. Sie erkannten, dass alle möglichen Hilberträume und Darstellungen von Ort und Impuls äquivalent sind; vorausgesetzt, dass die physikalischen Grundgrößen eine gewisse Stetigkeit und Irreduzibilität aufweisen. Gibt es ein ähnliches Resultat auch für die Schleifen-Quantengravitation? Schleifen-Quantengravitation: Was ist erlaubt? Ein ähnliches Eindeutigkeitsresultat gilt tatsächlich. In dessen Zentrum steht die Darstellungstheorie der so genannten Weylalgebra, in welcher die Relationen zwischen den fundamentalen physikalischen Größen kodiert sind. In der Mechanik wird diese Algebra durch die exponierten Orte und Impulse gebildet, in der Schleifen-Quantengravitation durch die so genannten Paralleltransporte (Phasenverschiebungen mit Werten in einer speziellen Liegruppe) und die entsprechenden Flüsse. Dem Autor dieses Artikels gelang es nun zu zeigen, dass es (bis auf Äquivalenz und unter ähnlichen Zusatzannahmen wie oben im Falle der Quantenmechanik) nur genau einen Hilbertraum gibt, auf dem die Weylalgebra diffeomorphismeninvariant dargestellt werden kann. [1] Und dieser Hilbertraum ist genau der bereits oben beschriebene. Kurz darauf bewiesen Lewandowski, Okołów, Sahlmann und Thiemann (drei von ihnen sind bzw. waren Forscher am MPI für Gravitationsphysik in Potsdam) ein ähnliches Resultat für eine etwas anders definierte Algebra. [2] In beiden Fällen gelang der Nachweis unter Verwendung von Methoden aus der Funktionalanalysis, insbesondere der Darstellungstheorie von Operatoralgebren, und der Differentialgeometrie. Zurzeit untersuchen Paschke und Verch vom MPI für Mathematik in den Naturwissenschaften, inwieweit diese Resultate und Strukturen im Zusammenspiel von nichtkommutativer Geometrie und axiomatischer Quantenfeldtheorie beschrieben werden können. [3] Für die Schleifen-Quantengravitation sind die Eindeutigkeitsaussagen von enormer konzeptioneller Reichweite. Sie rechtfertigen eine Vielzahl von Ad-hoc-Annahmen, die bei der Entwicklung der Theorie gemacht wurden. Viel zu früh wäre es jedoch, an dieser Stelle bereits zu behaupten, die Theoreme belegen die Eindeutigkeit einer Quantengravitationstheorie. Die Mathematik selbst zeigt uns die Grenzen auf: Ihre Schlussfolgerungen gelten nur unter den jeweiligen, präzis formulierten Voraussetzungen. Erst wenn diese auch physikalisch als gegeben angesehen werden können und dieses Kriterium ist im Falle der Schleifen-Quantengravitation noch nicht erfüllt, erhalten die mathematischen Aussagen physikalische Gültigkeit Max-Planck-Gesellschaft

5 Die Schleifen-Quantengravitation ist also keinesfalls so weit, eine oder gar die Quantengravitationstheorie zu sein. Es bleibt aus naturwissenschaftlicher wie auch aus philosophischer Sicht hochinteressant, ob und wie Quantentheorie und Allgemeine Relativitätstheorie miteinander in Einklang gebracht werden können. Das letzte Wort hat die Natur. Literaturhinweise [1] Ch. Fleischhack: Representations of the Weyl Algebra in Quantum Geometry. e-print: [2] J. Lewandowski, A. Okołów, H. Sahlmann, T. Thiemann: Uniqueness of diffeomorphism invariant states on holonomy-flux algebras. e-print: [3] M. Paschke, R. Verch: Local covariant quantum field theory over spectral geometries. Classical and Quantum Gravity 21, (2004).

Höhe, Breite, Länge & Zeit -gibt es mehr als diese vier bekannten Dimensionen?

Höhe, Breite, Länge & Zeit -gibt es mehr als diese vier bekannten Dimensionen? Höhe, Breite, Länge & Zeit -gibt es mehr als diese vier bekannten Dimensionen? Betti Hartmann Jacobs University Bremen Schlaues Haus Oldenburg, 11. März 2013 1884, Edwin Abbott: Flächenland eine Romanze

Mehr

Quantengravitation und das Problem der Zeit

Quantengravitation und das Problem der Zeit Quantengravitation und das Problem der Zeit Franz Embacher http://homepage.univie.ac.at/franz.embacher/ Fakultät für Physik der Universität Wien Text für die Ausstellung Keine ZEIT G.A.S.-station, 8. Oktober

Mehr

3PbÁTcfPbÁP]STaTÁFXbbT]bRWPUcbV[^bbPaÁ

3PbÁTcfPbÁP]STaTÁFXbbT]bRWPUcbV[^bbPaÁ 8]U^a\PcX^]bQ[Pcc 3PbTcfPbP]STaTFXbbT]bRWPUcbV[^bbPa Natürlich bilde ich mir nicht im Geringsten ein, über diese allgemeinen Dinge irgendetwas Neues oder auch nur Originelles sagen zu können. Albert Einstein

Mehr

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 1 8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 2 8.6.3 Beispiel: Orts- und Impuls-Erwartungswerte für

Mehr

Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie Quantenwahrscheinlichkeitstheorie Arbeitsgruppe Operatoralgebren und Quantenstochastik Leiter: Prof. Burkhard Kümmerer Wie groß ist die Wahrscheinlichkeit, zweimal hintereinander eine sechs zu würfeln?

Mehr

Hawking: Eine kurze Geschichte der Zeit

Hawking: Eine kurze Geschichte der Zeit Hawking: Eine kurze Geschichte der Zeit Claus Grupen SS 2008 Universität Siegen EinekurzeGeschichtederZeit p.1/109 Übersicht I Unsere Vorstellung vom Universum RaumundZeit Spezielle Relativitätstheorie

Mehr

Die Welt ist fast aus Nichts gemacht

Die Welt ist fast aus Nichts gemacht Die Welt ist fast aus Nichts gemacht Ein Gespräch mit dem Physiker Martinus Veltman beim 58. Nobelpreisträgertreffen in Lindau Am europäischen Kernforschungszentrum in Genf (CERN) wird in den nächsten

Mehr

QED Materie, Licht und das Nichts. Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht

QED Materie, Licht und das Nichts. Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht QED Materie, Licht und das Nichts 1 Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht Titel/Jahr: QED Materie, Licht und das Nichts (2005) Filmstudio: Sciencemotion Webseite des

Mehr

Berechnung und Zusamenstellung: Hans Cousto

Berechnung und Zusamenstellung: Hans Cousto Stimmtabellen zum Kammerton der Planckschen Maßeinheit der Zeit, zum Kammerton der reduzierten Planckschen Maßeinheit der Zeit und zum Ton der Einheit berechnet nach den Angaben von Norbert Böhm auf Basis

Mehr

Lehrplan Physik. Bildungsziele

Lehrplan Physik. Bildungsziele Lehrplan Physik Bildungsziele Physik erforscht mit experimentellen und theoretischen Methoden die messend erfassbaren und mathematisch beschreibbaren Erscheinungen und Vorgänge in der Natur. Der gymnasiale

Mehr

Gibt es verschiedene Arten unendlich? Dieter Wolke

Gibt es verschiedene Arten unendlich? Dieter Wolke Gibt es verschiedene Arten unendlich? Dieter Wolke 1 Zuerst zum Gebrauch des Wortes unendlich Es wird in der Mathematik in zwei unterschiedlichen Bedeutungen benutzt Erstens im Zusammenhang mit Funktionen

Mehr

Berufsmatura / Physik Seite 2/18

Berufsmatura / Physik Seite 2/18 Berufsmatura / Physik Seite 1/18 Schulinterner Lehrplan nach RLP 001 Gültig ab 005 Physik BM 1 SLP 005 Allgemeine Bildungsziele Physik erforscht mit experimentellen und theoretischen Methoden die messend

Mehr

Erfolge und Probleme des Standardmodells

Erfolge und Probleme des Standardmodells Erfolge und Probleme des Standardmodells Erfolge Probleme und Erweiterungen Teilchenhorizont Horizontproblem Flachheitsproblem Kosmische Inflation Einführung in die extragalaktische Astronomie Prof. Peter

Mehr

Die Klein-Gordon Gleichung

Die Klein-Gordon Gleichung Kapitel 5 Die Klein-Gordon Gleichung 5.1 Einleitung Die Gleichung für die Rutherford-Streuung ist ein sehr nützlicher Ansatz, um die Streuung von geladenen Teilchen zu studieren. Viele Aspekte sind aber

Mehr

Kapitel 7. Bosonfelder: Die Klein-Gordon Gleichung. 7.2 Die Klein-Gordon-Gleichung. 7.1 Einleitung

Kapitel 7. Bosonfelder: Die Klein-Gordon Gleichung. 7.2 Die Klein-Gordon-Gleichung. 7.1 Einleitung 10 Teilchenphysik, HS 007-SS 008, Prof. A. Rubbia ETH Zurich) 7. Die Klein-Gordon-Gleichung Kapitel 7 Bosonfelder: Die Klein-Gordon Gleichung Wir können im Prinzip die Schrödinger-Gleichung einfach erweitern.

Mehr

Individuelles Bachelorstudium. Software Engineering for Physics

Individuelles Bachelorstudium. Software Engineering for Physics Individuelles Bachelorstudium Software Engineering for Physics 1 Qualifikationsprofil Das individuelle Bachelorstudium Software Engineering for Physics vermittelt eine breite, praktische und theoretische

Mehr

Gutenberg-Gymnasium, Schulinternes Curriculum im Fach Physik, Klasse 9

Gutenberg-Gymnasium, Schulinternes Curriculum im Fach Physik, Klasse 9 Effiziente Energienutzung: eine wichtige Zukunftsaufgabe der Physik Strom für zu Hause Energie, Leistung, Wirkungsgrad Energie und Leistung in Mechanik, Elektrik und Wärmelehre Elektromotor und Generator

Mehr

Was ist wissenschaftlich?

Was ist wissenschaftlich? 1 Niklas Lenhard-Schramm (Westfälische Wilhelms Universität Münster) Was ist wissenschaftlich? Was ist wissenschaftlich? Eine Auseinandersetzung mit dieser Frage ist lohnenswert für jeden, der wissenschaftliches

Mehr

Lehrplan für das Grundlagenfach Physik

Lehrplan für das Grundlagenfach Physik (August 2011) Lehrplan für das Grundlagenfach Physik Richtziele des schweizerischen Rahmenlehrplans Grundkenntnisse 1.1 Physikalische Grunderscheinungen und wichtige technische kennen, ihre Zusammenhänge

Mehr

Molekularfeldtheorie (MFT)

Molekularfeldtheorie (MFT) 29.06.2006 Motivation Anwendungen der MFT MFT-Herleitung mittels Variationsansatz und Anwendung Grenzen der Anwendung der MFT Motivation Meisten Probleme nur unter Berücksichtigung von Wechselwirkungen

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Telezentrische Meßtechnik

Telezentrische Meßtechnik Telezentrische Meßtechnik Beidseitige Telezentrie - eine Voraussetzung für hochgenaue optische Meßtechnik Autor : Dr. Rolf Wartmann, Bad Kreuznach In den letzten Jahren erlebten die Techniken der berührungslosen,

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

II. Klein Gordon-Gleichung

II. Klein Gordon-Gleichung II. Klein Gordon-Gleichung Dieses Kapitel und die zwei darauf folgenden befassen sich mit relativistischen Wellengleichungen, 1 für Teilchen mit dem Spin 0 (hiernach), 2 (Kap. III) oder 1 (Kap. IV). In

Mehr

Rechnen mit ultra-kalten Atomen: vom Quantensimulator zum Quantencomputer?

Rechnen mit ultra-kalten Atomen: vom Quantensimulator zum Quantencomputer? Rechnen mit ultra-kalten Atomen: vom Quantensimulator zum Quantencomputer? Uwe-Jens Wiese Albert Einstein Center for Fundamental Physics Institute for Theoretical Physics, Bern University Physik am Freitag

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben?

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben? 5.1. Kinetische Gastheorie z.b: He-Gas : 3 10 Atome/cm diese wechselwirken über die elektrische Kraft: Materie besteht aus sehr vielen Atomen: gehorchen den Gesetzen der Mechanik Ziel: Verständnis der

Mehr

Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II Experimente mit Elektronen

Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II Experimente mit Elektronen 1 Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II xperimente mit lektronen 1 1.1 U dient zum rwärmen der Glühkathode in der Vakuumröhre. Durch den glühelektrischen

Mehr

Klassenstufe 7. Überblick,Physik im Alltag. 1. Einführung in die Physik. 2.Optik 2.1. Ausbreitung des Lichtes

Klassenstufe 7. Überblick,Physik im Alltag. 1. Einführung in die Physik. 2.Optik 2.1. Ausbreitung des Lichtes Schulinterner Lehrplan der DS Las Palmas im Fach Physik Klassenstufe 7 Lerninhalte 1. Einführung in die Physik Überblick,Physik im Alltag 2.Optik 2.1. Ausbreitung des Lichtes Eigenschaften des Lichtes,Lichtquellen,Beleuchtete

Mehr

Die Cantor-Funktion. Stephan Welz

Die Cantor-Funktion. Stephan Welz Die Cantor-Funktion Stephan Welz Ausarbeitung zum Vortrag im Proseminar Überraschungen und Gegenbeispiele in der Analysis (Sommersemester 2009, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In dieser

Mehr

Pressemitteilung. Produktoptimierung mittels Data-Mining BMW setzt auf ClearVu Analytics. Dortmund, 30.01.2012

Pressemitteilung. Produktoptimierung mittels Data-Mining BMW setzt auf ClearVu Analytics. Dortmund, 30.01.2012 Pressemitteilung ANSCHRIFT Joseph-von-Fraunhofer-Str.20 44227 Dortmund TEL +49 (0)231 97 00-340 FAX +49 (0)231 97 00-343 MAIL kontakt@divis-gmbh.de WEB www.divis-gmbh.de Dortmund, 30.01.2012 Produktoptimierung

Mehr

Sprechen wir über Zahlen (Karl-Heinz Wolff)

Sprechen wir über Zahlen (Karl-Heinz Wolff) Sprechen wir über Zahlen (Karl-Heinz Wolff) Die Überschrift ist insoweit irreführend, als der Autor ja schreibt und nicht mit dem Leser spricht. Was Mathematik im allgemeinen und Zahlen im besonderen betrifft,

Mehr

Messgeräte: Mess-System-Analyse und Messmittelfähigkeit

Messgeräte: Mess-System-Analyse und Messmittelfähigkeit Messgeräte: Mess-System-Analyse und Messmittelfähigkeit Andreas Berlin 14. Juli 2009 Bachelor-Seminar: Messen und Statistik Inhalt: 1 Aspekte einer Messung 2 Mess-System-Analyse 2.1 ANOVA-Methode 2.2 Maße

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen 1. Von der Wissenschaft zur Technik 2. Die Vollendung des Elektromagnetismus durch Maxwell 3. James Clerk Maxwell Leben und Persönlichkeit 4. Elektromagnetische Wellen

Mehr

Seminar Mathematische Physik vom 12.1.2010 Markus Penz

Seminar Mathematische Physik vom 12.1.2010 Markus Penz Kaluza-Klein Theorie Seminar Mathematische Physik vom 12.1.2010 Markus Penz Zusammenfassung. Mit besonderem Augenmerk auf die Beiträge von Kaluza und Klein soll der nicht von Erfolg gekrönte Weg zur Vereinheitlichung

Mehr

Die Theorie der Praxis. Die Welt ist so komplex, dass man sie mittels bloßer Wahrnehmung nicht erfassen kann.

Die Theorie der Praxis. Die Welt ist so komplex, dass man sie mittels bloßer Wahrnehmung nicht erfassen kann. Die Theorie der Praxis Die Welt ist so komplex, dass man sie mittels bloßer Wahrnehmung nicht erfassen kann. Beispiel: Am Rücken liegen Tausende von Nervenzellen und sagen dauernd: Da ist eine Stuhllehne.

Mehr

8. Sitzung. Technische Analyse. Technische Analyse

8. Sitzung. Technische Analyse. Technische Analyse 8. Sitzung Technische Analyse Technische Analyse A) Dow Theorie: Grundlagen und Annahmen A) Dow Theorie: Grundlagen und Annahmen B) Dow Theorie: Prinzipien, Kritik und Innovationen B) Dow Theorie: Prinzipien,

Mehr

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion...

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion... 5 Gase...2 5.1 Das ideale Gasgesetz...2 5.2 Kinetische Gastheorie...3 5.2.1 Geschwindigkeit der Gasteilchen:...5 5.2.2 Diffusion...5 5.2.3 Zusammenstöße...6 5.2.4 Geschwindigkeitsverteilung...6 5.2.5 Partialdruck...7

Mehr

Inhaltsfelder Konzeptbezogene Kompetenzen Prozessbezogene Kompetenzen Interne Ergänzungen Kraft, Druck, mechanische und innere Energie

Inhaltsfelder Konzeptbezogene Kompetenzen Prozessbezogene Kompetenzen Interne Ergänzungen Kraft, Druck, mechanische und innere Energie 1 Inhaltsfelder Konzeptbezogene Kompetenzen Prozessbezogene Kompetenzen Interne Ergänzungen Kraft, Druck, mechanische und innere Energie Durchschnitts- und Momentangeschwindigkeit Geschwindigkeit und Kraft

Mehr

Messung von Stromstärken in verschiedenen Stromkreisen (z.b. SV, Einsatz von Mobile CASSY)

Messung von Stromstärken in verschiedenen Stromkreisen (z.b. SV, Einsatz von Mobile CASSY) Jahrgangsstufe 9 Strom für zu Hause Fachlicher Kontext Schwerpunkte Konkretisierungen / mögliche Experimente Elektrizität messen, Strom und Stromstärke verstehen, anwenden Messung von Stromstärken Stromstärken

Mehr

Das CMS Experiment am Large Hadron Collider (LHC) am. Beispiel für globale Kommunikation in der Elementarteilchen-physik

Das CMS Experiment am Large Hadron Collider (LHC) am. Beispiel für globale Kommunikation in der Elementarteilchen-physik Das CMS Experiment am Large Hadron Collider (LHC) am Beispiel für globale Kommunikation in der Elementarteilchen-physik Übersicht: Am 10. September 2008 wurde am CERN in Genf der weltgrößte Teilchenbeschleuniger

Mehr

GRUNDLAGENFACH PHYSIK

GRUNDLAGENFACH PHYSIK CH-6210 SURSEE MATHEMATIK UND NATURWISSENSCHAFTEN PHYSIK 1/6 GRUNDLAGENFACH PHYSIK 1. STUNDENDOTATION 4. Klasse 5. Klasse 6. Klasse 1. Semester 2 2 2 2. Semester 2 2 2 2. BILDUNGSZIELE Physik erforscht

Mehr

Physikalisches Anfängerpraktikum Universität Hannover Sommersemester 2009 Kais Abdelkhalek - Vitali Müller. Versuch: D10 - Radioaktivität Auswertung

Physikalisches Anfängerpraktikum Universität Hannover Sommersemester 2009 Kais Abdelkhalek - Vitali Müller. Versuch: D10 - Radioaktivität Auswertung Physikalisches Anfängerpraktikum Universität Hannover Sommersemester 2009 Kais Abdelkhalek - Vitali Müller Versuch: D0 - Radioaktivität Auswertung Radioaktivität beschreibt die Eigenschaft von Substanzen

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Die Zeit und Veränderung nach Aristoteles

Die Zeit und Veränderung nach Aristoteles Lieferung 4 Hilfsgerüst zum Thema: Die Zeit und Veränderung nach Aristoteles 1. Anfang der Untersuchung: Anzweiflung Aristoteles: Es reiht sich an das bisher Versprochene, über die Zeit zu handeln. Zuerst

Mehr

Befragung und empirische Einschätzung der Praxisrelevanz

Befragung und empirische Einschätzung der Praxisrelevanz Befragung und empirische Einschätzung der Praxisrelevanz eines Vorgehensmodells zur Auswahl von CRM-Systemen D I P L O M A R B E I T zur Erlangung des Grades eines Diplom-Ökonomen der Wirtschaftswissenschaftlichen

Mehr

Logistisches Wachstum

Logistisches Wachstum Informationsblatt für die Lehrkraft Logistisches Wachstum Informationsblatt für die Lehrkraft Thema: Schultyp: Vorkenntnisse: Bearbeitungsdauer: Logistisches Wachstum und Chaos Mittelschule, technische

Mehr

Kräfte und Bewegungen. Energie und Impuls. Gravitation Kräfte und Bewegungen. Energie und Impuls. Schwingungen und Wellen Kräfte und Bewegungen

Kräfte und Bewegungen. Energie und Impuls. Gravitation Kräfte und Bewegungen. Energie und Impuls. Schwingungen und Wellen Kräfte und Bewegungen Teil 1 Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Einführungsphase Kontext und Leitideen sfelder, liche Schwerpunkte Physik im Straßenverkehr Mechanik Physik und Sport Kräfte und Bewegungen

Mehr

im Zyklus: Experimental Gravitation Burkhard Zink Theoretische Astrophysik Universität Tübingen

im Zyklus: Experimental Gravitation Burkhard Zink Theoretische Astrophysik Universität Tübingen im Zyklus: Experimental Gravitation Burkhard Zink Theoretische Astrophysik Universität Tübingen Verschmelzung von Neutronensternen Verschmelzung Schwarzer Löcher Neutronenstern-Oszillationen Gamma-ray

Mehr

\"UBER DIE BIVEKTOR\"UBERTRAGUNG

\UBER DIE BIVEKTOR\UBERTRAGUNG TitleÜBER DIE BIVEKTORÜBERTRAGUNG Author(s) Hokari Shisanji Journal of the Faculty of Science Citation University Ser 1 Mathematics = 北 要 02(1-2): 103-117 Issue Date 1934 DOI Doc URLhttp://hdlhandlenet/2115/55900

Mehr

Rechnender Netzraum Eine Weiterführung der Arbeit von Konrad Zuse

Rechnender Netzraum Eine Weiterführung der Arbeit von Konrad Zuse Rechnender Netzraum Eine Weiterführung der Arbeit von Konrad Zuse Carl Adam Petri Wenn man einen neu konstruierten Computer zum Laufen bringen will, so ergibt sich die technische Aufgabe, eine große Zahl

Mehr

Wie löst man Mathematikaufgaben?

Wie löst man Mathematikaufgaben? Wie löst man Mathematikaufgaben? Manfred Dobrowolski Universität Würzburg Wie löst man Mathematikaufgaben? 1 Das Schubfachprinzip 2 Das Invarianzprinzip 3 Das Extremalprinzip Das Schubfachprinzip Verteilt

Mehr

1 Vom Problem zum Programm

1 Vom Problem zum Programm 1 Vom Problem zum Programm Ein Problem besteht darin, aus einer gegebenen Menge von Informationen eine weitere (bisher unbekannte) Information zu bestimmen. 1 Vom Problem zum Programm Ein Algorithmus ist

Mehr

Quantenmechanik am Limit

Quantenmechanik am Limit Quantenmechanik am Limit Die Jagd nach den letzen Quanten Thomas Ihn Solid State Physics Laboratory Department of Physics Wir alle folgen technologischen Trends... ... aber was ist da eigentlich drin?

Mehr

Protokoll zum Physik-Anfängerpraktikum. Hygrometrie

Protokoll zum Physik-Anfängerpraktikum. Hygrometrie Protokoll zum Physik-Anfängerpraktikum SS2002 Versuch 7-1 Hygrometrie Assistent: Steffen Schwientek Sven Eschenberg/ 1 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einleitung 3 2 Grundlagen 3 3 Aufbau & Auswertung

Mehr

Was sind Naturgesetze?

Was sind Naturgesetze? WWU Münster Seminar über philosophische Aspekte der Physik schriftliche Ausarbeitung des Referats Was sind Naturgesetze? von Dennis Pongs Was sind Naturgesetze? Inhaltsverzeichnis Inhaltsverzeichnis 1

Mehr

Die Energie-Zeit-Unbestimmtheitsrelation Geltung, Interpretation und Behandlung im Schulunterricht

Die Energie-Zeit-Unbestimmtheitsrelation Geltung, Interpretation und Behandlung im Schulunterricht Die Energie-Zeit-Unbestimmtheitsrelation Geltung, Interpretation und Behandlung im Schulunterricht Rainer Müller und Hartmut Wiesner In den meisten Schulbüchern und Lehrbüchern der Quantenmechanik hat

Mehr

SO(2) und SO(3) Martin Schlederer. 06. Dezember 2012

SO(2) und SO(3) Martin Schlederer. 06. Dezember 2012 SO(2) und SO(3) Martin Schlederer 06. Dezember 2012 Inhaltsverzeichnis 1 Motivation 2 2 Wiederholung 2 2.1 Spezielle Orthogonale Gruppe SO(n)..................... 2 2.2 Erzeuger.....................................

Mehr

Theorien für die Darstellung von Unsicherheit Ein Vergleich der Wahrscheinlichkeits-, Möglichkeits- und Dempster-Shafer Theorie

Theorien für die Darstellung von Unsicherheit Ein Vergleich der Wahrscheinlichkeits-, Möglichkeits- und Dempster-Shafer Theorie Theorien für die Darstellung von Unsicherheit Ein Vergleich der Wahrscheinlichkeits-, Möglichkeits- und Dempster-Shafer Theorie Johannes Leitner Inhalt I Modellierung von Unschärfe Unscharfe Mengen Unscharfe

Mehr

Das Standardmodell der Elementarteilchen

Das Standardmodell der Elementarteilchen Das Standardmodell der Elementarteilchen Claus Grupen Universität Siegen Ob mir durch Geistes Kraft und Mund nicht manch Geheimnis würde kund... Daß ich erkenne, was die Welt im Innersten zusammenhält,

Mehr

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 4 Woche Decodierung; Maximale, Perfekte und Optimale Codes 4 Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 Szenario für fehlerkorrigierende Codes Definition (n, M)-Code Sei C {0, 1}

Mehr

ANTON ZEILINGER. Einsteins Schleier

ANTON ZEILINGER. Einsteins Schleier ANTON ZEILINGER Einsteins Schleier Buch Die Quantenphysik gilt gemeinhin als dunkel, paradox, irgendwie rätselhaft. Kollidiert sie doch mit vielem, was in unserem Alltagsverständnis der Realität ganz unzweifelhaft

Mehr

Inelastische Lichtstreuung. Ramanspektroskopie

Inelastische Lichtstreuung. Ramanspektroskopie Inelastische Lichtstreuung Ramanspektroskopie Geschichte / Historisches 1920er Forschung von Wechselwirkung der Materie mit Elektromagnetischer-Strahlung 1923 Compton Effekt (Röntgen Photonen) Hypothese

Mehr

P(A B) = P(A) + P(B) P(A B) P(A B) = P(A) + P(B) P(A B) Geometrisch lassen sich diese Sätze einfach nachvollziehen (siehe Grafik rechts!

P(A B) = P(A) + P(B) P(A B) P(A B) = P(A) + P(B) P(A B) Geometrisch lassen sich diese Sätze einfach nachvollziehen (siehe Grafik rechts! Frequentistische und Bayes'sche Statistik Karsten Kirchgessner In den Naturwissenschaften herrscht ein wahrer Glaubenskrieg, ob die frequentistische oder Bayes sche Statistik als Grundlage zur Auswertung

Mehr

Computerviren, Waldbrände und Seuchen - ein stochastisches Modell für die Reichweite einer Epidemie

Computerviren, Waldbrände und Seuchen - ein stochastisches Modell für die Reichweite einer Epidemie Computerviren, Waldbrände und Seuchen - ein stochastisches für die Reichweite einer Epidemie Universität Hildesheim Schüler-Universität der Universität Hildesheim, 21.06.2012 Warum Mathematik? Fragen zum

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Arbeit Leistung Energie

Arbeit Leistung Energie Arbeit Leistung Energie manuell geistig Was ist Arbeit Wie misst man Arbeit? Ist geistige Arbeit messbar? Wann wird physikalische Arbeit verrichtet? Es wird physikalische Arbeit verrichtet, wenn eine Kraft

Mehr

Wozu braucht man Viele Welten in der Quantentheorie?

Wozu braucht man Viele Welten in der Quantentheorie? Wozu braucht man Viele Welten in der Quantentheorie? Versuch einer Darstellung auch für interessierte Nicht-Physiker (Sept. 2007 zuletzt revidiert Sept. 2012) H. D. Zeh (www.zeh-hd.de) 1. Worum geht es?

Mehr

LHC: Die größte Maschine der Welt

LHC: Die größte Maschine der Welt 2 Atomhülle LHC: Die größte Woraus besteht die Materie? Durchmesser: 10-10 m Teilchen: Elektronen Atomkern Durchmesser 1 fm = 10-15 m Femtometer Teilchen: Protonen, Neutronen 3 Einfachstes Beispiel: Wasserstoff

Mehr

Sternentstehung. Von der Molekülwolke zum T-Tauri-Stern. Von Benedict Höger

Sternentstehung. Von der Molekülwolke zum T-Tauri-Stern. Von Benedict Höger Sternentstehung Von der Molekülwolke zum T-Tauri-Stern Von Benedict Höger Inhaltsverzeichnis 1. Unterschied zwischen Stern und Planet 2. Sternentstehung 2.1 Wo entsteht ein Stern? 2.2 Unterschied HI und

Mehr

Abschlussvorlesung WS 04/05

Abschlussvorlesung WS 04/05 Abschlussvorlesung WS 04/05 Über Schrödingers Katze Detlef Dürr, Institut für Mathematik, LMU 1 Der Artikel Erwin Schrödingers Artikel: Die gegenwärtige Situation in der Quantenmechanik erschien 1935 in

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Atomphysik 10.1 Einleitung Definition: Atomos

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Curriculum für das Fach: Physik

Curriculum für das Fach: Physik Curriculum für das Fach: Physik Das Unterrichtsfach Physik orientiert sich an den Merkmalen der Fachwissenschaft Physik: Sie ist eine theoriegeleitete Erfahrungswissenschaft, betrachtet die Natur unter

Mehr

Das Collatz Problem. Dieter Wolke

Das Collatz Problem. Dieter Wolke Das Collatz Problem Dieter Wolke Einleitung. Die Zahlentheorie verfügt über eine große Anzahl leicht formulierbarer, aber schwer lösbarer Probleme. Einige sind Jahrhunderte alt, andere sind relativ neu.

Mehr

Stichprobenauslegung. für stetige und binäre Datentypen

Stichprobenauslegung. für stetige und binäre Datentypen Stichprobenauslegung für stetige und binäre Datentypen Roadmap zu Stichproben Hypothese über das interessierende Merkmal aufstellen Stichprobe entnehmen Beobachtete Messwerte abbilden Schluss von der Beobachtung

Mehr

Schriftliche Abiturprüfung Leistungskursfach Mathematik

Schriftliche Abiturprüfung Leistungskursfach Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 2000/01 Geltungsbereich: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Leistungskursfach

Mehr

Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt

Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt Leonhard Euler 1 Wann immer in den Anfängen der Analysis die Potenzen des Binoms entwickelt

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

Also kann nur A ist roter Südler und B ist grüner Nordler gelten.

Also kann nur A ist roter Südler und B ist grüner Nordler gelten. Aufgabe 1.1: (4 Punkte) Der Planet Og wird von zwei verschiedenen Rassen bewohnt - dem grünen und dem roten Volk. Desweiteren sind die Leute, die auf der nördlichen Halbkugel geboren wurden von denen auf

Mehr

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n Über die Komposition der quadratischen Formen von beliebig vielen Variablen 1. (Nachrichten von der k. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, 1898, S. 309 316.)

Mehr

Bachelor of Science in Engineering Physics. Informationen zum Studium 3.7.2003, C.E. Nebel

Bachelor of Science in Engineering Physics. Informationen zum Studium 3.7.2003, C.E. Nebel Bachelor of Science in Engineering Physics Informationen zum Studium.7.00, C.E. Nebel rundstudium:. Semester Vorlesungstitel Vorlesung [h] Übungen [h] ECTS Points Experimentalphysik Mathematik für Physiker

Mehr

GNS-Konstruktion und normale Zustände. 1 Rückblick. 2 Beispiel für einen Typ-II 1 -Faktor

GNS-Konstruktion und normale Zustände. 1 Rückblick. 2 Beispiel für einen Typ-II 1 -Faktor GNS-Konstruktion und normale Zustände 1 Rückblick Wir betrachten von-neumann-algebren M B(H), d.h. Unteralgebren mit 1 H M, die in der schwachen Operatortopologie (und damit in jeder der anderen) abgeschlossen

Mehr

11. Klasse Heft 1. Maximilian Ernestus September/Oktober 2007. Chemie 11. Klasse Heft 1 1

11. Klasse Heft 1. Maximilian Ernestus September/Oktober 2007. Chemie 11. Klasse Heft 1 1 1 GRUNDLAGEN 11. Klasse Heft 1 Maximilian Ernestus September/Oktober 2007 Chemie 11. Klasse Heft 1 1 1. Chemische Elemente Elemente haben allgemein folgende Eigenschaften: sie sind nicht weiter zerlegbar

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

6 Architektur-Mittel (WOMIT)

6 Architektur-Mittel (WOMIT) 6 Architektur-Mittel (WOMIT) Abb. 6-1: Positionierung des Kapitels im Ordnungsrahmen. Dieses Kapitel befasst sich mit der WOMIT-Dimension des architektonischen Ordnungsrahmens, indem es grundlegende Konzepte

Mehr

Computersimulationen für die Materialentwicklung

Computersimulationen für die Materialentwicklung Physikalische Chemie, Fachbereich Chemie, Fakultät Mathematik und Naturwissenschaften Computersimulationen für die Materialentwicklung Thomas Heine Theorie und Praxis Längen- und Zeitskalen Wie stabil

Mehr

Elektrischer Widerstand als Funktion der Temperatur

Elektrischer Widerstand als Funktion der Temperatur V10 Elektrischer Widerstand als Funktion der Temperatur 1. Aufgabenstellung 1.1 Messung Sie den elektrischen Widerstand vorgegebener Materialien als Funktion der Temperatur bei tiefen Temperaturen. 1.2

Mehr

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte Nachhilfe-Kurs Mathematik Klasse 3 Freie Waldorfschule Mitte März 8 Aufgaben zur analytischen Geometrie Musterlösung Gegeben sind die Ebenen E und E sowie die Punkte A und B: E : 4x + y + 3z = 3 E : x

Mehr

Kapitel 4. Das HMO-Modell

Kapitel 4. Das HMO-Modell Kapitel 4 4. HMO-Theorie:!-Elektronensysteme 4.. Die Annahmen der HMO-Theorie, Strukturmatrix 4.2. Butadien als Beispiel 4.3. Analytische Lösung für lineare Ketten UV-vis-Absorption: HMO und Freies Elektronen

Mehr

Zur Vereinfachung betrachten wir nun nur noch Funktionen f, die einen Funktionswert f nµberechnen. Sie werden alle in einer Tabelle dargestellt:

Zur Vereinfachung betrachten wir nun nur noch Funktionen f, die einen Funktionswert f nµberechnen. Sie werden alle in einer Tabelle dargestellt: Informatik 13: Gierhardt Theoretische Informatik III Berechenbarkeit Nicht-berechenbare Funktionen Nach der Church-Turing-These kann alles, was berechenbar ist, mit einer Turing-Maschine oder einer While-Maschine

Mehr

2. Die Spaltung zwischen Theorie und Praxis (Seite 63 88 engl. Skript S. 13-18)

2. Die Spaltung zwischen Theorie und Praxis (Seite 63 88 engl. Skript S. 13-18) 2. Die Spaltung zwischen Theorie und Praxis (Seite 63 88 engl. Skript S. 13-18) 2. 1 Methodologische Überlegungen Die Spannung zwischen Theorie und Praxis ist vergleichbar mit der zwischen dem Einzelnen

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

Die Avogadro-Konstante N A

Die Avogadro-Konstante N A Die Avogadro-Konstante N A Das Ziel der folgenden Seiten ist es, festzustellen, wie viele Atome pro cm³ oder pro g in einem Stoff enthalten sind. Chemische Reaktionen zwischen Gasen (z.b. 2H 2 + O 2 2

Mehr

PHYSIK. 1 Stundendotation. 2 Didaktische Hinweise G1 G2 G3 G4 G5 G6

PHYSIK. 1 Stundendotation. 2 Didaktische Hinweise G1 G2 G3 G4 G5 G6 PHYSIK 1 Stundendotation G1 G2 G3 G4 G5 G6 Einführungskurs 1* Grundlagenfach 2 2 2 Schwerpunktfach ** ** ** Ergänzungsfach 3 3 Weiteres Pflichtfach Weiteres Fach * Für Schülerinnen und Schüler, die aus

Mehr

Die Nebenquantenzahl oder Bahndrehimpulsquantenzahl l kann ganzzahlige Werte von 0 bis n - 1 annehmen. Jede Hauptschale unterteilt sich demnach in n

Die Nebenquantenzahl oder Bahndrehimpulsquantenzahl l kann ganzzahlige Werte von 0 bis n - 1 annehmen. Jede Hauptschale unterteilt sich demnach in n 1 1. Was sind Orbitale? Wie sehen die verschiedenen Orbital-Typen aus? Bereiche mit einer bestimmten Aufenthaltswahrscheinlichkeit eines Elektrons werden als Orbitale bezeichnet. Orbitale sind keine messbaren

Mehr

Grundzustandsberechnung von Gross-Pitaevskii Gleichungen

Grundzustandsberechnung von Gross-Pitaevskii Gleichungen Grundzustandsberechnung von Gross-Pitaevskii Gleichungen Christoph Bischko, Lukas Einkemmer, Dominik Steinhauser Fakultät für Mathematik, Informatik und Physik Universität Innsbruck 2. Juli, 2010 Christoph,

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr