Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download ""

Transkript

1 Prozesskontrolle Modul 7 Dr.-Ing. Klaus Oberste Lehn Fachhochschule Düsseldorf Sommersemester 2012

2 Quellen Dr. Klaus Oberste Lehn 2

3 SPC Statistische Prozess Regelung ist eine Methode Prozessdaten zu sammeln und so aufzubereiten und zu interpretieren, damit sie zur Qualitätsstrategie und Produktivitätssteigerungen verwendet werden können. Anwendung des Konzepts "SPC": Prinzipiell in jedem Bereich einsetzbar, wo Arbeit verrichtet wird, deren Resultat eine Streuung beinhaltet und der Wunsch nach Verbesserung besteht. Beispiele der Anwendung: Dimension eines Teiles Buchführungsfehlerraten Leistungsziffern Transportzeiten von Kaufteilen Fehlervermeidung statt Fehlerentdeckung: Die Strategie der Fehlervermeidung führt zu einer wirtschaftlichen Fertigung in der unbrauchbaren Produkte erst gar nicht produziert werden Dr. Klaus Oberste Lehn 3

4 Beurteilung von Fehlerraten Fehlerrate 0,1% - wieviel ist das eigentlich? - Jeden Monat für 45 Minuten schlechtes Wasser aus der Leitung! Postsendungen, die täglich verloren gehen! Rezepte, die monatlich falsch vom Arzt ausgestellt werden! - 40 Operationen die monatlich falsch durchgeführt werden! Bankbuchungen, die pro Stunde falsch gebucht werden! Oder auf eine Produktion bezogen (25 Millionen Teile täglich): Teile, die täglich mit Fehlern an den Kunden ausgeliefert werden!! 2012 Dr. Klaus Oberste Lehn 4

5 Streuung : Das Abweichungsverhalten eines Merkmals, das sich aus dem Zusammenwirken von Einflüssen ergibt, nennt man Streuung. Beispiele von Einflüssen: Maschine (Lagerspiel, Lagerverschleiß) Werkzeug (Festigkeit, Standzeiten) Material (Abmessung, Härte) Personal (Einrichten, Positionsgenauigkeit) Instandhaltung (Schmierung, Ersatz von Teilen) Arbeitsumwelt (Temperatur, Konstanz der zugeführten Energie) Arten der Streuung: Zufallseinflüsse Systematische Einflüsse 2012 Dr. Klaus Oberste Lehn 5

6 Zufällige Ursachen Zufällige Ursachen für Produktionsabweichungen sind durch die Herstellung selbst bestimmt und grundsätzlich in ihrer Wirkung nicht (unmittelbar) zu beseitigen. Größe und Richtung des Einflusses zufälliger Ursachen sind nicht kalkulierbar im Sinne einer Vorhersagbarkeit. Nach außen in Erscheinung tretende Zufallsabweichungen werden hervorgerufen durch die Überlagerung aller gleichzeitig wirkenden zufälligen Ursachen. Beispiele von zufälligen Ursachen: Vibration Lagerspiel Zufällige Einflüsse führen zu einer natürlichen Streuung der Q-Merkmale z.b. Streuung des Abfüllgewichts des Biers Brenndauer von Leuchtstoffröhren Abmessung von Schrauben 2012 Dr. Klaus Oberste Lehn 6

7 Systematische & sprunghafte Ursachen Systematische Ursachen sind lokalisierbar und damit beeinflussbar, wenn nicht sogar berechenbar. Unter ihrer Einwirkung kommt es zu allmählichen oder plötzlichen Veränderungen in der Verteilung der Q-Merkmale. langsam Werkzeugverschleiß allmählich Temperaturanstieg Ermüdung von Personal Sprunghafte Ursachen: Werkzeugbeschädigung Maschinenbeschädigung Wechsel von Rohmaterial Umstellung der Arbeitsmethode Schichtwechsel 2012 Dr. Klaus Oberste Lehn 7

8 Stichprobe Die Beurteilung der Qualität jedes einzelnen Produktes eines Prozesses ist nicht durchführbar und / oder zu teuer. Wesentlich wirtschaftlicher ist es, eine Stichprobe des Produktes zu beurteilen und die Ergebnisse für eine Voraussage über die Gesamtheit aller gefertigten Produkte zu verwenden. Mit statistischen Verfahren kann man Aussagen über die Qualität des Produktes machen. Die Genauigkeit der Voraussagen lässt sich abhängig von dem Stichprobenumfang und von den verwendeten Methoden abschätzen. Statistische Verfahren: tabellarische Auflistung: Strichliste Histogramm Stetige Verteilungen Form, Lage u. Streuung 2012 Dr. Klaus Oberste Lehn 8

9 Normalverteilung Die Normalverteilung ist graphisch eine symmetrische Glockenkurve. Für die Stichprobe ist sie durch zwei Kennwerte bestimmt. Der Mittelwert: (genannt: x quer) ist ein Maß für die Lage der Verteilung der Stichprobe. Die Standardabweichung "s" ist ein Maß für die Streuung des Prozesses. Die Standardabweichung "s" ist der Abstand zwischen Mittelwert und Wendepunkt der Glockenkurve Dr. Klaus Oberste Lehn 9

10 Normalverteilung 2012 Dr. Klaus Oberste Lehn 10

11 Prozessregelkarten Prozessregelkarten sind Hilfsmittel, um systematische Einflüsse festzustellen. Anschließend können diese Fehler abgestellt werden. Die Prozessgüte ist somit vorhersagbar Dr. Klaus Oberste Lehn 11

12 Kontinuierliche Vorgehensweise Prozeßregelung (-verbesserung) ist eine kontinuierliche Vorgehensweise, in dem die grundlegenden Phasen immer wieder wiederholt werden Datensammlung: Variable Daten (messende Prüfung) Die Beurteilung der Ausführungsqualität erfolgt bei der variablen Prüfung aufgrund der Messergebnisse oder nach Kennzahlen die aus den Messergebnissen berechnet werden. Attributive Daten (zählende Prüfung) Die Beurteilung der Ausführungsqualität nach dem gut/schlecht - Prinzip Beispiel von Daten Meßwerte eines Werkstückes Anzahl Lackläufer auf einer Tür Fahrzeugdurchlaufzeiten Buchführungsfehler 2012 Dr. Klaus Oberste Lehn 12

13 Diese o. g. Daten werden in eine graphische Form gebracht. Berechnung der Eingriffsgrenzen: Eingriffsgrenzen sind keine Spezifikationsgrenzen oder Zielvorstellungen, sondern ein Spiegelbild der natürlichen Prozesssteuerung. Durch Vergleich der Daten mit den Eingriffsgrenzen wird festgestellt, ob die Streuung stabil ist und nur durch Zufallseinflüsse verursacht wird. Liegen systematische Fehler vor: Ursachenfindung Ergreifen von Maßnahmen Liegen keine systematische Fehler vor, dann folgt: die Fähigkeitsverbesserung. Fähigkeitsverbesserung: Feststellen ob ein Prozeß fähig ist, d.h. kann man mit der Streuung der Daten (ohne systemetische Fehler) leben. Wenn nicht, dann muß das System verbessert werden (neue Maschinen, Klimaanlagen etc.) oder 100%-ige Kontrolle Dr. Klaus Oberste Lehn 13

14 x(quer)/r-karte Bestimmung von (Mittelwert) und R (Spannweite) aus einer Stichprobe. Diese Daten werden zunächst benutzt zur Abschätzung einer Grundgesamtheit. Berechnung der Eingriffsgrenzen nach Vorlauf Prozessmittelwert mittlere Spannweite Eingriffsgrenzen 2012 Dr. Klaus Oberste Lehn 14

15 Interpretation der QRK 2012 Dr. Klaus Oberste Lehn 15

16 Prozessfähigkeit Fähigkeit des (Produktions-) Prozesses, die Anforderungen des Kunden zu erfüllen Anforderungen des Kunden Zielwert (T g, target value) Untere Spezifikationsgrenze (LSL, lower specification limit) Obere Spezifikationsgrenze (USL, upper specification limit) 2012 Dr. Klaus Oberste Lehn 16

17 C p -Fähigkeitsindex Indexzahlen, die das Ausmaß messen, in dem ein Prozess die Anforderungen des Kunden erfüllt (capability indices) : C p -Fähigkeitsindex C p = (USL LSL)/(6s) misst die zulässige Streuung des Prozesses als Anteil an der tatsächlichen Streuung 2012 Dr. Klaus Oberste Lehn 17

18 C p -Fähigkeitsindex Normalverteilte Qualitätsvariable wenn µ = T g, enthält der ±3σ-Bereich 99.73% der Produkte C p = 1 bedeutet: 0.27% sind defekt wenn µ = T g Achtung! C p sagt nichts darüber aus, wie groß der Anteil der defekten tatsächlich ist! 2012 Dr. Klaus Oberste Lehn 18

19 C p -Fähigkeitsindex Viele Unternehmen verlangen ein C p von 1.33! Schätzung von C p : σ wird durch s ersetzt C p -hat = (USL LSL)/(6s) 2012 Dr. Klaus Oberste Lehn 19

20 C p und Anteil der Defekten C p und Anteil der Defekten: C p Bereich Def.ppm 1.00 ±3σ ±4σ ±5σ ±6σ Dr. Klaus Oberste Lehn 20

21 C pk -Fähigkeitsindex C pk = Min {USL µ, µ LSL}/(3σ) geschätzter C pk : µ und σ werden durch x- bar und s ersetzt C pk -hat = Min {USL x-bar, x-bar LSL}/(3s) 2012 Dr. Klaus Oberste Lehn 21

22 2012 Dr. Klaus Oberste Lehn 22

Operations Management

Operations Management Operations Management Qualitätsmanagement Prof. Dr. Helmut Dietl Lernziele Nach dieser Veranstaltung sollen Sie wissen, was man unter Qualitätsmanagement versteht welche Ziele das Qualitätsmanagement verfolgt

Mehr

POCKET POWER. Qualitätssicherung Produktionsprozess

POCKET POWER. Qualitätssicherung Produktionsprozess POCKET POWER Qualitätssicherung im Produktionsprozess Prüfdaten/Prüfaufzeichnungen 19 Was sind die Anforderungen an das Arbeitsergebnis aus der Sicht der Kunden? Was sind die Anforderungen der nächsten

Mehr

Grundlagen der statistischen Prozessregelung (SPC)

Grundlagen der statistischen Prozessregelung (SPC) Fachinformation Nr.: 2013-01 MeßTechnikNord GmbH Team Jena Prüssingstraße 41 07745 Jena Telefon: 03641-65-3780 Fax: 03641-65-3927 E-Mail: info@messtechniknord.de Internet http://www.messtechniknord.de

Mehr

Messwerte und deren Auswertungen

Messwerte und deren Auswertungen Thema: Messwerte und deren Auswertungen Vorlesung Qualitätsmanagement, Prof. Dr. Johann Neidl Seite 1 Stichproben vertrauen Die Genauigkeit von Voraussagen (Vertrauensniveau) einer Stichprobenprüfung hängt

Mehr

Marktleistungsentwicklung. Realisierungsphase MLE-12H-NDB. Teil 5. Realisierungsphase. Heinz Strüby www.resultate-erzielen.

Marktleistungsentwicklung. Realisierungsphase MLE-12H-NDB. Teil 5. Realisierungsphase. Heinz Strüby www.resultate-erzielen. Marktleistungsentwicklung Teil 5 5-1 Q-Werkzeuge für die Realisierunsphase FMEA (siehe separates Beispiel und Präsentation) 5W-Fragetechnik Ishikawa Design of Experiments DoE (siehe separates Beispiel

Mehr

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten Statistik Eine Aufgabe der Statistik ist es, Datenmengen zusammenzufassen und darzustellen. Man verwendet dazu bestimmte Kennzahlen und wertet Stichproben aus, um zu Aussagen bzw. Prognosen über die Gesamtheit

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

Aussagen hierzu sind mit einer unvermeidbaren Unsicherheit behaftet, die statistisch über eine Irrtumswahrscheinlichkeit bewertet wird.

Aussagen hierzu sind mit einer unvermeidbaren Unsicherheit behaftet, die statistisch über eine Irrtumswahrscheinlichkeit bewertet wird. Stichprobenumfang Für die Fragestellung auf Gleichheit von ein oder zwei Stichproben wird auf Basis von Hypothesentests der notwendige Stichprobenumfang bestimmt. Deshalb werden zunächst die Grundlagen

Mehr

1. Definieren Sie Qualität. 2. Wer ist befugt, über Qualität zu sprechen? 3. Stellen Sie das Prinzip des inneren Kunden dar.

1. Definieren Sie Qualität. 2. Wer ist befugt, über Qualität zu sprechen? 3. Stellen Sie das Prinzip des inneren Kunden dar. 1. Definieren Sie Qualität. 2. Wer ist befugt, über Qualität zu sprechen? 3. Stellen Sie das Prinzip des inneren Kunden dar. 4. In welchen Regelwerken sind die Elemente der Qualitätssicherung beschrieben.

Mehr

Messung von Rendite und Risiko. Finanzwirtschaft I 5. Semester

Messung von Rendite und Risiko. Finanzwirtschaft I 5. Semester Messung von Rendite und Risiko Finanzwirtschaft I 5. Semester 1 Messung von Renditen Ergebnis der Anwendung der Internen Zinsfuß- Methode ist die Rentabilität des Projekts. Beispiel: A0-100.000 ZÜ1 54.000

Mehr

3. Prozesskontrolle. 1 Prozesskontrolle: Einführung

3. Prozesskontrolle. 1 Prozesskontrolle: Einführung 3. Prozesskontrolle Stichwörter: Kontrollkarten, Shewhart-Karte, x-karte, R-Karte, s-karte, p-karte, c-karte, Kontrollgrenzen, Lauflänge, ARL, Warngrenzen, EWMA- Karte, CUSUM-Karte, Fähigkeitsindizes,

Mehr

3k. Die Qualitätsregelkarte

3k. Die Qualitätsregelkarte 3k Q-egelkarte 3k. Die Qualitätsregelkarte Worum geht es? Die Qualitätsregelkarte ist ein graphisches Instrument zur Überwachung eines Prozesses auf Stichprobenbasis. 7,1 7, 6,9 Etwas genauer: Die Prozessregelkarte

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskontrolle 6. Allgemeines Für die Qualitätskontrolle in einem Unternehmen (produzierendes Gewerbe, Dienstleistungsunternehmen, ) gibt es verschiedene Möglichkeiten. Statistische

Mehr

Statistik eindimensionaler Größen

Statistik eindimensionaler Größen Statistik eindimensionaler Größen Michael Spielmann Inhaltsverzeichnis 1 Aufgabe der eindimensionalen Statistik 2 2 Grundbegriffe 2 3 Aufbereiten der Stichprobe 3 4 Die Kennzahlen Mittelwert und Streuung,

Mehr

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie als Wissenschaft

Mehr

Deskriptive Statistik 1 behaftet.

Deskriptive Statistik 1 behaftet. Die Statistik beschäftigt sich mit Massenerscheinungen, bei denen die dahinterstehenden Einzelereignisse meist zufällig sind. Statistik benutzt die Methoden der Wahrscheinlichkeitsrechnung. Fundamentalregeln:

Mehr

Brückenkurs Statistik für Wirtschaftswissenschaften

Brückenkurs Statistik für Wirtschaftswissenschaften Peter von der Lippe Brückenkurs Statistik für Wirtschaftswissenschaften Weitere Übungsfragen UVK Verlagsgesellschaft mbh Konstanz Mit UVK/Lucius München UVK Verlagsgesellschaft mbh Konstanz und München

Mehr

SPC - STATISTICAL PROCESS CONTROL

SPC - STATISTICAL PROCESS CONTROL SPC - STATISTICAL PROCESS CONTROL Historie von Statistical Process Control (SPC Entwickelt wurden die ersten Regelkarten von W. A. Shewart Anfang der 30er Jahre Ziel war es Herstellungsprozesse zu optimieren

Mehr

Ursula Meiler DGQ-Regionalkreis

Ursula Meiler DGQ-Regionalkreis Von Toleranzen, Prüfmitteleignung und Prozessfähigkeit Interpretation von Daten durch Anwendung statistischer Methoden BEISPIEL 1 von Maßen, Toleranzen, Prüfmitteleignung und Prozessfähigkeit 2 1 Fokus

Mehr

Grenzen für x -s-regelkarten

Grenzen für x -s-regelkarten Normalverteilte Fertigung: Stichproben aus der Fertigung: σ σ Eine normalverteilte Fertigung hat den Mittelwert µ und die Standardabweichung σ. Stichproben aus der Fertigung haben zufällig abweichende

Mehr

Fachhochschule Stralsund Fachbereich Maschinenbau. Klausur Qualitätssicherung SS 1993

Fachhochschule Stralsund Fachbereich Maschinenbau. Klausur Qualitätssicherung SS 1993 Klausur Qualitätssicherung SS 1993 1. Definieren Sie Qualität. 2. Wer ist befugt, über Qualität zu sprechen? 3. Was verstehen Sie unter FMEA? 4. Stellen Sie den Ablauf einer FMEA dar. 5. Welche 2 FMEAAnwendungen

Mehr

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0.

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0. Eine Verteilung ist durch die Angabe von einem oder mehreren Mittelwerten nur unzureichend beschrieben. Beispiel: Häufigkeitsverteilungen mit gleicher zentraler Tendenz: geringe Variabilität mittlere Variabilität

Mehr

Wie viele Produkte müssen zerstörend in der Qualitätskontrolle geprüft werden? DRK-Blutspendedienst West

Wie viele Produkte müssen zerstörend in der Qualitätskontrolle geprüft werden? DRK-Blutspendedienst West Wie viele Produkte müssen zerstörend in der Qualitätskontrolle geprüft werden? Einschlägige Regelungen Es sind regelmäßig Qualitätskontrollen an Stichproben aus der laufenden Herstellung durchzuführen.

Mehr

9. Übungen. Statistik: Mittelwert und Standardabweichung Statistik: Median Statistik: Kennwerte

9. Übungen. Statistik: Mittelwert und Standardabweichung Statistik: Median Statistik: Kennwerte QM-Übungsaufgaben 9. Übungen F1 Statistik: Mittelwert und Standardabweichung F2 Statistik: Median F3 Statistik: Kennwerte F4 Statistik: Kennwerte F5 Lebensdauer F6 Vertrauensgrenzen und Histogramm F7 Statistik:

Mehr

Das Konfidenzintervall (Confidence Interval CI) Vertrauen schaffen, Signifikanz erkennen Autor: Beat Giger

Das Konfidenzintervall (Confidence Interval CI) Vertrauen schaffen, Signifikanz erkennen Autor: Beat Giger QUALITY APPs Applikationen für das Qualitätsmanagement Testen und Anwenden Das Konfidenzintervall (Confidence Interval CI) Vertrauen schaffen, Signifikanz erkennen Autor: Beat Giger Das Konfidenzintervall

Mehr

3. Deskriptive Statistik

3. Deskriptive Statistik 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht

Mehr

Uli Greßler. Qualitätsmanagement. Überwachung der Produkt- und Prozessqualität. Arbeitsheft. 2. Auflage. Bestellnummer 04796

Uli Greßler. Qualitätsmanagement. Überwachung der Produkt- und Prozessqualität. Arbeitsheft. 2. Auflage. Bestellnummer 04796 Uli Greßler Qualitätsmanagement Überwachung der Produt- und Prozessqualität Arbeitsheft 2. Auflage Bestellnummer 04796 Haben Sie Anregungen oder Kritipunte zu diesem Produt? Dann senden Sie eine E-Mail

Mehr

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005 Universität Bielefeld 13. Juni 2005 Einführung Einführung Wie kann die Kenntnis der Wahrscheinlichkeitsverteilung der Parameter einer Stichprobe dazu verhelfen auf die wahren Werte der Grundgesamtheit

Mehr

Kapitel 2. Fehlerrechnung

Kapitel 2. Fehlerrechnung Fehlerrechnung 1 Messungen => quantitative Aussagen Messungen müssen zu jeder Zeit und an jedem Ort zu den gleichen Ergebnissen führen Messungen sind immer mit Fehler behaftet. => Angabe des Fehlers! Bespiel

Mehr

Vorlesungsunterlagen. Qualitätsmanagement. Teil 10: Qualität und Kosten

Vorlesungsunterlagen. Qualitätsmanagement. Teil 10: Qualität und Kosten Vorlesungsunterlagen Qualitätsmanagement Teil 10: Qualität und Kosten Vorlesung Qualitätsmanagement, Prof. Dr. Johann Neidl Seite 1 1. Allgemeines 1.2 Gliederung 7) Weitere Methoden und Tools zur Qualitätsanalyse,

Mehr

Statistik, Geostatistik

Statistik, Geostatistik Geostatistik Statistik, Geostatistik Statistik Zusammenfassung von Methoden (Methodik), die sich mit der wahrscheinlichkeitsbezogenen Auswertung empirischer (d.h. beobachteter, gemessener) Daten befassen.

Mehr

Ü b u n g s b l a t t 15

Ü b u n g s b l a t t 15 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 2. 7. 2007 Ü b u n g s b l a t t 15 Hier ist zusätzliches Übungsmaterial zur Klausurvorbereitung quer durch die Inhalte der Vorlesung. Eine

Mehr

Kapitel 2. Häufigkeitsverteilungen

Kapitel 2. Häufigkeitsverteilungen 6 Kapitel 2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation: An n Einheiten ω,, ω n sei das Merkmal X beobachtet worden x = X(ω ),, x n = X(ω

Mehr

Von der Normalverteilung zu z-werten und Konfidenzintervallen

Von der Normalverteilung zu z-werten und Konfidenzintervallen Von der Normalverteilung zu z-werten und Konfidenzintervallen Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH

Mehr

Statistik für SozialwissenschaftlerInnen II p.85

Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Ziel von Schätzverfahren: Ausgehend von Stichproben Aussagen über Populationskennwerte machen Kenntnis der Abweichung des

Mehr

Methodenbeschreibung Design Scorecards

Methodenbeschreibung Design Scorecards Ziel Prinzip dienen der Bestimmung des Zielerreichungsgrades von Design-Faktoren unter Berücksichtigung von Variation durch den Herstellprozess. Die Methode baut auf die identifizierten kritischen Design-Faktoren

Mehr

I. Prüfobjekt und Prüfmerkmale für die Endprüfung Lagerstift was zu prüfen ist

I. Prüfobjekt und Prüfmerkmale für die Endprüfung Lagerstift was zu prüfen ist Industrielles Beispiel für die Erarbeitung eines Prüfplanes Für die Qualitätsprüfung des Lagerstiftes (laut Prüfskizze) ist ein Prüfplan zu erarbeiten. Die Herstellung des Lagerstiftes erfolgt an einem

Mehr

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung

Mehr

Wie man zwei Kekssorten auf Unterschiede testet

Wie man zwei Kekssorten auf Unterschiede testet Wie man zwei Kekssorten auf Unterschiede testet von Rhonda C. Magel, North Dakota State University, Fargo, USA. 1 übersetzt von Klaus Krug, Bamberg Zusammenfassung: Dieser Aufsatz stellt zwei Kursprojekte

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden?

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden? 1. Aufgabe: Eine Bank will die jährliche Sparleistung eines bestimmten Kundenkreises untersuchen. Eine Stichprobe von 12 Kunden ergab folgende Werte: 825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170

Mehr

Statistik in der Fertigungstechnik. die Normalverteilung und ihre Anwendung im zweiten Lehrjahr der industriellen Metallberufe

Statistik in der Fertigungstechnik. die Normalverteilung und ihre Anwendung im zweiten Lehrjahr der industriellen Metallberufe Statistik in der Fertigungstechnik die Normalverteilung und ihre Anwendung im zweiten Lehrjahr der industriellen Metallberufe 1 Berufliches Schulzentrum an der Deroystraße Berufsschule für Fertigungstechnik

Mehr

Hydrologie und Flussgebietsmanagement

Hydrologie und Flussgebietsmanagement Hydrologie und Flussgebietsmanagement o.univ.prof. DI Dr. H.P. Nachtnebel Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau Gliederung der Vorlesung Statistische Grundlagen Etremwertstatistik

Mehr

Auszug aus: Dietrich E./Schulze A.

Auszug aus: Dietrich E./Schulze A. Auszug aus: Dietrich E./Schulze A. Statistische Verfahren zur Maschinen- und Prozessqualifikation. 6., vollständig überarbeitete Auflage, Carl Hanser Verlag 2009. 458 13 Firmenrichtlinien 13 Firmenrichtlinien

Mehr

Total Quality Management. Qualitätsmanagement. Qualitätsmethoden über Produktentstehungsprozess bis Serienfertigung: Statische Methoden

Total Quality Management. Qualitätsmanagement. Qualitätsmethoden über Produktentstehungsprozess bis Serienfertigung: Statische Methoden Vorlesungsinhalt Total Quality Management Qualitätsmanagement Qualitätsmethoden über Produktentstehungsprozess bis Serienfertigung: Statische Methoden Elementare Werkzeuge/ Systemtechnik Grundlegende Ideen

Mehr

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es beim radioaktiven Zerfall, zwischen 100 und 110 Zerfälle

Mehr

Lage- und Streuungsparameter

Lage- und Streuungsparameter Lage- und Streuungsparameter Beziehen sich auf die Verteilung der Ausprägungen von intervall- und ratio-skalierten Variablen Versuchen, diese Verteilung durch Zahlen zu beschreiben, statt sie graphisch

Mehr

Inferenzstatistik (=schließende Statistik)

Inferenzstatistik (=schließende Statistik) Inferenzstatistik (=schließende Statistik) Grundproblem der Inferenzstatistik: Wie kann man von einer Stichprobe einen gültigen Schluß auf di Grundgesamtheit ziehen Bzw.: Wie groß sind die Fehler, die

Mehr

Modul 1: Balanced Scorecard (BSC) Vorwort... 1. 1.2 Der Autor... 5. 1.3 So wenden Sie diese Praxislösung an... 7

Modul 1: Balanced Scorecard (BSC) Vorwort... 1. 1.2 Der Autor... 5. 1.3 So wenden Sie diese Praxislösung an... 7 Modul 1: Balanced Scorecard (BSC) Vorwort............................................. 1 1.2 Der Autor............................................ 5 1.3 So wenden Sie diese Praxislösung an....................

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz 3., überarbeitete Auflage R.01denbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt

Mehr

Qualitätsmanagement Eine Einführung

Qualitätsmanagement Eine Einführung U. Greßler, R. Göppel Qualitätsmanagement Eine Einführung 6. Auflage Bestellnummer 4795 Vorwort Jeder will sie. Jeder erkennt sie. Jeder schätzt sie. Ist sie nicht vorhanden, ärgert man sich; ist sie vorhanden,

Mehr

QM: Prüfen -1- KN16.08.2010

QM: Prüfen -1- KN16.08.2010 QM: Prüfen -1- KN16.08.2010 2.4 Prüfen 2.4.1 Begriffe, Definitionen Ein wesentlicher Bestandteil der Qualitätssicherung ist das Prüfen. Sie wird aber nicht wie früher nach der Fertigung durch einen Prüfer,

Mehr

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind:

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind: Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche 30. November 2007 Michael

Mehr

Grundlagen der Statistik

Grundlagen der Statistik - Qualitätssicherung Datum: Blatt: T08 01 Grundlagen der Statistik In der Produktion von Massenteilen steht man immer wieder vor dem Problem, dass man die Qualität einer Lieferung beurteilen muss: entspricht

Mehr

Statistische Prozessregelung

Statistische Prozessregelung Folienauszüge aus: Statistische Prozessregelung Steinbeis-Transferzentrum Managementsysteme Industriepark West, Söflinger Strasse 100, 89077 Ulm Tel.: 0731-933-1180, Fax: 0731-933-1189 Mail: info@tms-ulm.de,

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

6 Sigma QMS. Heribert Nuhn. Einige wichtige Punkte zu. Bei weiteren Fragen wenden Sie sich bitte an uns. Wir helfen Ihnen gerne.

6 Sigma QMS. Heribert Nuhn. Einige wichtige Punkte zu. Bei weiteren Fragen wenden Sie sich bitte an uns. Wir helfen Ihnen gerne. Einige wichtige Punkte zu 6 Sigma Bei weiteren Fragen wenden Sie sich bitte an uns. Wir helfen Ihnen gerne. Dahlienweg 2 D-56587 Strassenhaus Deutschland Tel.: ++ 49 2634 9560 71 Fax.: ++ 49 2634 9560

Mehr

Erfolg mit SPC. Sinnvolle Anwendung in Fertigung und Administration. Erfolg mit SPC. sinnvolle Anwendung in Fertigung und Administration TQU GROUP

Erfolg mit SPC. Sinnvolle Anwendung in Fertigung und Administration. Erfolg mit SPC. sinnvolle Anwendung in Fertigung und Administration TQU GROUP Erfolg mit SPC sinnvolle Anwendung in Fertigung und Administration TQU GROUP Name: Alexander Frank Magirus-Deutz-Straße 18 D 89077 Ulm Fon +49 (0) 731 14660200 Mobile + 49 (0) 172 8516249 kontakt @tqu-group.com

Mehr

Methoden der Werkstoffprüfung Kapitel II Statistische Verfahren I. WS 2009/2010 Kapitel 2.0

Methoden der Werkstoffprüfung Kapitel II Statistische Verfahren I. WS 2009/2010 Kapitel 2.0 Methoden der Werkstoffprüfung Kapitel II Statistische Verfahren I WS 009/010 Kapitel.0 Schritt 1: Bestimmen der relevanten Kenngrößen Kennwerte Einflussgrößen Typ A/Typ B einzeln im ersten Schritt werden

Mehr

Six Sigma in der betrieblichen Praxis

Six Sigma in der betrieblichen Praxis in der betrieblichen Praxis SixSigma Problem-Lösungs-Strategie & Tools Phase1: Definieren (Define) Projektdefinition und -Abgrenzung ProcessMAP Charakterisierung Phase2: Messen (Measure) Messwertanalyse

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Grundproblem Generell sind wir nur selten in der Geographie in der Lage, Daten über die Grundgesamtheit zur Verfügung zu haben.

Mehr

Auswahl von Schätzfunktionen

Auswahl von Schätzfunktionen Auswahl von Schätzfunktionen Worum geht es in diesem Modul? Überblick zur Punktschätzung Vorüberlegung zur Effizienz Vergleich unserer Schätzer für My unter Normalverteilung Relative Effizienz Einführung

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Six Sigma Six Sigma (6σ)

Six Sigma Six Sigma (6σ) Six Sigma (6σ) ist ein statistisches Qualitätsziel und zugleich der Name einer Qualitätsmanagement-Methodik. Ihr Kernelement ist die Beschreibung, Messung, Analyse, Verbesserung und Überwachung von Geschäftvorgängen

Mehr

Über den Autor 7 Über den Fachkorrektor 7. Einführung 19

Über den Autor 7 Über den Fachkorrektor 7. Einführung 19 Inhaltsverzeichnis Über den Autor 7 Über den Fachkorrektor 7 Einführung 19 Über dieses Buch 19 Törichte Annahmen über den Leser 20 Wie dieses Buch aufgebaut ist 20 Teil I: Ein paar statistische Grundlagen

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Hypothesentesten, Fehlerarten und Güte 2 Literatur Kreyszig: Statistische Methoden und ihre Anwendungen, 7.

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

Quantifizierung in der Analytischen Chemie

Quantifizierung in der Analytischen Chemie Quantifizierung in der Analytischen Chemie in der Grundvorlesung Analytische Chemie Literatur: W. Gottwald, Statistik für Anwender, Wiley-VCH, Weinheim, 2000 Kapitel in: M. Otto, Analytische Chemie, 3.

Mehr

Hauptprüfung Fachhochschulreife Baden-Württemberg

Hauptprüfung Fachhochschulreife Baden-Württemberg Hauptprüfung Fachhochschulreife 2014 Baden-Württemberg Aufgabe 7 Mathematik in der Praxis Hilfsmittel: grafikfähiger Taschenrechner Berufskolleg Alexander Schwarz www.mathe-aufgaben.com Juni 2015 1 Die

Mehr

Melanie Kaspar, Prof. Dr. B. Grabowski 1

Melanie Kaspar, Prof. Dr. B. Grabowski 1 7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen

Mehr

Prozessfähigkeit bei technisch begrenzten Merkmalen Fähigkeitskennzahlen und Berechnungsmethoden

Prozessfähigkeit bei technisch begrenzten Merkmalen Fähigkeitskennzahlen und Berechnungsmethoden Prozessfähigkeit bei technisch begrenzten Merkmalen Fähigkeitskennzahlen und Berechnungsmethoden Barbara Bredner 24.01.2014 Inhaltsverzeichnis 2 Inhaltsverzeichnis 1 Fähigkeitskennzahlen für normalverteilte

Mehr

Arbeitsblatt 27: Normalverteilung Kerzen

Arbeitsblatt 27: Normalverteilung Kerzen Erläuterungen und Aufgaben Zeichenerklärung: [ ] - Drücke die entsprechende Taste des Graphikrechners! [ ] S - Drücke erst die Taste [SHIFT] und dann die entsprechende Taste! [ ] A - Drücke erst die Taste

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz R.Oldenbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL I GRUNDLAGEN

Mehr

Messgeräte: Mess-System-Analyse und Messmittelfähigkeit

Messgeräte: Mess-System-Analyse und Messmittelfähigkeit Messgeräte: Mess-System-Analyse und Messmittelfähigkeit Andreas Berlin 14. Juli 2009 Bachelor-Seminar: Messen und Statistik Inhalt: 1 Aspekte einer Messung 2 Mess-System-Analyse 2.1 ANOVA-Methode 2.2 Maße

Mehr

Kapitel 1: Deskriptive Statistik

Kapitel 1: Deskriptive Statistik Kapitel 1: Deskriptive Statistik Grafiken 1 Statistische Kennwerte 5 z-standardisierung 7 Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen.

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Die Abfüllmenge ist gleich dem Sollwert 3 [Deziliter].

Die Abfüllmenge ist gleich dem Sollwert 3 [Deziliter]. Eine Methode, um anhand von Stichproben Informationen über die Grundgesamtheit u gewinnen, ist der Hypothesentest (Signifikantest). Hier wird erst eine Behauptung oder Vermutung (Hypothese) über die Parameter

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

2. Beschreibende ( deskriptive ) Statistik 2.1 Grundbegriffe 2.2 Stichproben 2.3 Fehler, Ausreißer und fehlende Werte 2.4 Merkmale 2.

2. Beschreibende ( deskriptive ) Statistik 2.1 Grundbegriffe 2.2 Stichproben 2.3 Fehler, Ausreißer und fehlende Werte 2.4 Merkmale 2. 2.1 Grundbegriffe 2.3 Fehler, Ausreißer und fehlende Werte 2.4 Merkmale 2.5 Definition: Urliste, relative und absolute Häufigkeit 2.6 Tabellarische und graphische Darstellung: Häufigkeit 2.7 Klasseneinteilung

Mehr

Beschreibende Statistik Deskriptive Statistik. Schließende Statistik Inferenzstatistik. Schluss von der Stichprobe auf die Grundgesamtheit

Beschreibende Statistik Deskriptive Statistik. Schließende Statistik Inferenzstatistik. Schluss von der Stichprobe auf die Grundgesamtheit Beschreibende Statistik Deskriptive Statistik Schließende Statistik Inferenzstatistik Beschreibung der Stichprobe Schluss von der Stichprobe auf die Grundgesamtheit Keine Voraussetzungen Voraussetzung:

Mehr

Fehlerrechnung. Einführung. Jede Messung ist fehlerbehaftet! Ursachen:

Fehlerrechnung. Einführung. Jede Messung ist fehlerbehaftet! Ursachen: Fehlerrechnung Einführung Jede Messung ist fehlerbehaftet! Ursachen: Ablesefehler (Parallaxe, Reaktionszeit) begrenzte Genauigkeit der Messgeräte falsche Kalibrierung/Eichung der Messgeräte Digitalisierungs-Fehler

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

LEAN MANUFACTURING. Teil 7 Lean und Six Sigma. Ein Quick Guide für den schnellen Einstieg in die Möglichkeiten der Lean Philosophie.

LEAN MANUFACTURING. Teil 7 Lean und Six Sigma. Ein Quick Guide für den schnellen Einstieg in die Möglichkeiten der Lean Philosophie. 2009 LEAN MANUFACTURING Ein Quick Guide für den schnellen Einstieg in die Möglichkeiten der Lean Philosophie Teil 7 Lean und Six Sigma Martin Zander 2 M. Zander Lean Manufacturing Ein Quick Guide für den

Mehr

Tools for Business Success

Tools for Business Success Fachinfo & Tools aus der QUALITY MO ES Jeden Monat aktuelle Checklisten und Vorlagen! Testen Sie HIER 30 Tage gratis! Tools for Business Success Shewart Regelkarte x quer /s WISSEN. WERKZEUGE. TRAININGSUNTERLAGEN

Mehr

Allgemeines zu Tests. Statistische Hypothesentests

Allgemeines zu Tests. Statistische Hypothesentests Statistische Hypothesentests Allgemeines zu Tests Allgemeines Tests in normalverteilten Grundgesamtheiten Asymptotische Tests Statistischer Test: Verfahren Entscheidungsregel), mit dem auf Basis einer

Mehr

3 Konfidenzintervalle

3 Konfidenzintervalle 3 Konfidenzintervalle Konfidenzintervalle sind das Ergebnis von Intervallschätzungen. Sicheres Wissen über Grundgesamtheiten kann man anhand von Stichproben nicht gewinnen. Aber mit Hilfe der Statistik

Mehr

In-line Prozesskontrolle durch AOI

In-line Prozesskontrolle durch AOI In-line Prozesskontrolle durch AOI Einleitung In allen Bereichen der Mikroelektronik, ob KFZ, Telekommunikation, Computer oder Medizintechnik, schreitet die Miniaturisierung voran. Mit zunehmender Miniaturisierung

Mehr

Übungen mit dem Applet Vergleich von zwei Mittelwerten

Übungen mit dem Applet Vergleich von zwei Mittelwerten Vergleich von zwei Mittelwerten 1 Übungen mit dem Applet Vergleich von zwei Mittelwerten 1 Statistischer Hintergrund... 2 1.1 Typische Fragestellungen...2 1.2 Fehler 1. und 2. Art...2 1.3 Kurzbeschreibung

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001

Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001 Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001 1. Sensitivität und Spezifität In einer medizinischen Ambulanz haben 30 % der Patienten eine akute Appendizitis. 80 % dieser Patienten haben

Mehr

Six Sigma 6 σ. Nullfehlerqualität. Dipl.- Oecotroph. M. W. Mucha

Six Sigma 6 σ. Nullfehlerqualität. Dipl.- Oecotroph. M. W. Mucha Six Sigma 6 σ Nullfehlerqualität Dipl.- Oecotroph. Was ist Sigma? Zielwert Untere Spezifikationsgrenze 1,5σ 1,5σ Obere Spezifikationsgrenze σ σ -6σ -5σ -4σ -3σ -2σ -1σ 0 1σ 2σ 3σ 4σ 5σ 6σ Verteilung des

Mehr

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung 1.8 Kolmogorov-Smirnov-Test auf Normalverteilung Der Kolmogorov-Smirnov-Test ist einer der klassischen Tests zum Überprüfen von Verteilungsvoraussetzungen. Der Test vergleicht die Abweichungen der empirischen

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Von der PROZESSANALYSE zur PROZESSFÄHIGKEIT

Von der PROZESSANALYSE zur PROZESSFÄHIGKEIT Deutsches Industrieforum für Technologie DIF E I N L A D U N G Z U M S E M I N A R F O R U M Q U A L I T Ä T S M A N A G E M E N T Statistik im Qualitätsmanagement Von der PROZESSANALYSE zur PROZESSFÄHIGKEIT

Mehr

Einige wichtige Punkte zur. Statistische Prozeßkontrolle - S P C (Statistical Process Control)

Einige wichtige Punkte zur. Statistische Prozeßkontrolle - S P C (Statistical Process Control) Heribert Nuhn QMS Qualitäts-Management-Systeme Dahlienweg 2 D-56587 Strassenhaus Deutschland Tel.: ++ 49 2634 9560 71 Fax.: ++ 49 2634 9560 72 Mobil: + 49 171 315 7768 email: Heribert.Nuhn@Nuhn-QMS.de

Mehr

Xing- Gruppentreffen 07.09.2010. Einführung von SPC. Einführung von SPC

Xing- Gruppentreffen 07.09.2010. Einführung von SPC. Einführung von SPC Xing- Gruppentreffen 07.09.2010 Einführung von SPC Einführung von SPC Hintergründe Einführung von SPC In einem der letzten Meetings wurde über die Bürde SPC gesprochen SPC wurde als Überwachung durch den

Mehr

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch 6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6

Mehr