Digital Design 4 Schaltwerke

Größe: px
Ab Seite anzeigen:

Download "Digital Design 4 Schaltwerke"

Transkript

1 4 Schaltwerke Schaltwerk: Ausgabevektor hängt nicht nur von Eingabevektor ab, sondern auch von allen bisherigen Eingaben. A(t n ) = f(e(t n ), E(t n-1 ), E(t n-2 ), E(t n-3 ),... E(t 0 ) dazu sind erforderlich: Schaltnetz: zur Erzeugung der Ausgabefunktion und zur Erzeugung der Übergangsfunktion Speicher: zur Speicherung der "inneren Zustände" Prinzipieller Aufbau eines Synchron-Schaltwerkes Richard Roth / FB Informatik und Mathematik Schaltwerke Automat Endlicher Automat (Menge von Eingabe- und Ausgabealphabet und interne Zustände sind endlich) Damit lässt sich ein Automat beschreiben durch: Richard Roth / FB Informatik und Mathematik Schaltwerke 2

2 4.2.1 Mealy-Automat Richard Roth / FB Informatik und Mathematik Schaltwerke Moore-Automat Richard Roth / FB Informatik und Mathematik Schaltwerke 4

3 4.3 Funktionale Beschreibung und Analyse Äquivalente Beschreibungsmöglichkeiten für Schaltwerke: Zustandfolgetabellen KV-Diagramme Schaltfunktionen (enthalten die Ausgabe- und Überangsfunktionen) Zustandsgraphen Vereinfachte Notation des Zustandvektors: Zustandfolgetabelle: Zustandsgraph: mit Eingabe/Ausgabe Richard Roth / FB Informatik und Mathematik Schaltwerke Analyse eines Schaltwerkes mit D-Flipflops Schaltwerk: Zustandsfolgetabelle: Zustandsgraph: Übergangsfunktionen: Ausgabefunktion: Richard Roth / FB Informatik und Mathematik Schaltwerke 6

4 4.3.2 Schaltwerk mit JK-Flipflops Richard Roth / FB Informatik und Mathematik Schaltwerke Synthese und Realisierung von Schaltwerken Verbale Aufgabenstellung Schaltwerk sinnvolles Vorgehen: Festlegen der Zustandsmenge Festlegen des Anfangszustandes Definition der Eingangs- und Ausgabevariablen Darstellung der zeitlichen Zustandsfolge in Form eines Zustandsgraphen Aufstellen der Zustandsfolgetabelle Erstellen der Übergangs- und Ausgabefunktion aus der Zustandsfolgetabelle Darstellung des Schaltwerkes in einem Schaltwerk Realisierung des Schaltwerkes Umschaltbarer Gray-Code-Zähler Für die Eingabe x = 0 soll die Zählfolge 00, 01, 11, 10 sein und für die Eingabe x = 1 soll die Zählfolge 00, 10, 11, 01 sein. Richard Roth / FB Informatik und Mathematik Schaltwerke 8

5 Umschaltbarer Gray-Code-Zähler Richard Roth / FB Informatik und Mathematik Schaltwerke Schieberegister als Schaltwerk Zustandsfolgetabelle: Übergangsfunktionen Ausgabefunktion: Richard Roth / FB Informatik und Mathematik Schaltwerke 10

6 Realisierung mit JK-FF Übergangsfunktionen: Ausgabefunktion: Richard Roth / FB Informatik und Mathematik Schaltwerke Zwischenspeicher (4-Bit-Schieberegister) Richard Roth / FB Informatik und Mathematik Schaltwerke 12

7 4.4.4 Geldautomat als Schaltwerk Beispiel: Ein einfacher Wechselautomat soll 1.-DM und 2.-DM-Münzen in 10-Pfennig-Münzen wechseln. In einem Wechselvorgang können bis zu zwei Mark umgetauscht werden. Die Ausgabe des Wechselgeldes erfolgt durch Drücken einer speziellen Wechseltaste. Mögliche Eingaben: Einwurf 1DM Einwurf 2DM Drücken der WT Keine Eingabe Mögliche Ausgaben: Zehn 10Pfennige Zwanzig 10Pfennige 1 DM 2 DM Keine Ausgabe Interne Zustände: 1 DM ist eingeworfen worden 2 DM sind eingegeben worden Keine Schulden Richard Roth / FB Informatik und Mathematik Schaltwerke 13 Zustandsdiagramm des Geldwechselautomaten: Richard Roth / FB Informatik und Mathematik Schaltwerke 14

8 Zustqndsfolgetabelle: Beispiel zur Codierung: Richard Roth / FB Informatik und Mathematik Schaltwerke 15 Zustandsfolgetabelle: KV-Diagramme zur Bestimmung von Übergangsund Ausgabefunktion Richard Roth / FB Informatik und Mathematik Schaltwerke 16

9 Schaltwerk zum Wechselautomaten: Richard Roth / FB Informatik und Mathematik Schaltwerke Realisierung mit programmierbaren Bauelementen Allgemeine Struktur Richard Roth / FB Informatik und Mathematik Schaltwerke 18

10 Umschaltbarer Gray-Code-Zähler im PROM Schaltwerkmodell im PROM Richard Roth / FB Informatik und Mathematik Schaltwerke Rechenschaltwerke Multiplizierwerk serielle Multiplikation ohne Vorzeichen (s. Praktikum) aus [4] Vorzeichenbehaftete Multiplikation (Booth-Algrithmus s. nächste Seite) Richard Roth / FB Informatik und Mathematik Schaltwerke 20

11 Booth-Recordong-Algorithmus für vorzeichenbehaftete Multiplikation aus [4] bzw. [1] 1. Lösche die Register P und Sp 2. Lade die vorzeichenbehafteten Operanden nach A und B 3. Wenn a 0 = 0 und a- 1 = 0, dann bilde P + 0 a 0 = 0 und a- 1 = 1, dann bilde P + B a 0 = 1 und a- 1 = 0, dann bilde P - B a 0 = 1 und a- 1 = 1, dann bilde P Verschiebe P, A und Sp insgesamt einmal nach rechts 5. Gehe solange nach 3. zurück, bis das werthöchste Bit von A in Sp steht 6. STOP, die Register enthalten das vorzeichenbehaftete Produkt Richard Roth / FB Informatik und Mathematik Schaltwerke Dividierwerk (seriell) Algorithmus aus [4]: 1. Setze Register P und Null und lade Register A mit dem Dividenden A und Register B mit dem Divisor B 2. Verschiebe das Registerpaar P und A um eine Stelle nach links und lade LSB(A) mit Null 3. Subtrahiere den Divisor von P 4. Wenn Carry = 1, übernehme NichtCarry nach LSB(A) und addiere B zu P, sonst übernehme nur NichtCarry nach LSB(A) 5. Solange nicht n Verschiebungen vorliegen, gehe zurück nach 2., sonst STOP Richard Roth / FB Informatik und Mathematik Schaltwerke 22

12 Getakteter serieller Dividierer aus [4] Richard Roth / FB Informatik und Mathematik Schaltwerke Gleitkommaoperationen IEEE Darstellung: Normalisierung (1.xxxx ) getrennte Behandlung von VZ, e n und Mantisse Numerischer Exponentenvergleich durch Subtraktion b = e A e B Wenn b > 0, dann Mantisse m B um b Bits nach rechts verschieben und e B um b erhöhen, wenn b < 0 dann m A und e A entsprechend korrigieren Addition der Signifikanten (Vorzeichen!!) Normalisierung der Summe (1.xx durch verschieben und anpassen des Exponenten) Richard Roth / FB Informatik und Mathematik Schaltwerke 24

13 Ein didaktisches Beispiel eines Gleitkommaddierers für 8-Bit-Zahlen aus [4]. 3-Bit für Exponent, 5 Bit für die Mantisse, die Vorzeichenbehandlung ist nicht mit einbezogen Die Steuersignale S xy und z i werden vom Steuerwerk bereitgestellt!! : Richard Roth / FB Informatik und Mathematik Schaltwerke Steuerwerk für Mikroprogramm Richard Roth / FB Informatik und Mathematik Schaltwerke 26

14 aus [4]: Richard Roth / FB Informatik und Mathematik Schaltwerke 27 Horizontale-, Vertikale-, Quasi-Horizontale-Mikroprogrammierung Richard Roth / FB Informatik und Mathematik Schaltwerke 28

15 Richard Roth / FB Informatik und Mathematik Schaltwerke 29 Richard Roth / FB Informatik und Mathematik Schaltwerke 30

16 Richard Roth / FB Informatik und Mathematik Schaltwerke 31 Steuerwerk der Prozessoren MOT68000 Richard Roth / FB Informatik und Mathematik Schaltwerke 32

17 Variationsmöglichkeit des Befehlssatzes im Betrieb! Richard Roth / FB Informatik und Mathematik Schaltwerke Zählschaltungen Asynchrone Schaltung Richard Roth / FB Informatik und Mathematik Schaltwerke 34

18 4.7.2 Synchrone Schaltung 4 Bit Vorwärtszähler Richard Roth / FB Informatik und Mathematik Schaltwerke 35 Synchron BCD Vorwärts Zähler (FLJ ) Taktunabhängiger Reset ( R) Stelleingang ( S) Zwei Freigabeeingänge Richard Roth / FB Informatik und Mathematik Schaltwerke 36

19 4.8 Zusammenfassung Die Ausgaben eines Schaltwerkes hängen nicht nur von den aktuellen Eingaben, sondern von allen vorherigen Eingaben ab Schaltwerke werden durch die Angaben der möglichen Eingaben und Ausgaben, der internen Zustände, der Ausgabe- und Übergangsfunktionen, sowie der End- und des Anfangszustandes bestimmt Mit Hilfe von Zustandsgraphen lassen sich Schaltwerke übersichtlich beschreiben - Wichtige Schaltwerke für die Rechnertechnik sind Register, Zähler, Ablaufsteuerung Schaltwerke lassen sich gut in PROMs realisieren und damit lassen sich leicht µp- Steuerwerke aufbauen Richard Roth / FB Informatik und Mathematik Schaltwerke 37

Vorlesung Rechnerstrukturen Winter 2002/03. 3b. Endliche Automaten. Modellierung und Realisierung von Steuerungen

Vorlesung Rechnerstrukturen Winter 2002/03. 3b. Endliche Automaten. Modellierung und Realisierung von Steuerungen Rechnerstrukturen 3b. Endliche Automaten Ziele Modellierung und Realisierung von Steuerungen Beispiele Autoelektronik: ABS-System Consumer: Kamera, Waschmaschine, CD-Player, Steuerung technischer Anlagen

Mehr

Digital Design 2 Schaltnetze (kombinatorische Logik) Digital Design

Digital Design 2 Schaltnetze (kombinatorische Logik) Digital Design 2 Schaltnetze (kombinatorische Logik) Schaltnetze realisieren eine Schalt- oder Vektorfunktion Y = F (X) X: Eingangsvektor mit den Variablen x 0, x 1, x n Y: Ausgabevektor mit den Variablen y 0, y 1, y

Mehr

das Ausgabealphabet [Fehler im Skript korrigiert (Schiffmann256)] -Z=z 1

das Ausgabealphabet [Fehler im Skript korrigiert (Schiffmann256)] -Z=z 1 Schaltwerke (13) - Automaten (13.1) α SCHALTWERKE (13) [04.06.02, Folie 481, Übungen 07] Schaltwerke sind wesentliche Funktionseinheiten eines Computers. Beispiele hierfür sind das Rechen- und das Leitwerk

Mehr

6 Schaltwerke und endliche Automaten

6 Schaltwerke und endliche Automaten 6 Schaltwerke und endliche Automaten 6.1 Entwicklungsstufen 143 In diesem Abschnitt wird gezeigt, wie das Blockschaltbild aus 1.4 realisiert werden kann. Mithilfe der entwickelten Speicherbausteine und

Mehr

Ergänzen Sie die Werte für y in dem unten angegebenen Ausschnitt der Schaltbelegungstabelle. Falsche Antworten führen zu Punktabzug.

Ergänzen Sie die Werte für y in dem unten angegebenen Ausschnitt der Schaltbelegungstabelle. Falsche Antworten führen zu Punktabzug. Aufgabe 1 Gegeben sei folgende Schaltfunktion: y = a / b / c / d. Ergänzen Sie die Werte für y in dem unten angegebenen Ausschnitt der Schaltbelegungstabelle. Falsche Antworten führen zu Punktabzug. d

Mehr

Informatik I Modul 5: Rechnerarithmetik (2)

Informatik I Modul 5: Rechnerarithmetik (2) Herbstsemester 2, Institut für Informatik IFI, UZH, Schweiz Informatik I Modul 5: Rechnerarithmetik (2) 2 Burkhard Stiller M5 Modul 5: Rechnerarithmetik (2) Grundrechenarten Arithmetisch-logische Einheit

Mehr

Aufgabe 1 Minimieren Sie mit den Gesetzen der Booleschen Algebra 1.1 f a ab ab 1 = + + Aufgabe 2. Aufgabe 3

Aufgabe 1 Minimieren Sie mit den Gesetzen der Booleschen Algebra 1.1 f a ab ab 1 = + + Aufgabe 2. Aufgabe 3 Logischer Entwurf Digitaler Systeme Seite: 1 Übungsblatt zur Wiederholung und Auffrischung Aufgabe 1 Minimieren Sie mit den Gesetzen der Booleschen Algebra 1.1 f a ab ab 1 = + + 1.2 f ( ) ( ) ( ) 2 = c

Mehr

Computerarithmetik (6a)

Computerarithmetik (6a) Computerarithmetik (6a) Weitere Nachteile: erfordert separates Subtrahierwerk erfordert zusätzliche Logik, um zu entscheiden, welches Vorzeichen das Ergebnis der Operation hat 2. Die Komplement - Darstellung

Mehr

Teil IV. Schaltwerke

Teil IV. Schaltwerke Teil IV Schaltwerke 1 Teil IV.1 Flip Flops 2 Bistabile Kippstufe Ziel: Speichere Ausgabe einer Schaltung. Ansatz: Leite Ausgabe wieder als Eingabe in die Schaltung. x t & Q Q = x + P t + t t t y t & P

Mehr

Rechnerstrukturen, Teil 1

Rechnerstrukturen, Teil 1 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 18/19 Prof. Dr. Jian- Jia Chen Fakultät für Informatik Technische Universität Dortmund jian- jia.chen@cs.uni-.de http://ls12- www.cs.tu-.de Übersicht 1. Organisatorisches

Mehr

HaDePrak WS 05/ Versuch

HaDePrak WS 05/ Versuch HaDePrak WS 05/06 10. Versuch 1 Das IEEE-Format Das Ziel dieser letzten Übung ist es, ein Fließkommapaket für die DLXzu implementieren. Der Einfachheit halber vernachlässigen wir hier im Praktikum jeglichen

Mehr

GTI ÜBUNG 11. Schaltwerk, Automaten, Schieberegister FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1

GTI ÜBUNG 11. Schaltwerk, Automaten, Schieberegister FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1 GTI ÜBUNG 11 Schaltwerk, Automaten, Schieeregister FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1 AUFGABE 1 SCHIEBEREGISTER Das Bild zeigt einen sog. Johnson-Zähler, ei dem das invertierte

Mehr

GTI ÜBUNG 12. Komparator und Addierer FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1

GTI ÜBUNG 12. Komparator und Addierer FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1 GTI ÜBUNG 12 Komparator und Addierer FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1 AUFGABE 1 KOMPARATOR Beschreibung Entwickeln Sie eine digitale Schaltung, die zwei Bits a und b miteinander

Mehr

Multiplizierer. Beispiel komplexer arithmetischer Schaltung. Langsamer als Addition, braucht mehr Platz. Sequentielle Multiplikation

Multiplizierer. Beispiel komplexer arithmetischer Schaltung. Langsamer als Addition, braucht mehr Platz. Sequentielle Multiplikation Multiplizierer 1 Beispiel komplexer arithmetischer Schaltung Langsamer als Addition, braucht mehr Platz Sequentielle Multiplikation Kompakte kombinatorische Variante mit Carry-Save-Adders (CSA) Vorzeichenbehaftete

Mehr

Aufbau und Funktionsweise eines Computers - II

Aufbau und Funktionsweise eines Computers - II Aufbau und Funktionsweise eines Computers - II Schaltwerke Schaltwerke Bei Schaltnetzen: Ausgabe hängt nur von der aktuellen Eingabe ab. Bei Schaltwerken: Ausgabe hängt zusätzlich von endlich vielen vorausgegangenen

Mehr

3.2 Verknüpfung von Variablen... 48 3.3 Sheffer- und Pierce-Funktion... 50 3.4 Übungen... 52

3.2 Verknüpfung von Variablen... 48 3.3 Sheffer- und Pierce-Funktion... 50 3.4 Übungen... 52 Inhaltsverzeichnis 1 Einführung 1 1.1 Analog - Digital Unterscheidung...1 1.1.1 Analoge Darstellung...2 1.1.2 Digitale Darstellung...3 1.1.3 Prinzip der Analog-Digital-Wandlung...4 1.2 Begriffsdefinitionen...5

Mehr

Digitaltechnik II SS 2007

Digitaltechnik II SS 2007 Digitaltechnik II SS 27 Vorlesung mit begleitendem Praktikum Klaus Kasper Achtung! Vorlesung am 3.4.27 fällt aus! Nächste Vorlesung am 2.4.27! Organisation des Praktikums Betreuung: Michael Müller, Klaus

Mehr

Grundlagen der Technischen Informatik. 12. Übung

Grundlagen der Technischen Informatik. 12. Übung Grundlagen der Technischen Informatik 2. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 2. Übungsblatt Themen Aufgabe : Aufgabe 2: Aufgabe 3: Flipflops - Automaten Synchrones Schaltwerk

Mehr

Digitaltechnik II SS 2007

Digitaltechnik II SS 2007 Digitaltechnik II SS 27 5. Vorlesung Klaus Kasper Inhalt Zyklische Folgeschaltung Asynchroner Zähler Synchroner Zähler Schaltungsanalyse Register Digitaltechnik 2 2 JKFlipFlop I Digitaltechnik 2 3 JKFlipFlop

Mehr

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 14/15 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@tu-.de http://ls1-www.cs.tu-.de Übersicht

Mehr

Klausur "Informatik I" vom Teil "Rechnerstrukturen"

Klausur Informatik I vom Teil Rechnerstrukturen Seite 1 von 6 Seiten Klausur "Informatik I" vom 19.2.1999 Teil "Rechnerstrukturen" Aufgabe 1: Binäre Informationsdarstellung (18 Punkte) Folgende Gleitkommadarstellung werde im folgenden zugrundegelegt

Mehr

Übungen zur Vorlesung Technische Informatik I, SS 2001 Strey / Guenkova-Luy / Prager Übungsblatt 4 Zahlendarstellung/Rechenarithmetik/Rechenwerke

Übungen zur Vorlesung Technische Informatik I, SS 2001 Strey / Guenkova-Luy / Prager Übungsblatt 4 Zahlendarstellung/Rechenarithmetik/Rechenwerke Übungen zur Vorlesung Technische Informatik I, SS 2001 Strey / Guenkova-Luy / Prager Übungsblatt 4 Zahlendarstellung/Rechenarithmetik/Rechenwerke Aufgabe 1: a) Bestimmen Sie die Darstellung der Zahl 113

Mehr

Computertechnik 1. 4.3 Schaltwerke, Sequentielle Schaltungen. 4.3.2 Register. Register. Dr. Wolfgang Koch

Computertechnik 1. 4.3 Schaltwerke, Sequentielle Schaltungen. 4.3.2 Register. Register. Dr. Wolfgang Koch omutertechnik r. Wolfgang Koch 4.3 Schaltwerke, Sequentielle Schaltungen Seicher, Register... : Frühere Eingaben (innere Zustände) sielen eine Rolle (werden geseichert) Friedrich Schiller University Jena

Mehr

6. Zahlendarstellungen und Rechnerarithmetik

6. Zahlendarstellungen und Rechnerarithmetik 6. Zahlendarstellungen und Rechnerarithmetik... x n y n x n-1 y n-1 x 1 y 1 x 0 y 0 CO Σ Σ... Σ Σ CI z n z n-1 z 1 z 0 Negative Zahlen, Zweierkomplement Rationale Zahlen, Gleitkommazahlen Halbaddierer,

Mehr

Modul Computersysteme Prüfungsklausur SS Prof. Dr. J. Keller LG Parallelität und VLSI Prof. Dr.-Ing. W. Schiffmann LG Rechnerarchitektur

Modul Computersysteme Prüfungsklausur SS Prof. Dr. J. Keller LG Parallelität und VLSI Prof. Dr.-Ing. W. Schiffmann LG Rechnerarchitektur Modul Computersysteme Prüfungsklausur SS 2016 Lösungsvorschläge Prof. Dr. J. Keller LG Parallelität und VLSI Prof. Dr.-Ing. W. Schiffmann LG Rechnerarchitektur 1 Aufgabe 1 Schaltfunktionen (11 Punkte):

Mehr

Rechnerstrukturen. 3. Elementare Bausteine. Inhalt. Vorlesung Rechnerstrukturen. Latches und Register. Decoder. Multiplexer.

Rechnerstrukturen. 3. Elementare Bausteine. Inhalt. Vorlesung Rechnerstrukturen. Latches und Register. Decoder. Multiplexer. Rechnerstrukturen 3. Elementare Bausteine Latches und Register Decoder Inhalt Multiplexer Speicher Arithmetische Einheiten Endliche Automaten 3.2 1 Elementare Bausteine Häufig verwendete Grundfunktionen

Mehr

Klausur "Informatik I" vom Teil "Rechnerstrukturen"

Klausur Informatik I vom Teil Rechnerstrukturen Seite 1 von 6 Seiten Klausur "Informatik I" vom 20.2.2001 Teil "Rechnerstrukturen" Aufgabe 1: Binäre Informationsdarstellung (18 Punkte) 1.1 Gleitkommazahlen: Gegeben sei eine 8-bit Gleitkommazahl-Darstellung

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur [CS3100.010] Wintersemester 2014/15 Heiko Falk Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm Kapitel 5 Rechnerarithmetik

Mehr

4. Mikroprogrammierung (Firmware)

4. Mikroprogrammierung (Firmware) 4. Mikroprogrammierung (Firmware) 4. Ein Mikroprogramm-gesteuerter Computer 4.2 Mikroprogramm-Beispiel: Multiplikation 4.3 Interpretation von Maschinenbefehlen durch ein Mikroprogramm 4. Mikroprogrammierung

Mehr

3.2 Verknüpfung von Variablen... 50 3.3 Sheffer- und Pierce-Funktion... 52 3.4 Übungen... 54

3.2 Verknüpfung von Variablen... 50 3.3 Sheffer- und Pierce-Funktion... 52 3.4 Übungen... 54 Inhaltsverzeichnis 1 Einführung 1 1.1 Analog - Digital Unterscheidung... 1 1.1.1 Analoge Darstellung...2 1.1.2 Digitale Darstellung...3 1.1.3 Prinzip der Analog-Digital-Wandlung...4 1.2 Begriffsdefinitionen...5

Mehr

b i Ergänzung zu Vollkonjunktionen (ohne Indizierung i = 0... n-1): q = a b a b q = a b q = a b a b a b

b i Ergänzung zu Vollkonjunktionen (ohne Indizierung i = 0... n-1): q = a b a b q = a b q = a b a b a b Ansatz: Die Realisierung von arithmetischen Operationen mit Logikgattern führt zu ähnlichen Verarbeitungsstrukturen für arithmetische und logische Befehle Parallele Zahlwort/oder Logikverarbeitung ist

Mehr

Rechnen mit rationalen Zahlen

Rechnen mit rationalen Zahlen Rechnen mit rationalen Zahlen a ist die Gegenzahl von a und ( a) a Subtraktionsregel: Statt eine rationale Zahl zu subtrahieren, addiert man ihre Gegenzahl. ( 8) ( ) ( 8) + ( + ) 8 + 7, (,6) 7, + ( +,6)

Mehr

Rechnerstrukturen, Teil 1

Rechnerstrukturen, Teil 1 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 18/19 Prof. Dr. Jian- Jia Chen Fakultät für Informatik Technische Universität Dortmund jian- jia.chen@cs.uni-.de http://ls12- www.cs.tu-.de Übersicht 1. Organisatorisches

Mehr

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 14/15 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@tu-.de http://ls1-www.cs.tu-.de Übersicht

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: +/-/*

Mehr

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik)

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Die Bildauswahl erfolgte in Anlehnung an das Alter der Kinder Prof. J. Walter Bitte römische Zahlen im Geschichtsunterricht! Messsystem mit Mikrocontroller

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: +/-/*

Mehr

HANSER. von Prof. Dipl.-Ing. Johannes Borgmeyer. 2., verbesserte Auflage

HANSER. von Prof. Dipl.-Ing. Johannes Borgmeyer. 2., verbesserte Auflage 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. von Prof. Dipl.-Ing. Johannes Borgmeyer 2., verbesserte Auflage Mit

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel SS TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel SS TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik SS 2013 Hinweis: Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 13. Mai 2013 1 Programmierbare

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel. Sommer TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel. Sommer TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik Sommer 2014 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 19. Mai 2014 1/43 1 Sequenzielle

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: IEEE Format Zahlenumwandlung

Mehr

bei Unterlauf wird stattdessen Hälfte des Divisors addiert Ersparnisse einer Addition bzw. Subtraktion

bei Unterlauf wird stattdessen Hälfte des Divisors addiert Ersparnisse einer Addition bzw. Subtraktion 6.2 Non-Restoring Division Restoring Division Divisor wird subtrahiert falls Unterlauf (Ergebnis negativ) Divisor wird wieder addiert im nächsten Durchlauf wird die Hälfte des Divisor subtrahiert (Linksshift

Mehr

Rechnerstrukturen WS 2012/13

Rechnerstrukturen WS 2012/13 WS 2012/13 Sequenzielle Schaltungen Einleitung (Wiederholung) Modellierung mit Automaten Synchrone Schaltwerke Einleitung Flip-Flops Schaltwerk-Entwurf Einleitung von Neumann-Addierwerk Hinweis: Folien

Mehr

GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK

GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK 1 GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK Aufgabe 1 Bin- und Hex Arithmetik 2 Führen Sie die folgenden Berechnungen im angegebenen Zahlensystem aus, ohne die Zahlen ins Dezimalsystem umzuwandeln:

Mehr

Kapitel 4 Schaltungen mit Delays (Schaltwerke) Literatur: Oberschelp/Vossen, Kapitel 4. Kapitel 4: Schaltungen mit Delays Seite 1

Kapitel 4 Schaltungen mit Delays (Schaltwerke) Literatur: Oberschelp/Vossen, Kapitel 4. Kapitel 4: Schaltungen mit Delays Seite 1 Kapitel 4 Schaltungen mit Delays (Schaltwerke) Literatur: Oberschelp/Vossen, Kapitel 4 Kapitel 4: Schaltungen mit Delays Seite 1 Schaltungen mit Delays Inhaltsverzeichnis 4.1 Einführung 4.2 Addierwerke

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel. Sommer TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel. Sommer TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik Sommer 2014 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 15. Mai 2014 1/50 1 Boolesche Funktionen

Mehr

Eine Schaltung, deren Ausgänge von der Belegung der Eingänge und ihrem inneren Zustand abhängt, wird ein Schaltwerk genannt.

Eine Schaltung, deren Ausgänge von der Belegung der Eingänge und ihrem inneren Zustand abhängt, wird ein Schaltwerk genannt. Schaltwerke Bisher haben wir uns nur mit Schaltnetzen befasst, also Schaltungen aus Gattern, die die Ausgaben als eine Funktion der Eingaben unmittelbar (durch Schaltvorgänge) berechnen. iese Schaltnetze

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: IEEE Format Zahlenumwandlung

Mehr

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 14/15 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@tu-.de http://ls1-www.cs.tu-.de Übersicht

Mehr

6.2 Kodierung von Zahlen

6.2 Kodierung von Zahlen 6.2 Kodierung von Zahlen Neue Begriffe é Festkommadarstellungen é Zahlendarstellung durch Betrag und Vorzeichen é Einer-/Zweierkomplement-Darstellung é Gleitkommadarstellung é IEEE-754 Format BB TI I 6.2/1

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: IEEE Format Zahlenumwandlung

Mehr

Grundbegriffe der Informatik Tutorium 10

Grundbegriffe der Informatik Tutorium 10 Grundbegriffe der Informatik Tutorium 10 Tutorium Nr. 32 Philipp Oppermann 17. Januar 2014 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Arithmetik. Zahlendarstellung, Addition und Subtraktion Multiplikation, Division, Fest- und Gleitkommazahlen

Arithmetik. Zahlendarstellung, Addition und Subtraktion Multiplikation, Division, Fest- und Gleitkommazahlen Computer and Communication Systems (Lehrstuhl für Technische Informatik) Arithmetik Zahlendarstellung, Addition und Subtraktion Multiplikation, Division, Fest- und Gleitkommazahlen [TI] Winter 2013/2014

Mehr

SCHALTWERKE (State Machine)

SCHALTWERKE (State Machine) EDT-REFERAT SCHALTWERKE (State Machine) 1999/2000 2ANA Bernhard Schierer 1 Inhaltsverzeichnis: 1. Allgemeine Beschreibung von Schaltwerken 2. Systematischer Entwurf von Schaltwerken -Zustandsdiagramm -Entwurfsbeispiel

Mehr

Eingebettete Systeme

Eingebettete Systeme Einführung in Eingebettete Systeme Vorlesung 7 Bernd Finkbeiner 03/12/2014 finkbeiner@cs.uni-saarland.de Prof. Bernd Finkbeiner, Ph.D. finkbeiner@cs.uni-saarland.de 1 Schaltfunktionen! Schaltfunktion:

Mehr

Digitaltechnik Grundlagen 8. Register

Digitaltechnik Grundlagen 8. Register 8. Register Version 1.0 von 02/2018 Register Gliederung: - Grundlagen - Auffangregister - Schieberegister - Einführung - Seriell/Parallel- und Parallel/Seriell-Wandler [Quelle: Fricke, K.: Digitaltechnik,

Mehr

II. Grundlagen der Programmierung

II. Grundlagen der Programmierung II. Grundlagen der Programmierung II.1. Zahlenssteme und elementare Logik 1.1. Zahlenssteme 1.1.1. Ganze Zahlen Ganze Zahlen werden im Dezimalsstem als Folge von Ziffern 0, 1,..., 9 dargestellt, z.b. 123

Mehr

Zur Multiplikation von Gleitkommazahlen müssen die Mantissen inkl. führender 1, als Festkommazahlen multipliziert werden.

Zur Multiplikation von Gleitkommazahlen müssen die Mantissen inkl. führender 1, als Festkommazahlen multipliziert werden. 70 Arithmetische Schaltungen Multiplikation vorzeichenbehafteter Zahlen Zur Multiplikation vorzeichenbehafteter Zahlen (er-komplement) kann auf die Schaltung für vorzeichenlose Multiplikation zurückgegriffen

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel SS TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel SS TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik SS 2013 Hinweis: Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 25. April 2013 1 Boolesche

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 30. Oktober 2013 1/35 1 Boolesche

Mehr

12. Tutorium Digitaltechnik und Entwurfsverfahren

12. Tutorium Digitaltechnik und Entwurfsverfahren 12. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 13 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Algorithmen zur Integer-Multiplikation

Algorithmen zur Integer-Multiplikation Algorithmen zur Integer-Multiplikation Multiplikation zweier n-bit Zahlen ist zurückführbar auf wiederholte bedingte Additionen und Schiebeoperationen (in einfachen Prozessoren wird daher oft auf Multiplizierwerke

Mehr

IEEE 754 Encoding. Wie stellt man im IEEE 754 Format eigentlich die 0 dar!? Double Precision (Bias=1023)

IEEE 754 Encoding. Wie stellt man im IEEE 754 Format eigentlich die 0 dar!? Double Precision (Bias=1023) IEEE 754 Encoding Wie stellt man im IEEE 754 Format eigentlich die 0 dar!? ( 1) S * (1 + Fraction) * 2 (Exponent Bias) Single Precision (Bias=127) Double Precision (Bias=1023) Dargestelltes Objekt Exponent

Mehr

3 Verarbeitung und Speicherung elementarer Daten

3 Verarbeitung und Speicherung elementarer Daten 3 Verarbeitung und Speicherung elementarer Daten 3.1 Boolsche Algebra Definition: Eine Boolsche Algebra ist eine Menge B mit den darauf definierten zweistelligen Verknüpfungen (+,*) sowie der einstelligen

Mehr

Rechnerorganisation I Zusammenfassung

Rechnerorganisation I Zusammenfassung Universität der Bundeswehr München Fakultät für Informatik Institut für Technische Informatik Rechnerorganisation I Zusammenfassung Tobias Kiesling kiesling@informatik.unibw-muenchen.de 09.12.2003 2. Boole

Mehr

E Zahlendarstellungen und Rechnerarithmetik

E Zahlendarstellungen und Rechnerarithmetik E Zahlendarstellungen und Rechnerarithmetik Einordnung in das Schichtenmodell: 1. Darstellung positiver ganzer Zahlen 2. binäre Addition 3. Darstellung negativer ganzer Zahlen 4. binäre Subtraktion 5.

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel SS TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel SS TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik SS 2013 Hinweis: Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 13. Mai 2013 1 Sequenzielle

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 20. November 2013 1/48 1 Sequenzielle

Mehr

N Bit Darstellung von Gleitkommazahlen

N Bit Darstellung von Gleitkommazahlen N Bit Darstellung von Gleitkommazahlen Normalisierte, wissenschaftliche Darstellung zur Basis 2. Beispiel: Allgemein: Sign and Magnitude Darstellung für beispielsweise 32 Bits: (s=0 für + und s=1 für )

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel. TU Dortmund, Fakultät für Informatik SS 2013

Rechnerstrukturen. Michael Engel und Peter Marwedel. TU Dortmund, Fakultät für Informatik SS 2013 Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik SS 2013 Hinweis: Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 27. Mai 2013 1 Speicher SRAM-Realisierung

Mehr

Grundlagen der Technischen Informatik. 13. Übung

Grundlagen der Technischen Informatik. 13. Übung Grundlagen der Technischen Informatik 13. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 13. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Automaten VHDL VHDL VHDL 13.

Mehr

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr

Mikroprozessor (CPU)

Mikroprozessor (CPU) Mikroprozessor (CPU) Der Mikroprozessor (µp) ist heutzutage das Herzstück eines jeden modernen Gerätes. Er wird in Handys, Taschenrechnern, HiFi-Geräten und in Computern, für die er eigentlich erfunden

Mehr

Motivation 31. Mai 2005

Motivation 31. Mai 2005 Motivation 31. Mai 25 Zuletzt behandelt: Zahlendarstellung und Rechnerarithmetik Festkommazahlen: Vorzeichen/Betrag-Darstellung Einerkomplement, Zweierkomplement Rückführung der Subtraktion auf die Addition

Mehr

Teil 1: Logik 1e: Zustandsautomaten

Teil 1: Logik 1e: Zustandsautomaten Teil 1: Logik 1e: Zustandsautomaten Synchroner Zähler als Zustandsautomat Betrachte Zählerstand als Zustand Übergänge zwischen 0,1,2,3 ohne externe Randbedingungen 0 3 1 2 Zustandsautomat (1) Zustandsspeicher

Mehr

D.42 D Synchroner Zähler. 6.3 Synchroner Zähler (2) 6.3 Synchroner Zähler (4) 6.3 Synchroner Zähler (3) Einsatz von JK-Flip-Flops

D.42 D Synchroner Zähler. 6.3 Synchroner Zähler (2) 6.3 Synchroner Zähler (4) 6.3 Synchroner Zähler (3) Einsatz von JK-Flip-Flops 6.3 Synchroner Zähler Unmittelbarer Übergang aller beteiligten Flip-Flops pro Taktzyklus Mögliche eines dreistelligen Binärzählers 000 111 001 110 010 Übergänge pro Takt unbedingte Übergänge 101 011 6.3

Mehr

2.6 Verdeutlichung verwendeter Begriffe

2.6 Verdeutlichung verwendeter Begriffe 2.6 Verdeutlichung verwendeter Begriffe endlich/finit: die Mengen der Zustände und der Ein- bzw. Ausgabezeichen sind endlich synchron: die Ausgabezeichen erscheinen synchron mit dem Einlauf der Eingabezeichen

Mehr

Rechnerstrukturen WS 2012/13

Rechnerstrukturen WS 2012/13 Rechnerstrukturen WS 2012/13 Boolesche Funktionen und Schaltnetze Rechner-Arithmetik Addition (Wiederholung) Multiplikation Wallace-Tree Subtraktion Addition negativer Zahlen Gleitkommazahlen-Arithmetik

Mehr

Endliche Automaten 1 WS 00/01. Steuerautomaten

Endliche Automaten 1 WS 00/01. Steuerautomaten Endliche Automaten 1 WS 00/01 Steuerautomaten Steuerautomaten dienen zur Erzeugung von Steuersignalen. Die erzeugten Steuersignale hängen vom Bearbeitungsstand ("Zustand") der Aufgabe und von Eingangsgrößen

Mehr

Technische Informatik 1

Technische Informatik 1 Wolfram Schiffmann Robert Schmitz Technische Informatik 1 Grundlagen der digitalen Elektronik 4., neu bearbeitete und erweiterte Auflage Mit 236 Abbildungen und 38 Tabellen Springer 1. Grundlagen der Elektrotechnik

Mehr

Rechnerstrukturen WS 2012/13

Rechnerstrukturen WS 2012/13 Speicher SRAM-Realisierung Register Schieberegister Datenbus WS 2012/13 Taktung von Digitalrechnern Takt- und Phasenableitung Zusammenfassung Anhang Ausblick Hinweis: Folien teilweise a. d. Basis von Materialien

Mehr

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Division

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Division Rechnerarithmetik Vorlesung im Sommersemester 2008 Eberhard Zehendner FSU Jena Thema: Division Eberhard Zehendner (FSU Jena) Rechnerarithmetik Division 1 / 44 Division in UInt Aus dem Dividenden A und

Mehr

Arithmetik: Vorzeichenregeln und Überlauf, Exponenten & Normalisierung, Umrechnungen. Architektur: - Rechnerarchitektur, Instruktionssatz, Assembler

Arithmetik: Vorzeichenregeln und Überlauf, Exponenten & Normalisierung, Umrechnungen. Architektur: - Rechnerarchitektur, Instruktionssatz, Assembler F. Zahlendarstellung und Rechnerarithmetik F.1. Einordnung & Inhalte Zahlendarstellungen: binär, BCD oder als ASCII-Text, Einer- und Zweierkomplement, Gleit- & Festkommazahlen. Arithmetik: Vorzeichenregeln

Mehr

Vorlesung Programmieren

Vorlesung Programmieren Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Klausur zur Vorlesung Technische Informatik 1 im WS 06/07 Donnerstag, den von Uhr Uhr, HS 5

Klausur zur Vorlesung Technische Informatik 1 im WS 06/07 Donnerstag, den von Uhr Uhr, HS 5 Philipps-Universität Marburg Fachbereich Mathematik und Informatik AG Verteilte Systeme http://ds.informatik.uni-marburg.de Prof. Dr. Helmut Dohmann Prof. Dr. Bernd Freisleben Klausur zur Vorlesung Technische

Mehr

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Steuerwerk einer CPU Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Implementierung des Datenpfads Direkte Implementierung Mikroprogrammierung

Mehr

ALU ALU. ALU-Aufbau. Eine ALU (arithmetisch-logische Einheit) besteht in der Regel aus. Addierer. Logischer Einheit. Shifter

ALU ALU. ALU-Aufbau. Eine ALU (arithmetisch-logische Einheit) besteht in der Regel aus. Addierer. Logischer Einheit. Shifter ALU ALU-Aufbau Eine ALU (arithmetisch-logische Einheit) besteht in der Regel aus Addierer Logischer Einheit Shifter Eingänge in eine ALU: zwei Operanden, Instruktionscode OP1 OP0 Ausgänge einer ALU: Ergebnis,

Mehr

Algorithmen zur Division

Algorithmen zur Division Algorithmen zur Division Umkehrung der Multiplikation: Berechnung von q = a / b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom aktuellen Rest

Mehr

Dipl.-Ing. Halit Ünver Datenbanken/Künstliche Intelligenz FAW/n. Zahlensysteme

Dipl.-Ing. Halit Ünver Datenbanken/Künstliche Intelligenz FAW/n. Zahlensysteme Dipl.-Ing. Halit Ünver 7.. Datenbanken/Künstliche Intelligenz FAW/n Zahlensysteme Seite Zahlensysteme Dipl.-Ing. Halit Ünver 7.. Inhalt I. Informatik und Zahlen für Wirtschaftswissenschaftler? II. III.

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Arithmetische und bitweise Operatoren im Binärsystem Prof. Dr. Nikolaus Wulff Operationen mit Binärzahlen Beim Rechnen mit Binärzahlen gibt es die ganz normalen arithmetischen

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik Mikroprogrammierung schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik Mikroprogrammierung schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation

Mehr

Inhaltsverzeichnis. Teil I Aufgaben 1

Inhaltsverzeichnis. Teil I Aufgaben 1 iii Teil I Aufgaben 1 1 Grundlagen der Elektrotechnik 3 Aufgabe 1: Punktladungen............................ 3 Aufgabe 2: Elektronenstrahlröhre........................ 3 Aufgabe 3: Kapazität eines Koaxialkabels...................

Mehr

Praktikum Grundlagen der Elektronik

Praktikum Grundlagen der Elektronik Praktikum Grundlagen der Elektronik Versuch EP 7 Digitale Grundschaltungen Institut für Festkörperelektronik Kirchhoff - Bau K1084 Die Versuchsanleitung umfasst 7 Seiten Stand 2006 Versuchsziele: Festigung

Mehr

5 Verarbeitungsschaltungen

5 Verarbeitungsschaltungen 5 Verarbeitungsschaltungen Folie 1 5 Verarbeitungsschaltungen Häufig genutzte Funktionen gibt es als fertige Bausteine zu kaufen. 5.1 Addierer logische Schaltungen zur Addition zweier Dualzahlen Alle Grundrechenarten

Mehr

Digitaltechnik II SS 2007

Digitaltechnik II SS 2007 Digitaltechnik II SS 27 2. Vorlesung Klaus Kasper Inhalt Schaltnetz vs. Schaltwerk NAND SR-Flip-Flop NOR SR-Flip-Flop Master-Slave Flip-Flop Zustandsdiagramm Flip-Flop Zoo Schaltnetze vs. Schaltwerke Schaltnetz:

Mehr

Teil 1: Logik 1e: Zustandsautomaten

Teil 1: Logik 1e: Zustandsautomaten Synchroner Zähler als sautomat Teil 1: 1e: sautomaten Betrachte Zählerstand als Übergänge zwischen 0,1,2,3 ohne externe Randbedingungen 0 3 1 2 sautomat (1) sautomat (2) sspeicher sspeicher Wenn 2, dann

Mehr