Grundlagen der Technischen Informatik. 4. Übung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Technischen Informatik. 4. Übung"

Transkript

1 Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit

2 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: +/-/* im Dualsystem, Addition im Hexadezimalsystem Zahlenbereiche IEEE-Format Addition/Subtraktion von Gleitkommazahlen Multiplikation von Gleitkommazahlen Assoziativität von Operationen

3 4. Übungsblatt Aufgabe 1 Führen Sie die folgenden Berechnungen im angegebenen Zahlensystem aus, ohne die Zahlen ins Dezimalsystem umzuwandeln: a) Addition im Dualsystem:

4 4. Übungsblatt Aufgabe 1 Führen Sie die folgenden Berechnungen im angegebenen Zahlensystem aus, ohne die Zahlen ins Dezimalsystem umzuwandeln: a) Addition im Dualsystem: =

5 4. Übungsblatt Aufgabe 1 Führen Sie die folgenden Berechnungen im angegebenen Zahlensystem aus, ohne die Zahlen ins Dezimalsystem umzuwandeln: b) Multiplikation im Dualsystem: *

6 4. Übungsblatt Aufgabe 1 Führen Sie die folgenden Berechnungen im angegebenen Zahlensystem aus, ohne die Zahlen ins Dezimalsystem umzuwandeln: b) Multiplikation im Dualsystem: * * * =

7 4. Übungsblatt Aufgabe 1 Führen Sie die folgenden Berechnungen im angegebenen Zahlensystem aus, ohne die Zahlen ins Dezimalsystem umzuwandeln: c) Subtraktion im Dualsystem:

8 4. Übungsblatt Aufgabe 1 c) Subtraktion im Dualsystem: Minuend Subtrahend Subtrahend (B-1) Subtrahend (B-2) Minuend = Übertrag = => Ergebnis positiv =

9 4. Übungsblatt Aufgabe 1 Führen Sie die folgenden Berechnungen im angegebenen Zahlensystem aus, ohne die Zahlen ins Dezimalsystem umzuwandeln: c) Subtraktion im Dualsystem:

10 4. Übungsblatt Aufgabe 1 c) Subtraktion im Dualsystem: Minuend Subtrahend Subtrahend (B-1) Subtrahend (B-2) Minuend = Übertrag = => Ergebnis negativ Ergebnis im Betrag

11 4. Übungsblatt Aufgabe 1 Führen Sie die folgenden Berechnungen im angegebenen Zahlensystem aus, ohne die Zahlen ins Dezimalsystem umzuwandeln: d) Addition im Hexadezimalsystem: B674FC DA9D4B2 16

12 4. Übungsblatt Aufgabe 1 Führen Sie die folgenden Berechnungen im angegebenen Zahlensystem aus, ohne die Zahlen ins Dezimalsystem umzuwandeln: d) Addition im Hexadezimalsystem: B674FC DA9D4B2 16 B F C D A 9 D 4 B E 4 1 E D 0 C 4 B674FC DA9D4B2 16 = E41ED0C4 16

13 4. Übungsblatt Aufgabe 2 In einem Prozessor ist die Verarbeitungswortbreite beschränkt und somit auch der im Prozessor darstellbare Zahlenbereich. Was bedeutet dies, wenn eine Zahl in einem Prozessor einmal positiv ganzzahlig und einmal als vorzeichenbehaftete Zahl in 2er-Komplementdarstellung interpretiert werden? Wiederholen Sie die Subtraktionsaufgaben von Aufgabe 1c) und erweitern Sie dieses mal nicht die Operanden mit führenden Nullen. Worin liegt der Unterschied? Der Unterschied ist der, dass ein negatives Ergebnis nicht durch ein Vorzeichenbit erkennbar ist, sondern durch einen nicht vorhandenen Übertrag.

14 4. Übungsblatt Aufgabe 3 Die Zahlendarstellung im IEEE Standard 754 (single precision): Allgemein gilt: Z = (-1) V * (1 + M) * 2 (E - BIAS) a) Welche (Dezimal-)Zahlen werden durch die beiden Werte nach obigem Muster dargestellt: I) II)

15 4. Übungsblatt Aufgabe 3 a) Welche (Dezimal-)Zahlen werden durch die beiden Werte nach obigem Muster dargestellt: I)

16 4. Übungsblatt Aufgabe 3 a) Welche (Dezimal-)Zahlen werden durch die beiden Werte nach obigem Muster dargestellt: I) V = 0

17 4. Übungsblatt Aufgabe 3 a) Welche (Dezimal-)Zahlen werden durch die beiden Werte nach obigem Muster dargestellt: I) V = 0 E = = = 153

18 4. Übungsblatt Aufgabe 3 a) Welche (Dezimal-)Zahlen werden durch die beiden Werte nach obigem Muster dargestellt: I) V = 0 E = = = 153 BIAS = 2 #E-1-1 = = = 127

19 4. Übungsblatt Aufgabe 3 a) Welche (Dezimal-)Zahlen werden durch die beiden Werte nach obigem Muster dargestellt: I) V = 0 E = = = 153 BIAS = 2 #E-1-1 = = = 127 M =

20 4. Übungsblatt Aufgabe 3 a) Welche (Dezimal-)Zahlen werden durch die beiden Werte nach obigem Muster dargestellt: I) V = 0 E = = = 153 BIAS = 2 #E-1-1 = = = 127 M = (1 + M) = = /2 12 (-1) 0 ( ) 2 ( ) D D

21 4. Übungsblatt Aufgabe 3 a) Welche (Dezimal-)Zahlen werden durch die beiden Werte nach obigem Muster dargestellt: II)

22 4. Übungsblatt Aufgabe 3 a) Welche (Dezimal-)Zahlen werden durch die beiden Werte nach obigem Muster dargestellt: II) V = 1

23 4. Übungsblatt Aufgabe 3 a) Welche (Dezimal-)Zahlen werden durch die beiden Werte nach obigem Muster dargestellt: II) V = 1 E = = = 25

24 4. Übungsblatt Aufgabe 3 a) Welche (Dezimal-)Zahlen werden durch die beiden Werte nach obigem Muster dargestellt: II) V = 1 E = = = 25 BIAS = 2 #E-1-1 = = = 127

25 4. Übungsblatt Aufgabe 3 a) Welche (Dezimal-)Zahlen werden durch die beiden Werte nach obigem Muster dargestellt: II) V = 1 E = = = 25 BIAS = 2 #E-1-1 = = = 127 M =

26 4. Übungsblatt Aufgabe 3 a) Welche (Dezimal-)Zahlen werden durch die beiden Werte nach obigem Muster dargestellt: II) V = 1 E = = = 25 BIAS = 2 #E-1-1 = = = 127 M = (1 + M) = = / 2 8 (-1) 1 ( ) 2 (25 127) D D

27 4. Übungsblatt Aufgabe 3 b) Wandeln Sie folgende Zahlen in die 32 Bit IEEE Gleitkommadarstellung um: I) 6,25 * 10-3 D II) 3,14159 D

28 4. Übungsblatt Aufgabe 3 I) 6,25 * 10-3 D = 0,00625 D 0,00625 * 2 = 0, ,0125 * 2 = 0, ,025 * 2 = 0,05 0 0,05 * 2 = 0,1 0 0,1 * 2 = 0,2 0 0,2 * 2 = 0,4 0 0,4 * 2 = 0,8 0 0,8 * 2 = 1,6 1 0,6 * 2 = 1,2 1 0,2 * 2 = 0,4 0...

29 4. Übungsblatt Aufgabe 3 I) 6,25 * 10-3 D = 0,00625 D 0,

30 4. Übungsblatt Aufgabe 3 I) 6,25 * 10-3 D = 0,00625 D 0, , * 2-8 M = 1,

31 4. Übungsblatt Aufgabe 3 I) 6,25 * 10-3 D = 0,00625 D 0, , * 2-8 M = 1, E + BIAS = = 119 E = : 2 = 59 R1 59 : 2 = 29 R1 29 : 2 = 14 R1 14 : 2 = 7 R0 7 : 2 = 3 R1 3 : 2 = 1 R1 1 : 2 = 0 R1

32 4. Übungsblatt Aufgabe 3 I) 6,25 * 10-3 D = 0,00625 D 0, , * 2-8 M = 1, E + BIAS = = 119 E = : 2 = 59 R1 59 : 2 = 29 R1 29 : 2 = 14 R1 14 : 2 = 7 R0 7 : 2 = 3 R1 3 : 2 = 1 R1 1 : 2 = 0 R1 6,25 * 10-3 D = B

33 4. Übungsblatt Aufgabe 3 II) 3,14159 D 0,14159 * 2 = 0, ,28318 * 2 = 0, ,56636 * 2 = 1, ,13272 * 2 = 0, ,26544 * 2 = 0, ,53088 * 2 = 1, ,06176 * 2 = 0, ,12352 * 2 = 0, ,24704 * 2 = 0, ,49408 * 2 = 0,

34 4. Übungsblatt Aufgabe 3 II) 3,14159 D 11,

35 4. Übungsblatt Aufgabe 3 II) 3,14159 D 11, , * 2 1 M = 1,

36 4. Übungsblatt Aufgabe 3 II) 3,14159 D 11, , * 2 1 M = 1, E + BIAS = = 128 E = : 2 = 64 R0 64 : 2 = 32 R0 32 : 2 = 16 R0 16 : 2 = 8 R0 8 : 2 = 4 R0 4 : 2 = 2 R0 2 : 2 = 1 R0 1 : 2 = 0 R1

37 4. Übungsblatt Aufgabe 3 II) 3,14159 D 11, , * 2 1 M = 1, E + BIAS = = 128 E = : 2 = 64 R0 64 : 2 = 32 R0 32 : 2 = 16 R0 16 : 2 = 8 R0 8 : 2 = 4 R0 4 : 2 = 2 R0 2 : 2 = 1 R0 1 : 2 = 0 R1 3,14159 D = B

38 4. Übungsblatt Aufgabe 3 b) Auf wie viele dezimale Nachkommastellen genau kann die Zahl Pi angegebenen werden?

39 4. Übungsblatt Aufgabe 3 b) Auf wie viele dezimale Nachkommastellen genau kann die Zahl Pi angegebenen werden? Von der Mantisse werden 22 Bit zur Speicherung der Nachkommastellen verwendet. Der maximale Fehler ist in diesem Fall 2-22 = 0.24 * 10-6 Pi kann also auf 6 dezimale Nachkommastellen genau angegeben werden

40 4. Übungsblatt Aufgabe 3 c) Warum kann einer float-variablen der Wert 1*10-42, nicht aber der Wert 1*10 42 zugewiesen werden?

41 4. Übungsblatt Aufgabe 3 c) Warum kann einer float-variablen der Wert 1*10-42, nicht aber der Wert 1*10 42 zugewiesen werden? Durch den Exponent kann das Komma um 127 Stellen nach links (E=0) oder um 128 Stellen nach rechts (E=255) geschoben werden > bzw Sollen in der Gleitkommadarstellung kleinere Zahlen als dargestellt werden, so greift man auf die sogenannte denormalisierte Darstellung zurück. Diese erlaubt die Darstellung kleinerer Zahlen durch Schieben und Auffüllen von Nullen der Mantisse nach rechts. Dieses Verfahren verringert allerdings die Genauigkeit. Eine Expansion in positiver Richtung kann so nicht erreicht werden, so dass eine Variable den Wert 1*10-42, nicht aber den Wert 1*10 42 besitzen kann.

42 4. Übungsblatt Aufgabe 3 d) Stellen Sie als Gleitkommazahl dar. 2

43 4. Übungsblatt Aufgabe 3 d) Stellen Sie als Gleitkommazahl dar. 2 2 wird als NaN (Not a Number) dargestellt

44 4. Übungsblatt Aufgabe 3 d) Stellen Sie als Gleitkommazahl dar. 2 2 wird als NaN (Not a Number) dargestellt E = max, M 0, V beliebig

45 4. Übungsblatt Aufgabe 3 d) Stellen Sie als Gleitkommazahl dar. 2 2 wird als NaN (Not a Number) dargestellt E = max, M 0, V beliebig Beispielsweise: B

46 4. Übungsblatt Aufgabe 4 Gegeben seien folgende Zahlen im IEEE Standard 754: x 1 = x 2 = a) Addieren Sie die beiden Zahlen b) Berechnen Sie x 2 - x 1

47 4. Übungsblatt Aufgabe 4 Vorgehensweise zur Addition/Subtraktion: 1. Transformiere durch Rechtschieben der kleineren Zahl auf den Exponenten der Größeren 2. Falls nötig 2er-Komplement bilden 3. Addieren/Subtrahieren der Mantissen (falls Ergebnis < 0: setze Vorzeichenbit und bilde 2er-Komplement) 4. Normalisiere Ergebnis 4.1 Falls Ergebnis 2: schiebe Ergebnis um eins nach rechts und inkrementiere den Exponenten 4.2 Falls Ergebnis < 0: schiebe Ergebnis um eins nach links und dekrementiere den Exponenten 4.3 Wiederhole 4.1 bzw. 4.2 bis Ergebnis == 0 1 Ergebnis < 2 5. Behandlung von Sonderfällen (Überlauf, Unterlauf, Null)

48 4. Übungsblatt Aufgabe 4 a) Addieren Sie die beiden Zahlen E 1 = E 2 = E 1 = = 153 E 2 = = 146

49 4. Übungsblatt Aufgabe 4 a) Addieren Sie die beiden Zahlen E 1 = E 2 = E 1 = = 153 E 2 = = 146 E 1 > E 2

50 4. Übungsblatt Aufgabe 4 a) Addieren Sie die beiden Zahlen E 1 = E 2 = E 1 = = 153 E 2 = = 146 E 1 > E 2 x 2 durch Rechtsschieben um E 1 - E 2 = 7 Stellen transformieren

51 4. Übungsblatt Aufgabe 4 a) Addieren Sie die beiden Zahlen E 1 = E 2 = E 1 = = 153 E 2 = = 146 E 1 > E 2 x 2 durch Rechtsschieben um E 1 - E 2 = 7 Stellen transformieren M(x 2 ) = 1, M(x 2 ) = 0,

52 4. Übungsblatt Aufgabe 4 a) Addieren Sie die beiden Zahlen M(x 2 ) : 1, M(x 2 ) : 0, M(x 1 ) : 1, , x 1 + x 2 =

53 4. Übungsblatt Aufgabe 4 b) Berechnen Sie x 2 x 1 M(x 1 ) : 1, er-Komplement von M(x 1 ) : 10, M(x 2 ) : 00, Ergebnis 0 : 10, er-Komplement : 01, x 2 - x 1 =

54 4. Übungsblatt Aufgabe 5 Gegeben seien folgende Gleitkommazahlen: x 1 = x 2 = Für die beiden Zahlen gilt: Vorzeichen (V): 1 Bit breit (1 = negativ) Exponent (E): 7 Bit breit Mantisse (M): 8 Bit breit (1,M wie beim IEEE Format üblich) Anordnung: V E M Berechnen Sie x 1 * x 2

55 4. Übungsblatt Aufgabe 5 Vorgehensweise: 1. Mantissen multiplizieren: 1,M x1 * 1,M x2 2. Exponenten addieren, aber einmal den Bias abziehen 3. Mantisse eventuell normalisieren 4. Das Vorzeichen getrennt behandeln

56 4. Übungsblatt Aufgabe 5 x 1 = x 2 = E 1 = E 2 = E 1 = = 72 E 2 = = 74 E 1 - BIAS = = 9 E 2 - BIAS = = 11

57 4. Übungsblatt Aufgabe 5 x 1 = x 2 = E 1 = E 2 = E 1 = = 72 E 2 = = 74 E 1 - BIAS = = 9 E 2 - BIAS = = 11 E(x 1 * x 2 ) = BIAS = =

58 4. Übungsblatt Aufgabe 5 M 1 = 1, M 2 = 1, , * 1, , M(x 1 * x 2 ) = 11,

59 4. Übungsblatt Aufgabe 5 M(x 1 * x 2 ) = 11, (0111 1) <- Verlust M(x 1 * x 2 ) = 11, = 1, * 2 1

60 4. Übungsblatt Aufgabe 5 M(x 1 * x 2 ) = 11, (0111 1) <- Verlust M(x 1 * x 2 ) = 11, = 1, * 2 1 E(x 1 * x 2 ) = BIAS = = E(x 1 * x 2 ) = =

61 4. Übungsblatt Aufgabe 5 M(x 1 * x 2 ) = 11, (0111 1) <- Verlust M(x 1 * x 2 ) = 11, = 1, * 2 1 E(x 1 * x 2 ) = BIAS = = E(x 1 * x 2 ) = = x 1 * x 2 =

62 4. Übungsblatt Aufgabe 6 Die Operationen Addition und Multiplikation auf Operanden in einer Fließkommadarstellung sind normalerweise nicht Assoziativ. Experimentieren Sie mit einem PC-Tabellenkalkulationsprogramm um dieses zu belegen. Bestimmen Sie dadurch auch die Anzahl der Bits, die zur Speicherung der Mantisse verwendet werden.

63 4. Übungsblatt Aufgabe 6 Beispiel: StarOffice 6.0 Man sieht, dass die Zahlen im 64Bit IEEE 754 Format abgespeichert werden # # benötigt 54 Binärstellen, wovon die Niederwärtigsten alle # 0 sind. Mit der 52 Bit Mantisse können bis zu 53 Bit berücksichtigt werden. Die 17 ist eine ungerade Zahl und sorgt bei der Addition für eine 1 auf der 54. Stelle. Diese Stelle geht aber gerade verloren, so dass ein Fehler von 1 bleibt.

64 4. Übungsblatt Danke für die Aufmerksamkeit

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: IEEE Format Zahlenumwandlung

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: IEEE Format Zahlenumwandlung

Mehr

GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK

GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK 1 GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK Aufgabe 1 Bin- und Hex Arithmetik 2 Führen Sie die folgenden Berechnungen im angegebenen Zahlensystem aus, ohne die Zahlen ins Dezimalsystem umzuwandeln:

Mehr

Grundlagen der Technischen Informatik. 3. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit

Grundlagen der Technischen Informatik. 3. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Zahlendarstellungen

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Polyadische Zahlensysteme Gleitkomma-Arithmetik 4.

Mehr

Binäre Division. Binäre Division (Forts.)

Binäre Division. Binäre Division (Forts.) Binäre Division Umkehrung der Multiplikation: Berechnung von q = a/b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom Dividenden a subtrahiert:

Mehr

Grundlagen der Technischen Informatik. 3. Übung

Grundlagen der Technischen Informatik. 3. Übung Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Zahlendarstellungen

Mehr

6.2 Kodierung von Zahlen

6.2 Kodierung von Zahlen 6.2 Kodierung von Zahlen Neue Begriffe é Festkommadarstellungen é Zahlendarstellung durch Betrag und Vorzeichen é Einer-/Zweierkomplement-Darstellung é Gleitkommadarstellung é IEEE-754 Format BB TI I 6.2/1

Mehr

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen allgemeine Gleitkommazahl zur Basis r

Mehr

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen Inhalt Motivation 2 Integer- und Festkomma-Arithmetik Zahlendarstellungen Algorithmen für Integer-Operationen Integer-Rechenwerke Rechnen bei eingeschränkter Präzision 3 Gleitkomma-Arithmetik Zahlendarstellungen

Mehr

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS Gleit komma zahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen wird eine große Dynamik benötigt: sowohl sehr kleine als auch sehr große Zahlen sollen einheitlich dargestellt

Mehr

Die Zahl ist: (z 2, z 1, z 0 ) (z ) : 7 = 0 Rest z 2

Die Zahl ist: (z 2, z 1, z 0 ) (z ) : 7 = 0 Rest z 2 Übungen zur Vorlesung Technische Informatik I, SS Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 4 Rechnerarithmetik Aufgabe : a) Bestimmen Sie die Darstellung der Zahl 3 zur Basis 7. 3 = 7 (Sehen Sie

Mehr

BB/CS- SS00 Rechner im Überblick 1/1. Ein Stellenwertsystem (Zahlensystem) ist ein Tripel S = (b, Z, δ) mit den folgenden Eigenschaften:

BB/CS- SS00 Rechner im Überblick 1/1. Ein Stellenwertsystem (Zahlensystem) ist ein Tripel S = (b, Z, δ) mit den folgenden Eigenschaften: Neue Begriffe Festkommadarstellungen Zahlendarstellung durch Betrag und Vorzeichen Einer-/Zweierkomplement-Darstellung Gleitkommadarstellung IEEE-754 Format BB/CS- SS00 Rechner im Überblick 1/1! Definition

Mehr

Wertebereiche, Overflow und Underflow

Wertebereiche, Overflow und Underflow Wertebereiche, Overflow und Underflow s exponent fraction 1 Bit 8 Bits 23 Bits Kleinste darstellbare nicht negative Zahl annähernd 2,0 * 10 38 Größte darstellbare Zahl annähernd 2,0 * 10 38 Was, wenn die

Mehr

Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen Darstellung ganzer Zahlen

Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen Darstellung ganzer Zahlen 3 Zahlendarstellung - Zahlensysteme - b-adische Darstellung natürlicher Zahlen - Komplementbildung - Darstellung ganzer und reeller Zahlen Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen......

Mehr

2.1.2 Gleitkommazahlen

2.1.2 Gleitkommazahlen .1. Gleitkommazahlen Überblick: Gleitkommazahlen Gleitkommadarstellung Arithmetische Operationen auf Gleitkommazahlen mit fester Anzahl von Mantissen- und Exponentenbits Insbesondere Rundungsproblematik:

Mehr

HaDePrak WS 05/ Versuch

HaDePrak WS 05/ Versuch HaDePrak WS 05/06 10. Versuch 1 Das IEEE-Format Das Ziel dieser letzten Übung ist es, ein Fließkommapaket für die DLXzu implementieren. Der Einfachheit halber vernachlässigen wir hier im Praktikum jeglichen

Mehr

Zahlen in Binärdarstellung

Zahlen in Binärdarstellung Zahlen in Binärdarstellung 1 Zahlensysteme Das Dezimalsystem Das Dezimalsystem ist ein Stellenwertsystem (Posititionssystem) zur Basis 10. Das bedeutet, dass eine Ziffer neben ihrem eigenen Wert noch einen

Mehr

Vorlesung Programmieren

Vorlesung Programmieren Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Übung Praktische Informatik II

Übung Praktische Informatik II Übung Praktische Informatik II FSS 2009 Benjamin Guthier Lehrstuhl für Praktische Informatik IV Universität Mannheim guthier@pi4.informatik.uni-mannheim.de 06.03.09 2-1 Heutige große Übung Allgemeines

Mehr

2 Repräsentation von elementaren Daten

2 Repräsentation von elementaren Daten 2 Repräsentation von elementaren Daten Alle (elemtaren) Daten wie Zeichen und Zahlen werden im Dualsystem repräsentiert. Das Dualsystem ist ein spezielles B-adisches Zahlensystem, nämlich mit der Basis

Mehr

Übung Programmieren - Zahlendarstellung, SSH, SCP, Shellskripte -

Übung Programmieren - Zahlendarstellung, SSH, SCP, Shellskripte - Übung Programmieren - Zahlendarstellung, SSH, SCP, Shellskripte - Sebastian Ebers Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/users/ebers Zahlendarstellung 201010? 16 2010

Mehr

Rückblick. Zahlendarstellung zu einer beliebigen Basis b. Umwandlung zwischen Zahlendarstellung (214) 5 = (278) 10 =(?) 8

Rückblick. Zahlendarstellung zu einer beliebigen Basis b. Umwandlung zwischen Zahlendarstellung (214) 5 = (278) 10 =(?) 8 Rückblick Zahlendarstellung zu einer beliebigen Basis b (214) 5 = Umwandlung zwischen Zahlendarstellung (278) 10 =(?) 8 25 Rückblick Schnellere Umwandlung zwischen Binärdarstellung und Hexadezimaldarstellung

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik Mikroprogrammierung schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik Mikroprogrammierung schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation

Mehr

, 2015S Übungstermin: Mi.,

, 2015S Übungstermin: Mi., VU Grundlagen digitaler Systeme Übung 1: Zahlendarstellungen, Numerik 183.580, 2015S Übungstermin: Mi., 18.03.2015 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen Hilfsmittel

Mehr

5 Zahlenformate und deren Grenzen

5 Zahlenformate und deren Grenzen 1 5 Zahlenformate und deren Grenzen 5.1 Erinnerung B-adische Zahlendarstellung Stellenwertsystem: Jede Ziffer hat ihren Wert, und die Stelle der Ziffer in der Zahl modifiziert den Wert. 745 = 7 100 + 4

Mehr

1. Tutorium Digitaltechnik und Entwurfsverfahren

1. Tutorium Digitaltechnik und Entwurfsverfahren 1. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 25 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

2.Vorlesung Grundlagen der Informatik

2.Vorlesung Grundlagen der Informatik Christian Baun 2.Vorlesung Grundlagen der Informatik Hochschule Darmstadt WS1112 1/16 2.Vorlesung Grundlagen der Informatik Christian Baun Hochschule Darmstadt Fachbereich Informatik christian.baun@h-da.de

Mehr

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 2 Grundlegende Konzepte 1 2.1 Zahlensysteme Römisches System Grundziffern I 1 erhobener Zeigefinger V 5 Hand mit 5 Fingern X 10 steht für zwei Hände L 50 C 100 Centum heißt Hundert D 500 M 1000

Mehr

1. Vorzeichen und Betrag (engl. Sign-/Magnitude) 2. Stellenkomplement 3. Basiskomplement

1. Vorzeichen und Betrag (engl. Sign-/Magnitude) 2. Stellenkomplement 3. Basiskomplement 3 Darstellungsformen für Zahlen Informatik II SS 24 Dipl.-Inform. Michael Ebner. Vorzeichen und Betrag (engl. Sign-/Magnitude) 2. Stellenkomplement 3. Basiskomplement Warum 3 Darstellungsformen? Ziel:

Mehr

Computergrundlagen Zahlensysteme

Computergrundlagen Zahlensysteme Computergrundlagen Zahlensysteme Institut für Computerphysik Universität Stuttgart Wintersemester 2012/13 Wie rechnet ein Computer? Ein Mikroprozessor ist ein Netz von Transistoren, Widerständen und Kondensatoren

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit Informationsmenge Maßeinheit: 1 Bit Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit 1 Byte Zusammenfassung von 8 Bit, kleinste Speichereinheit im Computer, liefert

Mehr

Zum Nachdenken. Wenn die Zahl (123) hat, was könnte dann (123,45) 10

Zum Nachdenken. Wenn die Zahl (123) hat, was könnte dann (123,45) 10 TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Zum Nachdenken Wenn die Zahl (123) 10 den Wert 1. 10 2 +2. 10 1 +3. 10 0 hat, was könnte dann (123,45) 10 bedeuten? Wenn Sie beliebige reelle Zahlenwerte

Mehr

Lösung 2. Übungsblatt

Lösung 2. Übungsblatt Fakultät Informatik, Technische Informatik, Professur für Mikrorechner Lösung 2. Übungsblatt Bildung von Gleitkommazahlen nach IEEE 754 und arithmetische Operationen mit Binärzahlen ANSI/IEEE 754-1985

Mehr

Binäre Gleitkommazahlen

Binäre Gleitkommazahlen Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72

Mehr

DuE-Tutorien 16 und 17

DuE-Tutorien 16 und 17 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Tutorienwoche 2 am 12.11.2010 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der

Mehr

Kapitel 5: Darstellung von Daten im Rechner

Kapitel 5: Darstellung von Daten im Rechner Kapitel 5: Darstellung von Daten im Rechner Kapitel 5 Darstellung von Daten im Rechner und Rechnerarithmetik Literatur: Oberschelp/Vossen, Kapitel 5 Kapitel 5: Darstellung von Daten im Rechner Seite Kapitel

Mehr

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Fest- und Gleitkommasysteme

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Fest- und Gleitkommasysteme Rechnerarithmetik Vorlesung im Sommersemester 2008 Eberhard Zehendner FSU Jena Thema: Fest- und Gleitkommasysteme Eberhard Zehendner (FSU Jena) Rechnerarithmetik Fest- und Gleitkommasysteme 1 / 13 Gleitkommazahlen:

Mehr

Binärdarstellung von Fliesskommazahlen

Binärdarstellung von Fliesskommazahlen Binärdarstellung von Fliesskommazahlen 1. IEEE 754 Gleitkommazahl im Single-Format So sind in Gleitkommazahlen im IEEE 754-Standard aufgebaut: 31 30 24 23 0 S E E E E E E E E M M M M M M M M M M M M M

Mehr

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik)

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Die Bildauswahl erfolgte in Anlehnung an das Alter der Kinder Prof. J. Walter Bitte römische Zahlen im Geschichtsunterricht! Messsystem mit Mikrocontroller

Mehr

Lösung 1. Übungsblatt

Lösung 1. Übungsblatt Fakultät Informatik, Technische Informatik, Lehrstuhl für Eingebettete Systeme Lösung 1. Übungsblatt Konvertierung von Zahlendarstellungen verschiedener Alphabete und Darstellung negativer Zahlen Stoffverteilung

Mehr

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr

Motivation 31. Mai 2005

Motivation 31. Mai 2005 Motivation 31. Mai 25 Zuletzt behandelt: Zahlendarstellung und Rechnerarithmetik Festkommazahlen: Vorzeichen/Betrag-Darstellung Einerkomplement, Zweierkomplement Rückführung der Subtraktion auf die Addition

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

Computer Arithmetik. Computer Arithmetik Allgemein

Computer Arithmetik. Computer Arithmetik Allgemein Vortrag von René Grohmann und Mirwais Turjalei, 22.11.2000 Computer Arithmetik Computer Arithmetik Allgemein Die ALU: Die Alu ist die Einheit im Computer, die dazu bestimmt ist arithmetische und logische

Mehr

Zahlensysteme und Kodes. Prof. Metzler

Zahlensysteme und Kodes. Prof. Metzler Zahlensysteme und Kodes 1 Zahlensysteme und Kodes Alle üblichen Zahlensysteme sind sogenannte Stellenwert-Systeme, bei denen jede Stelle innerhalb einer Zahl ein besonderer Vervielfachungsfaktor in Form

Mehr

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1 Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2014/2015 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg

Mehr

Lösungsvorschlag 6. Übung Technische Grundlagen der Informatik II Sommersemester Aufgabe 6.1: Multiplikation von positiven Dualzahlen

Lösungsvorschlag 6. Übung Technische Grundlagen der Informatik II Sommersemester Aufgabe 6.1: Multiplikation von positiven Dualzahlen Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 6. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 6.1: Multiplikation von positiven Dualzahlen Berechnen

Mehr

RO-Tutorien 3 / 6 / 12

RO-Tutorien 3 / 6 / 12 RO-Tutorien 3 / 6 / 12 Tutorien zur Vorlesung Rechnerorganisation Christian A. Mandery WOCHE 3 AM 13./14.05.2013 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

2.5. Gleitkommaarithmetik

2.5. Gleitkommaarithmetik 2.5. Gleitkommaarithmetik Bei vorgegebener Länge m des Kodeworts (der rechnerinternen Darstellung) lassen sich nur 2 m verschiedene Werte darstellen. In der Mehrzahl der Fälle ist das zu wenig. Ein Ausweg

Mehr

2 ARITHM. UND LOG. AUSDRÜCKE ZAHLEN

2 ARITHM. UND LOG. AUSDRÜCKE ZAHLEN 2 ARITHM. UND LOG. AUSDRÜCKE ZAHLEN Leitidee: Die Darstellung von Zahlen durch eine feste Zahl von Bits erfordert eine Reihe von Kompromissen Ganzzahl- oder Gleitpunktarithmetik? Dual- und Hexadezimalzahlsystem

Mehr

Das Maschinenmodell Datenrepräsentation

Das Maschinenmodell Datenrepräsentation Das Maschinenmodell Datenrepräsentation Darstellung von Zahlen/Zeichen in der Maschine Bit (0/1) ist die kleinste Informationseinheit Größere Einheiten durch Zusammenfassen mehrerer Bits, z.b. 8 Bit =

Mehr

Das Rechnermodell - Funktion

Das Rechnermodell - Funktion Darstellung von Zahlen und Zeichen im Rechner Darstellung von Zeichen ASCII-Kodierung Zahlensysteme Dezimalsystem, Dualsystem, Hexadezimalsystem Darstellung von Zahlen im Rechner Natürliche Zahlen Ganze

Mehr

B: Basis des Zahlensystems 0 a i < B a i є N 0 B є (N > 1) Z = a 0 B 0 + a 1 B 1 + a 2 B a n-1 B n-1

B: Basis des Zahlensystems 0 a i < B a i є N 0 B є (N > 1) Z = a 0 B 0 + a 1 B 1 + a 2 B a n-1 B n-1 Polyadisches Zahlensystem B: Basis des Zahlensystems 0 a i < B a i є N 0 B є (N > 1) Ganze Zahlen: n-1 Z= a i B i i=0 Z = a 0 B 0 + a 1 B 1 + a 2 B 2 +... + a n-1 B n-1 Rationale Zahlen: n-1 Z= a i B i

Mehr

Technische Grundlagen der Informatik Kapitel 8. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt

Technische Grundlagen der Informatik Kapitel 8. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Technische Grundlagen der Informatik Kapitel 8 Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Kapitel 8: Themen Zahlensysteme - Dezimal - Binär Vorzeichen und Betrag Zweierkomplement Zahlen

Mehr

DuE-Tutorien 17 und 18

DuE-Tutorien 17 und 18 DuE-Tutorien 17 und 18 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery TUTORIENWOCHE 1 AM 04.11.2011 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Lösungsvorschlag zu 1. Übung

Lösungsvorschlag zu 1. Übung Prof. Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik 3 Wintersemester 09/10 Lösungsvorschlag zu 1. Übung 1 Präsenzübungen 1.1 Schnelltest a) Welche der Aussagen treffen auf jeden

Mehr

Kapitel 2. Zahlensysteme, Darstellung von Informationen

Kapitel 2. Zahlensysteme, Darstellung von Informationen Kapitel 2 Zahlensysteme, Darstellung von Informationen 1 , Darstellung von Informationen Ein Computer speichert und verarbeitet mehr oder weniger große Informationsmengen, je nach Anwendung und Leistungsfähigkeit.

Mehr

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer? Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Darstellung von Zeichen und Zahlen

Darstellung von Zeichen und Zahlen und Zahlen [Technische Informatik Eine Einführung] Univ.-Prof. Dr. Paul Molitor Lehrstuhl für Technische Informatik Institut für Informatik Martin-Luther-Universität Halle-Wittenberg 1. November 2005 1

Mehr

Datendarstellung Teil 2

Datendarstellung Teil 2 Informatik 1 für Nebenfachstudierende Grundmodul Datendarstellung Teil 2 Kai-Steffen Hielscher Folienversion: 24. Oktober 2017 Informatik 7 Rechnernetze und Kommunikationssysteme Inhaltsübersicht Kapitel

Mehr

1.5 Einführung und Zahlensysteme/Darstellung gebrochener Zahlen

1.5 Einführung und Zahlensysteme/Darstellung gebrochener Zahlen 1.5 Einführung und Zahlensysteme/Darstellung gebrochener Zahlen 1.5.1 Situation Manchmal möchte man in Programmen mit Kommazahlen rechnen. In der Mathematik Im der Wirtschaft, im kaufmännischen Bereich

Mehr

Datendarstellung Teil 2

Datendarstellung Teil 2 Informatik 1 für Nebenfachstudierende Grundmodul Datendarstellung Teil 2 Kai-Steffen Hielscher Folienversion: 08. November 2016 Informatik 7 Rechnernetze und Kommunikationssysteme Inhaltsübersicht Kapitel

Mehr

Einführung in die Programmiertechnik

Einführung in die Programmiertechnik Einführung in die Programmiertechnik Darstellung von Zahlen Natürliche Zahlen: Darstellungsvarianten Darstellung als Text Üblich, wenn keine Berechnung stattfinden soll z.b. Die Regionalbahn 28023 fährt

Mehr

Basisinformationstechnologie I

Basisinformationstechnologie I Basisinformationstechnologie I Wintersemester 2012/13 24. Oktober 2012 Grundlagen III Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G. Wieners // jan.wieners@uni-koeln.de

Mehr

Zwischenklausur Informatik, WS 2014/15

Zwischenklausur Informatik, WS 2014/15 Zwischenklausur Informatik, WS /5.. Zugelassene Hilfsmittel: außer Stift und Papier keine Hinweis: Geben Sie bei allen Berechnungen den vollständigen Rechenweg mit an! Alle Aufgaben/Fragen sind unmittelbar

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659 338 FB

Mehr

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Kapitel 1 Zahlendarstellung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Zahlensystemkonvertierung Motivation Jede nichtnegative Zahl z lässt

Mehr

Grundlagen der Datenverarbeitung - Zahlensysteme

Grundlagen der Datenverarbeitung - Zahlensysteme 1. Zahlensysteme 1.1.Dezimalsystem Das Dezimalsystem ist das System, in dem wir gewohnt sind zu zählen und zu rechnen. Zahlen werden durch die Ziffern 0,1,2,...,9 dargestellt. Die Zahl 7243 wird als Siebentausendzweihundertdreiundvierzig

Mehr

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 1. Zahlensysteme Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen der Digitaltechnik

Mehr

Teil II. Schaltfunktionen

Teil II. Schaltfunktionen Teil II Schaltfunktionen 1 Teil II.1 Zahlendarstellung 2 b-adische Systeme Sei b IN mit b > 1 und E b = {0, 1,..., b 1} (Alphabet). Dann ist jede Fixpunktzahl z (mit n Vorkomma und k Nachkommastellen)

Mehr

Informationsdarstellung 2.2

Informationsdarstellung 2.2 Beispiele für die Gleitkommadarstellung (mit Basis b = 2): 0,5 = 0,5 2 0-17,0 = - 0,53125 2 5 1,024 = 0,512 2 1-0,001 = - 0,512 2-9 3,141592... = 0,785398... 2 2 n = +/- m 2 e Codierung in m Codierung

Mehr

a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127.

a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127. Übung 2, Aufgabe 4) a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127. 1,125 in IEEE 754 (32Bit) 0,125 2 = 0,25 0,25 2 = 0,5 0,5 2 = 1 1,125 10 = 1,001 2 Da die Zahl bereits

Mehr

Inhalt: Binärsystem 7.Klasse - 1 -

Inhalt: Binärsystem 7.Klasse - 1 - Binärsystem 7.Klasse - 1 - Inhalt: Binärarithmetik... 2 Negative Zahlen... 2 Exzess-Darstellung 2 2er-Komplement-Darstellung ( two s complement number ) 2 Der Wertebereich vorzeichenbehafteter Zahlen:

Mehr

2.5 Primitive Datentypen

2.5 Primitive Datentypen 2.5 Primitive Datentypen Wir unterscheiden 5 primitive Datentypen: ganze Zahlen -2, -1, -0, -1, -2,... reelle Zahlen 0.3, 0.3333..., π, 2.7 10 4 Zeichen a, b, c,... Zeichenreihen "Hello World", "TIFI",

Mehr

Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016

Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Musterlösung 1 Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den

Mehr

Grundzüge der Informatik Zahlendarstellungen (7)

Grundzüge der Informatik Zahlendarstellungen (7) Grundzüge der Informatik Zahlendarstellungen (7) Sylvia Swoboda e0225646@student.tuwien.ac.at Überblick Konvertierung von ganzen Zahlen Konvertierung von Festkommazahlen Darstellung negativer Zahlen 1

Mehr

Gleitkommaarithmetik. Erhöhen der Genauigkeit. Grundlagen der Rechnerarchitektur Logik und Arithmetik 124

Gleitkommaarithmetik. Erhöhen der Genauigkeit. Grundlagen der Rechnerarchitektur Logik und Arithmetik 124 Gleitkommaarithmetik Erhöhen der Genauigkeit Grundlagen der Rechnerarchitektur Logik und Arithmetik 124 Guard Bit, Round Bit und Sticky Bit Bei der Darstellung der Addition und Multiplikation haben wir

Mehr

01 - Zahlendarstellung

01 - Zahlendarstellung 01 - Zahlendarstellung Technische Grundlagen der Informatik Automation Systems Group E183-1 Institute of Computer Aided Automation Vienna University of Technology email: tgi@auto.tuwien.ac.at Zahlendarstellung

Mehr

Informatik I Modul 2: Rechnerarithmetik (1)

Informatik I Modul 2: Rechnerarithmetik (1) Fall Term 2010, Department of Informatics, IFI, UZH, Switzerland Informatik I Modul 2: Rechnerarithmetik (1) 2010 Burkhard Stiller M2 1 Modul 2: Rechnerarithmetik (1) Zahlensysteme Zahlendarstellung 2010

Mehr

Modul 2: Rechnerarithmetik (1) Informatik I. Modul 2: Rechnerarithmetik (1) Rechnerarithmetik. Formale Grundlagen. Zahlensysteme (1) Zahlensysteme (2)

Modul 2: Rechnerarithmetik (1) Informatik I. Modul 2: Rechnerarithmetik (1) Rechnerarithmetik. Formale Grundlagen. Zahlensysteme (1) Zahlensysteme (2) Fall Term 1, Department of Informatics, IFI, UZH, Switzerland Modul : Rechnerarithmetik (1) Informatik I Modul : Rechnerarithmetik (1) Zahlensysteme Zahlendarstellung 1 Burkhard Stiller M 1 1 Burkhard

Mehr

Grundzüge der Informatik Tutorium Gruppe 6

Grundzüge der Informatik Tutorium Gruppe 6 Grundzüge der Informatik Tutorium Gruppe 6 Inhalt Einführung Numerik Fest- und Termin 5 07.2.2006 Apfelthaler Kathrin Test-Beispiel e0225369@student.tuwien.ac.at Numerik Festpunkt-Darstellung Berechnung

Mehr

7. Übung zur Vorlesung Grundlagen der Informatik

7. Übung zur Vorlesung Grundlagen der Informatik 7. Übung zur Vorlesung Grundlagen der Informatik 13.Interne Darstellung von Daten In der Vorlesung wurde bereits darauf hingewiesen, dass ein Rechner intern lediglich die Zustände 0 (kein Signal liegt

Mehr

Grundlagen der Informatik I ATI / MB

Grundlagen der Informatik I ATI / MB Grundlagen der Informatik I ATI / MB Dipl.-Inf. Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de Raum 2.202 Tel. 03943 / 659 338 FB Automatisierung / Informatik: Grundlagen

Mehr

Kapitel 5: Daten und Operationen

Kapitel 5: Daten und Operationen Kapitel 5: Daten und Operationen Felix Freiling Lehrstuhl für Praktische Informatik 1 Universität Mannheim Vorlesung Praktische Informatik I im Herbstsemester 2007 Folien nach einer Vorlage von H.-Peter

Mehr

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten

Mehr

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1 Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2013/2014 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg

Mehr

Einführung in die Systemprogrammierung

Einführung in die Systemprogrammierung Einführung in die Systemprogrammierung Repräsentierung Rationaler Zahlen Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 19. Juni 2015 Rationale Zahlen Wie können wir Rationale

Mehr

Einführung in die elektronische Datenverarbeitung. Zahlensysteme

Einführung in die elektronische Datenverarbeitung. Zahlensysteme Zahlensysteme Zahlensysteme Vereinbarung (Abbildungsfunktion) zur Interpretation einer Zeichenfolge. Ein Zeichen eines Zahlensystems wird als Ziffer bezeichnet. Darstellung von natürlichen Zahlen im Dezimal-,

Mehr

Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer.

Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer. Digitaltechnik Aufgaben + Lösungen 2: Zahlen und Arithmetik Aufgabe 1 Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen a) 4 D b) 13 D c) 118 D d) 67 D Teilen durch die Basis des Zahlensystems.

Mehr

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement Kx Binäre Zahlen Kx Binäre Zahlen Inhalt. Dezimalzahlen. Hexadezimalzahlen. Binärzahlen. -Bit Binärzahlen ohne Vorzeichen. -Bit Binärzahlen mit Vorzeichen. -Bit Binärzahlen im er Komplement. Rechnen im

Mehr

Arithmetik: Vorzeichenregeln und Überlauf, Exponenten & Normalisierung, Umrechnungen. Architektur: - Rechnerarchitektur, Instruktionssatz, Assembler

Arithmetik: Vorzeichenregeln und Überlauf, Exponenten & Normalisierung, Umrechnungen. Architektur: - Rechnerarchitektur, Instruktionssatz, Assembler F. Zahlendarstellung und Rechnerarithmetik F.1. Einordnung & Inhalte Zahlendarstellungen: binär, BCD oder als ASCII-Text, Einer- und Zweierkomplement, Gleit- & Festkommazahlen. Arithmetik: Vorzeichenregeln

Mehr

E Zahlendarstellungen und Rechnerarithmetik

E Zahlendarstellungen und Rechnerarithmetik E Zahlendarstellungen und Rechnerarithmetik Einordnung in das Schichtenmodell: 1. Darstellung positiver ganzer Zahlen 2. binäre Addition 3. Darstellung negativer ganzer Zahlen 4. binäre Subtraktion 5.

Mehr

Aufgabe 1. Aufgabe 2. Abbildung 1: Schaltung für die Multiplikation mit 4

Aufgabe 1. Aufgabe 2. Abbildung 1: Schaltung für die Multiplikation mit 4 Aufgabe 1 Eine Zahl a ist mit 8 Bits vorzeichenlos (8 bit unsigned) dargestellt. Die Zahl y soll die Zahl a multipliziert mit 4 sein (y = a 4 D ). a) Wie viele Bits benötigen Sie für die Darstellung von

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel SS TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel SS TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik SS 2013 Hinweis: Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 25. April 2013 1 Boolesche

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 30. Oktober 2013 1/35 1 Boolesche

Mehr

Lösungsvorschlag 4. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 4. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 4. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 4.1: Zahlensysteme a) Bitte füllen Sie die leeren Zellen

Mehr

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10 Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754 Berechnung von Gleitkommazahlen aus Dezimalzahlen Die wissenschaftliche Darstellung einer Zahl ist wie folgt definiert: n = f * 10 e. f ist

Mehr