o statisch (Vorstellung und Verständnis von räumlicher Konstellationen)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "o statisch (Vorstellung und Verständnis von räumlicher Konstellationen)"

Transkript

1 Ziele Schulung der Raumvorstellung: o statisch (Vorstellung und Verständnis von räumlicher Konstellationen) o dynamisch (Durchführung von Handlungen an vorgestellten Objekten in der Vorstellung), vgl. Aufbauanleitung für Selbstbau-Möbel Begriffsbildung

2 Grundlegende Vorgehensweise Reihenfolge nach E-I-S-Schema (J. BRUNER): 1. enaktiv (z.b. Bauen), 2. ikonisch (z.b. durch Bilder), 3. symbolisch (Baupläne, Skizzen) Ganzheitliches Erfassen der Objekte als Körper durch ausführliches Untersuchen und Analysieren ihrer Eigenschaften Veränderung des Blickwinkels, sowohl im wörtlichen (Quader von vorne oder von links) als auch im übertragenen Sinn (Würfel als Massiv- oder Kantenmodell)

3 Bauen (vgl. Legen mit homogenem/heterogenem Material ) mit homogenem Material (z. B. Holzwürfeln oder Holzquadern) o Nachbauen von Würfelbauten anhand eines Bildes, einer Skizze, eines symbolischen Plans o Weitere Fragestellungen: Wie viele Würfel werden verbaut? Wie sieht der Grundriss aus? Wie viele Würfel benötigt ein größerer Würfel? Fertige eine Skizze deines Würfelgebäudes. o Suche nach Würfelviellingen (FRANKE, S. 122f.) o Bauen mit Quadern (Typ Ziegelstein ): Vorund Nachteile gegenüber Würfelbauten mit heterogenem Material (verschiedene Bauklötze, FRANKE, S. 117ff.), z.b. Bau einer Stadt und Beschreibung der Gebäude und ihrer Lage zueinander

4 Körperformen Möglicher Zugang: Sortieren von Modellen aus der Geometriesammlung nach eigenen Kriterien der Kinder (kategoriesuchend) oder nach Vorgabe eines Prototypes (Modell oder Abbildung) oder einer Eigenschaft (kategoriegeleitet). Danach können auch Alltagsgegenstände (Spielzeug, Unterrichtsmaterialien, Haushaltsgegenstände usw.) sortiert werden. Ziel: Begriffsbildung für Würfel, Kugel (1. Klasse), Quader (2. Klasse), evtl. Zylinder (Walze, Rundsäule), Pyramide, Kegel Übungsformen zum Einüben der Begriffe: gegenseitiges Beschreiben der Körper, Abtasten unter einem Tuch, Wiedererkennen in verschiedenen Raumlagen und Perspektiven, Beschreiben der Lage mehrerer Körper zueinander aus verschiedenen Richtungen

5 Würfel (1) Alltagsbegriff, der für den Geometrieunterricht präzisiert wird (keine runden Ecken, Achtung: Würfel zucker ist kein Würfel) erstes Kennenlernen z.b. beim Bauen mit Holzwürfeln 3./4. Klasse: Herstellung und Darstellung von Würfeln (vgl. Würfelmodelle) Suche nach Würfelnetzen (11 verschiedene bis auf Kongruenz), Markieren/Färben von Würfel und Netz (vgl. Augen auf Spielwürfel) Zeichnen von Schrägbildern des Würfels aus verschiedenen Perspektiven (Zugang z.b. über Schattenprojektion)

6 Würfel (2) Modelle Wie alle Modelle haben verschiedene Würfelmodelle unterschiedliche Vor- und Nachteile: Massivmodell betont die Flächen (Abrollen), als Schnittmodell (Styropor, Knet, Kartoffel, Steckmoos) schwierig herzustellen, kann aber weiter zerschnitten (z.b. halbiert) werden. Kantenmodell betont Kanten und Ecken (3 Kanten pro Ecke), je nach Art der Ecken/Kanten entfernt sich das Würfelmodell vom idealen Würfel, Raumdiagonale gut darstellbar. Flächenmodell bietet unmittelbare Verbindung zum Würfelnetz. Es empfiehlt sich die Erarbeitung beider Richtungen dieser Verbindung (Aufschneiden eines Würfels oder Abrollen zum Netz und Herstellen eines Würfels aus einem Netz ohne/mit Kleberändern). Statt Netz kann anfangs Schnittmuster oder Würfelkleid o.ä. verwendet werden.

7 Quader Verbindung zum Würfel über quadratisches Prisma: Jeder Würfel ist ein quadratisches Prisma; jedes quadratische Prisma ist ein Quader. Zusammenhang durch Zerschneiden erkennbar. Kennenlernen durch Bauen (CUISENAIRE-Stäbe oder Bauklötze) im Anfangsunterricht Herstellung im 3./4. Schuljahr; Anmerkung zu den Modellen s.o. Anhand der Kantenmodelle lassen sich die Regeln für die Längen von Kanten, Flächen- und Raumdiagonalen erarbeiten Aus dem Flächenmodell entsteht wieder das Netz (Warnung: Es gibt 54 verschiedene Netze des allgemeinen Quaders mit drei verschiedenen Kantenlängen, vgl. RADATZ/RICKMEYER, S. 59).

8 Weitere Körper Durch Zerlegung: Aus Würfel und Quader können durch Halbieren zwei Dreiecksprismen entstehen, ein Würfel kann in 6 quadratische Pyramiden zerlegt werden. Setzt man auf die sechs Seiten eines Würfels geeignete Walmdächer (aus vier schrägen Flächen, die sich in einer Kante, dem First, treffen, bestehendes Dach) auf, entsteht ein regelmäßiges Dodekaeder ( Zwölfflach, platonischer Körper mit zwölf kongruenten Begrenzungsflächen). Beim Kantenmodell führt die Abweichung vom rechten Winkel an den Ecken zum Pyramidenstumpf, die Abweichung vom Prinzip 3 Kanten pro Ecke zur Pyramide, die Veränderung der Grundfläche des (quadratischen) Prismas führt zum Dreiecksprisma ( Toblerone ) oder zu anderen Prismen. Alle Kantenmodelle stellen Polyeder ( Vielflachs oder Vielflächner ) dar, anhand deren der EULERsche Polyedersatz gefunden werden kann. Netze können auch zu Polyedern gefunden werden, bei Zylinder oder Kegel ist es etwas problematischer, bei der Kugel unmöglich (da positive GAUßsche Krümmung). Kugel kann als ein Modell aus Ringen hergestellt werden (RADATZ/RICKMEYER, S. 60, FRANKE S. 161f.).

4.4 Zu ausgewählten Inhalten des Geometrieunterrichts in der Grundschule

4.4 Zu ausgewählten Inhalten des Geometrieunterrichts in der Grundschule 4.4 Zu ausgewählten Inhalten des Geometrieunterrichts in der Grundschule Lagebeziehungen Eigenschaften von Gegenständen Geometrische Figuren und Körper Muster, Ornamente, Symmetrien Größe und Umfang von

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie Das komplette Material finden Sie hier: School-Scout.de Inhaltsverzeichnis Stereometrie

Mehr

Körper kennen lernen Station 1

Körper kennen lernen Station 1 Körper kennen lernen Station 1 Aufgabe 1.1) Der kleine Lars hat mit Bauklötzen eine Stadt nachgebaut. Welche Teile (geometrische Körper) hat er dabei verwendet? Fertigt eine Liste an. Aufgabe 1.2) Viele

Mehr

Aufgaben für den Mathematikunterricht. Inhaltsbereich 1: Raum und Form. 1.2 elementare geometrische Figuren kennen und herstellen

Aufgaben für den Mathematikunterricht. Inhaltsbereich 1: Raum und Form. 1.2 elementare geometrische Figuren kennen und herstellen Nr. 1 Geometrische Körper und ihre Eigenschaften Fülle die Tabelle aus. Würfel Quader Pyramide Zylinder Kegel Kugel Ecken Kanten Flächen Nr. 1 Geometrische Körper und ihre Eigenschaften Fülle die Tabelle

Mehr

Aufgaben zu Merkmalen und Eigenschaften von Körpern 1. 1 Allgemeine Merkmale vergleichen und beschreiben

Aufgaben zu Merkmalen und Eigenschaften von Körpern 1. 1 Allgemeine Merkmale vergleichen und beschreiben Aufgaben zu Merkmalen und Eigenschaften von Körpern 1 Sicheres Wissen und Können am Ende der Klasse 6 1 Allgemeine Merkmale vergleichen und beschreiben 1. Die folgenden Zeichnungen zeigen Körper. Fülle

Mehr

Körper erkennen und beschreiben

Körper erkennen und beschreiben Vertiefen 1 Körper erkennen und beschreiben zu Aufgabe 6 Schulbuch, Seite 47 6 Passt, passt nicht Nenne zu jeder Aussage alle Formen, auf die die Aussage zutrifft. a) Die Form hat keine Ecken. b) Die Form

Mehr

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild Mathematik Bl Darstellung dreidimensionaler Figuren in der Ebene Schrägbild Das Bild bei einer schrägen Parallelprojektion heisst Schrägbild und wird durch folgende Merkmale bestimmt: - Zur Zeichenebene

Mehr

Bereich: Raum und Form. Schwerpunkt: Ebene Figuren. Zeit/ Stufe

Bereich: Raum und Form. Schwerpunkt: Ebene Figuren. Zeit/ Stufe Schwerpunkt: Ebene Figuren Ebene Figuren - untersuchen weitere ebene Figuren, - benennen sie und verwenden Fachbegriffe zu deren Beschreibung - setzen Muster fort (z.b. Bandornamente, Parkettierungen),

Mehr

Konzept zur Entwicklung räumlichen Vorstellungsvermögens in MV

Konzept zur Entwicklung räumlichen Vorstellungsvermögens in MV Universität Rostock Prof. Dr. Hans Dieter Sill und Teilnehmer einer Lehrerfortbildung im Schuljahr 2012/13 Konzept zur Entwicklung räumlichen Vorstellungsvermögens in MV Vorbemerkungen Die Vorschläge sind

Mehr

Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016

Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016 1. Übertragen Sie aus der Formelsammlung die Skizzen und Formeln nachfolgender Körper aus dem Kapitel Stereometrie in ihr Heft: Würfel, Quader, Dreiecksprisma, Zylinder, Quadratische Pyramide, Rechteckpyramide,

Mehr

Didaktik der Geometrie

Didaktik der Geometrie Marianne Franke Didaktik der Geometrie Spektrum Akademischer Verlag Heidelberg Berlin Inhaltsverzeichnis Einleitung 1 1 Geometrie in der Grundschule 7 1.1 Entwicklung des Geometrieunterrichts 8 1.2 Überlegungen

Mehr

Geometrische Körper Fragebogen zum Film - Lösung B1

Geometrische Körper Fragebogen zum Film - Lösung B1 Geometrische Körper Fragebogen zum Film - Lösung B Fragen zum Film Geometrische Körper (BR Alpha) ) Ergänze mit den passenden Begriffen! Eine _Kante_ entsteht dort, wo zwei _Flächen_ zusammenstoßen. Eine

Mehr

Schrägbilder von Körpern Quader

Schrägbilder von Körpern Quader Schrägbilder von Körpern Quader Vervollständige die Zeichnung jeweils zum Schrägbild eines Quaders. Bezeichne die für die Berechnung des Volumens und des Oberflächeninhalts notwendigen Seiten und bestimme

Mehr

Einerseits: Zentralperspektive

Einerseits: Zentralperspektive VOM RAUM IN DIE EBENE UND ZURÜCK Ebene Figuren wie Dreiecke, Vierecke, andere Vielecke, Kreise lassen sich auf einem Zeichenblatt entweder in wahrer Größe oder unter Beibehaltung ihrer Form! maßstäblich

Mehr

Inhaltsverzeichnis. Einleitung 1. 1 Geometrie in der Grundschule 5. 2 Entwicklung räumlicher Fähigkeiten 27

Inhaltsverzeichnis. Einleitung 1. 1 Geometrie in der Grundschule 5. 2 Entwicklung räumlicher Fähigkeiten 27 Inhaltsverzeichnis Einleitung 1 1 Geometrie in der Grundschule 5 1.1 Entwicklung des Geometrieunterrichts 6 1.2 Überlegungen für ein neues Geometriecurriculum 11 1.3 Zur Gestaltung des Geometrieunterrichts

Mehr

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung Vorbemerkungen 02.06.2011 Liebe, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung meiner Kinder am Wochenende etwas später und aufgrund einer Bemerkung von Arian in der letzten Stunde etwas kürzer.

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung In diesem Kapitel geht es um die Berechnung von Volumen und Oberfläche von zusammengesetzten Körpern aus z.b. Würfeln, Quadern, Pyramiden, Kegeln, Halbkugeln usw. s kommen auch Aufgaben

Mehr

Alles rund um den Würfel - Mathematikstunde in einer Grundschule - Aufgaben, Ergebnisse und Reflexionen

Alles rund um den Würfel - Mathematikstunde in einer Grundschule - Aufgaben, Ergebnisse und Reflexionen Naturwissenschaft Sabrina Spahr Alles rund um den Würfel - Mathematikstunde in einer Grundschule - Aufgaben, Ergebnisse und Reflexionen Unterrichtsentwurf Wie bastelt man einen Würfel? Struktur, Vorstellungen,

Mehr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs :00-17:00 Uhr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs :00-17:00 Uhr SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 6 09.10.2014 09:00-17:00 Uhr 1 (1) Vorbereitung Abschlussdokumentation (2) Modul 10 (3) Modul 11 (4) Modul 12

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Stereometrie. Rainer Hauser. Dezember 2010

Stereometrie. Rainer Hauser. Dezember 2010 Stereometrie Rainer Hauser Dezember 2010 1 Einleitung 1.1 Beziehungen im Raum Im dreidimensionalen Euklid schen Raum sind Punkte nulldimensionale, Geraden eindimensionale und Ebenen zweidimensionale Unterräume.

Mehr

Würfel. Eigenschaften Würfelgebäude Würfelnetze - Farbwürfel

Würfel. Eigenschaften Würfelgebäude Würfelnetze - Farbwürfel Würfel Eigenschaften Würfelgebäude Würfelnetze - Farbwürfel Das Material thematisiert vier Schwerpunkte: Eigenschaften, Würfelgebäude und Bauplan, Würfelnetze, Farbwürfel (Ansichten). Grundsätzlich gibt

Mehr

Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2)

Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 2815 Bremen Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Name: Ich 1. 2. 3. So schätze ich meinen Lernzuwachs ein. kann die

Mehr

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23 MB 10 Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 ab Seite MB 15 Checkliste Seite MB 23 Wissensspeicher Körper und Flächen MB 11 Wissensspeicher Fachwörter zu Körpern

Mehr

Polyeder, Konvexität, Platonische und archimedische Körper

Polyeder, Konvexität, Platonische und archimedische Körper Unter einem Polyeder verstehen wir einen zusammenhängenden Teil des dreidimensionalen Raumes der durch Polygone begrenzt wird. Seine Oberfläche besteht also aus Punkten (Ecken genannt), Strecken (Kanten

Mehr

DOWNLOAD. Eigenschaften geometrischer Körper. Arbeitsblätter für Schüler mit sonderpädagogischem. Förderbedarf. Körper und Rauminhalte

DOWNLOAD. Eigenschaften geometrischer Körper. Arbeitsblätter für Schüler mit sonderpädagogischem. Förderbedarf. Körper und Rauminhalte DOWNLOAD Andrea Schubert / Martin Schuberth Eigenschaften geometrischer Körper Arbeitsblätter für Schüler mit sonderpädagogischem Förderbedarf Andrea Schuberth Martin Schuberth Downloadauszug aus dem Originaltitel:

Mehr

Leistungsnachweise mit zwei Anspruchsniveaus

Leistungsnachweise mit zwei Anspruchsniveaus Leistungsnachweise mit zwei Anspruchsniveaus Der Unterricht in der Flexiblen Grundschule ist zu einem großen Teil als Lernen an einem gemeinsamen Thema angelegt, das Zugänge auf unterschiedlichen Lernniveaus

Mehr

Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94

Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94 Geometrie Ich kann... 91 Figuren und Körper erkennen und beschreiben Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94 die Lage von Gegenständen im Raum erkennen

Mehr

Raum und Form Körpernetze erkennen und zeichnen, Körpernetze von Würfeln und

Raum und Form Körpernetze erkennen und zeichnen, Körpernetze von Würfeln und Raum und Form Körpernetze erkennen und zeichnen, Körpernetze von Würfeln und Quadern abwickeln Inhaltsbezogene Kompetenzen: - Körpernetze erkennen - Würfelnetze gedanklich überprüfen - Körpernetze von

Mehr

Geometrie in der Grundschule. Ein erster Überblick

Geometrie in der Grundschule. Ein erster Überblick Geometrie in der Grundschule Ein erster Überblick Elemente der Schulgeometrie - Organisatorisches Die Veranstaltung findet immer mittwochs 8-9.30 Uhr statt und (ca.) 14-täglich am Do 8-9.30 Uhr statt.

Mehr

Herstellen von Modellen für den Raumgeometrieunterricht

Herstellen von Modellen für den Raumgeometrieunterricht Herstellen von Modellen für den Raumgeometrieunterricht Workshop auf dem 12. Bayreuther Mathematikwochenende Freitag, 15. Oktober 2010 15.30 17.00 h Birgit Brandl, Universität Augsburg 1 Warum sind Schülermodelle

Mehr

Quader und Würfel. 1. Kreuze jene Wörter oder Bilder an, die Körper bezeichnen. Mathematische Bildung von der Schulstufe

Quader und Würfel. 1. Kreuze jene Wörter oder Bilder an, die Körper bezeichnen. Mathematische Bildung von der Schulstufe Geometrische Körper Diagnoseblatt 5. Schulstufe Quader und Würfel 1. Kreuze jene Wörter oder Bilder an, die Körper bezeichnen Kreis Schuhschachtel Eistüte Fahrkarte Kugel Seite 1 2. Kannst du Quader und

Mehr

Das Prisma ==================================================================

Das Prisma ================================================================== Das Prisma ================================================================== Wird ein Körper von n Rechtecken und zwei kongruenten und senkrecht übereinander liegenden n-ecken begrenzt, dann heißt der

Mehr

Kanten ergänzen. Lisa hat Schrägrisse von Pyramiden gezeichnet. Dabei sind ihr Fehler passiert. Ergänze die fehlenden Kanten. Möglicher Lösungsweg

Kanten ergänzen. Lisa hat Schrägrisse von Pyramiden gezeichnet. Dabei sind ihr Fehler passiert. Ergänze die fehlenden Kanten. Möglicher Lösungsweg Kanten ergänzen Lisa hat Schrägrisse von Pyramiden gezeichnet. Dabei sind ihr Fehler passiert. Ergänze die fehlenden Kanten. Möglicher Lösungsweg Einrichtungshaus 1. Hier siehst du zwei Bilder eines Einrichtungshauses:

Mehr

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für

Mehr

Oberfläche von Körpern

Oberfläche von Körpern Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h

Mehr

Analysis-Aufgaben: Integralrechnungen - STEREOMETRIE

Analysis-Aufgaben: Integralrechnungen - STEREOMETRIE Analysis-Aufgaben: Integralrechnungen - STEREOMETRIE Prismen und Zylinder: 1. Berechne den Inhalt der Oberfläche, das Volumen und die Länge der Raumdiagonalen eines Würfels mit der Kantenlänge s = 30cm.

Mehr

11. Geometrische Extremalprobleme I

11. Geometrische Extremalprobleme I 11. Geometrische Extremalprobleme I Die hier behandelten geometrischen Extremalprobleme beruhen auf der Dreiecksungleichung Satz 1. Sind A, B, C drei Punkte der euklidischen Ebene mit A B, dann ist (1)

Mehr

Geometrie - Hausaufgaben Kim Wendel / Linda Adebayo

Geometrie - Hausaufgaben Kim Wendel / Linda Adebayo Geometrie - Hausaufgaben Kim Wendel / Linda Adebayo Inhalte dieser Klassenstufe: (Klassenstufe 1/2) Raum: Bewegungen und Orientierung im Raum, räumliche Beziehungen, Lagebeziehungen ( über unter auf, vor

Mehr

2.4A. Reguläre Polyeder (Platonische Körper)

2.4A. Reguläre Polyeder (Platonische Körper) .A. Reguläre Polyeder (Platonische Körper) Wie schon in der Antike bekannt war, gibt es genau fünf konvexe reguläre Polyeder, d.h. solche, die von lauter kongruenten regelmäßigen Vielecken begrenzt sind:

Mehr

Kopfgeometrie. Von der Handlung in den Kopf. Monika Trill-Zimmermann Sinus Set

Kopfgeometrie. Von der Handlung in den Kopf. Monika Trill-Zimmermann Sinus Set Kopfgeometrie Von der Handlung in den Kopf 13.08.14 Sinus Set 4 1 Wer die Geometrie begreift, vermag in dieser Welt alles zu verstehen. Galileo Galilei 2 Agenda 1 2 3 Geometrie in der Grundschule (allg.)

Mehr

Geometrische Körper. Hinweise. zu diesem. Freiarbeitsmaterial. Kurzinformation

Geometrische Körper. Hinweise. zu diesem. Freiarbeitsmaterial. Kurzinformation Geometrische Körper Quader Kubus - Kegel - Kugel - dreiseitiges Prisma - dreiseitige Pyramide - Pyramide - Zylinder - Ovoid Ellipsoid Kurzinformation Thema Fach Formenkundliche Betrachtung geometrischer

Mehr

DOWNLOAD. Geometrie: Geometrische. Sabine Gutjahr. Differenzierte Übungsmaterialien. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Geometrie: Geometrische. Sabine Gutjahr. Differenzierte Übungsmaterialien. Downloadauszug aus dem Originaltitel: DOWNLOAD Sabine Gutjahr Geometrie: Geometrische Körper Differenzierte Übungsmaterialien Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen unterliegt dem deutschen Urheberrecht.

Mehr

Mein Indianerheft: Geometrie 4. Lösungen

Mein Indianerheft: Geometrie 4. Lösungen Mein Indianerheft: Geometrie 4 Lösungen So lernst du mit dem Indianerheft Parallele Linien Flächen Kapitel: Flächen Flächen nicht? Prüfe mit dem Geodreieck. e parallele Linien. parallel nicht parallel

Mehr

II* III* IV* Niveau. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:...

II* III* IV* Niveau. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:... Titel MB 9 LU Nr nhaltliche Allg. Buch Arbeitsheft AB * V* Form MB 9 LU 5 * nhaltliche Allg. Buch Arbeitsheft AB ähnliche Figuren und Körper erkennen V 1-2 1.1-1.2, 1.4 Figuren vergrössern und verkleinern

Mehr

Ein Quiz zur Wiederholung geometrischer Grundbegriffe. Ilse Gretenkord, Ahaus. Körper und ihre Eigenschaften Quizkarten

Ein Quiz zur Wiederholung geometrischer Grundbegriffe. Ilse Gretenkord, Ahaus. Körper und ihre Eigenschaften Quizkarten S 1 Ein Quiz zur Wiederholung geometrischer Grundbegriffe Ilse Gretenkord, Ahaus M 1 So geht s Körper und ihre Eigenschaften Quizkarten Bildet Gruppen zu vier bis fünf Schülerinnen bzw. Schülern. Eine

Mehr

Körper zum Selberbauen Polydron

Körper zum Selberbauen Polydron Körper zum Selberbauen Polydron Was versteht man unter Polydron? Polydron ist ein von Edward Harvey erfundenes intelligentes Spielzeug, mit dem man verschiedene geometrische Figuren bauen kann. Es ist

Mehr

Didaktik der Geometrie

Didaktik der Geometrie Mathematik Primarstufe und Sekundarstufe I + II Didaktik der Geometrie In der Grundschule Bearbeitet von Marianne Franke, Simone Reinhold 3. Auflage 2016. Buch. XIII, 423 S. Softcover ISBN 978 3 662 47265

Mehr

Stoffverteilungsplan Werkrealschule. Einblicke Mathematik für Baden-Württemberg Band 1. Schule: Lehrer/in:

Stoffverteilungsplan Werkrealschule. Einblicke Mathematik für Baden-Württemberg Band 1. Schule: Lehrer/in: Stoffverteilungsplan Werkrealschule Einblicke Mathematik für Baden-Württemberg Band 1 Schule: 978-3-12-746351-4 Lehrer/in: 1 Zugänge zu en über Phänomene in der Natur schaffen; natürliche en veranschaulichen

Mehr

Probleme und Möglichkeiten zur Entwicklung des räumlichen Vorstellungsvermögens (RVV)

Probleme und Möglichkeiten zur Entwicklung des räumlichen Vorstellungsvermögens (RVV) Probleme und Möglichkeiten zur Entwicklung des räumlichen Vorstellungsvermögens (RVV) 1. Schülerleistungen 2. Darstellenden Geometrie und RVV im MU 3. Fachliche und begriffliche Probleme 4. Ergebnisse

Mehr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 1 14./15. 11. 2013

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 1 14./15. 11. 2013 SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 1 14./15. 11. 2013 Programm Entwicklung des Geometrieunterricht bis zu Bildungsstandards und Rahmenplänen Ein

Mehr

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten WER WIRD MATHESTAR? Lehrplaneinheit Berufsrelevantes Rechnen - Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Raum und Form Mathematisch argumentieren

Mehr

Polyedrische Approximation von Körpern mit Cabri 3D

Polyedrische Approximation von Körpern mit Cabri 3D Heinz Schumann Polyedrische Approximation von Körpern mit Cabri 3D Die Approximation von konvexen Körpern, deren Oberfläche nicht aus Polygonen besteht, mittels einbeschriebener konvexer Polyeder ist notwendig,

Mehr

DOWNLOAD. Vertretungsstunde Mathematik Klasse: Figuren und Körper. Marco Bettner/Erik Dinges. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Vertretungsstunde Mathematik Klasse: Figuren und Körper. Marco Bettner/Erik Dinges. Downloadauszug aus dem Originaltitel: DOWNLOAD Marco Bettner/Erik Dinges Vertretungsstunde Mathematik 3 5. Klasse: auszug aus dem Originaltitel: Rechtecke 1 1. Konstruiere ein Rechteck mit a = 8 cm und b = 5 cm. 2. Notiere alle Eigenschaften

Mehr

Unmögliche Figuren perspektivisches Zeichnen:

Unmögliche Figuren perspektivisches Zeichnen: Unmögliche Figuren perspektivisches Zeichnen: Kompetenzen: Die Schüler/innen sollen Ein quaderförmiges Werkstück in der Schrägbildperspektive darstellen und bemaßen können. Ein Werkstück mit veränderter

Mehr

Seiten 5 / 6. Lösungen Geometrie-Dossier Würfel und Quader

Seiten 5 / 6. Lösungen Geometrie-Dossier Würfel und Quader 1 a) c) d) Seiten 5 / 6 Lösungen eometrie-ossier Würfel und Quader Aufgaben Würfel (Lösungen sind verkleinert gezeichnet) Bei allen drei entsteht das gleiche Bild. ie Lösungsidee: 1. Zuerst anhand der

Mehr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 7: Module 13 und 14 08.01.2015 15:00-18:00 Uhr 1 Modul 13: Vielecke (Vielecke; regelmäßige Vielecke; Orientierungsfigur:

Mehr

Einige Gedanken zum Begriff Raumvorstellung

Einige Gedanken zum Begriff Raumvorstellung Einige Gedanken zum Begriff Raumvorstellung Beim sicheren Bewegen im täglichen Leben benötigen wir Kenntnisse über räumliche Verhältnisse und Anordnungen: z.b. Einparken von Autos Wegbeschreibungen Eine

Mehr

2.10. Aufgaben zu Körperberechnungen

2.10. Aufgaben zu Körperberechnungen Aufgabe Vervollständige die folgende Tabelle:.0. Aufgaben zu Körperberechnungen a, cm 7,8 cm 0,5 mm, dm b 5,5 m,5 cm,5 cm, cm 0, m cm c,5 dm,6 dm 6 dm V 5, cm,5 dm 6 dm cm 9,5 mm 6,6 dm 8 dm 0 cm Aufgabe

Mehr

Über die regelmäßigen Platonischen Körper

Über die regelmäßigen Platonischen Körper Hermann König, Mathematisches Seminar Studieninformationstage an der Universität Kiel Über die regelmäßigen Platonischen Körper Winkelsumme im n-eck Zerlegung eines ebenen n-ecks in (n-2) Dreiecke, oben

Mehr

Schuleigener Arbeitsplan Fach: Mathematik Jahrgang: 5

Schuleigener Arbeitsplan Fach: Mathematik Jahrgang: 5 Stand:.0.206 Sommerferien Zahlen und Operationen» Zahlen sachangemessen runden» große Zahlen lesen und schreiben» konkrete Repräsentanten großer Zahlen nennen» Zahlen auf der Zahlengeraden und in der Stellenwerttafel

Mehr

1.7 Stereometrie. 1 Repetition Der Satz von Pythagoras Die Trigonometrischen Funktionen Masseinheiten Dichte...

1.7 Stereometrie. 1 Repetition Der Satz von Pythagoras Die Trigonometrischen Funktionen Masseinheiten Dichte... 1.7 Stereometrie Inhaltsverzeichnis 1 Repetition 2 1.1 Der Satz von Pythagoras................................... 2 1.2 Die Trigonometrischen Funktionen.............................. 2 1.3 Masseinheiten.........................................

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Körpernetze und Schrägbilder - das räumliche Vorstellungsvermögen trainieren

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Körpernetze und Schrägbilder - das räumliche Vorstellungsvermögen trainieren Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Körpernetze und Schrägbilder - das räumliche Vorstellungsvermögen trainieren Das komplette Material finden Sie hier: Download bei

Mehr

Stationenlernen Raumgeometrie

Stationenlernen Raumgeometrie Lösung zu Station 1 a) Beantwortet die folgenden Fragen. Begründet jeweils eure Antwort. Frage 1: Hat jede Pyramide ebenso viele Ecken wie Flächen? Antwort: Ja Begründung: Eine Pyramide mit einer n-eckigen

Mehr

Klasse 5/6: Anbindungsmöglichkeiten MSG Mathematik

Klasse 5/6: Anbindungsmöglichkeiten MSG Mathematik Klasse 5/6: Anbindungsmöglichkeiten MSG Mathematik Raum und Zeit Räume und Zeitabläufe bewusst wahrnehmen und individuell gestalten. Natur und Umwelt als Aktionsund Entdeckungsspielraum Angebote des Kultur-

Mehr

Lückentextübung - Der WÜRFEL Fülle nun den folgenden (Lücken-)Text aus und verwende ihn als Informationsblatt.

Lückentextübung - Der WÜRFEL Fülle nun den folgenden (Lücken-)Text aus und verwende ihn als Informationsblatt. Lückentextübung - Der WÜRFEL Der WÜRFEL kommt sehr oft vor. Schau dich um oder denke z. B. an eine Schachtel oder einen Pflasterstein. Auch eine Schatulle, ein Spielwürfel oder ein Gebäudeteil können die

Mehr

Lernziele Mathbuch 90X (Flächen Volumen) Sek 2012.docx 90X.1 Erkläre wie man die Fläche in eines Rechtecks berechnet.

Lernziele Mathbuch 90X (Flächen Volumen) Sek 2012.docx 90X.1 Erkläre wie man die Fläche in eines Rechtecks berechnet. 90X.1 Erkläre wie man die Fläche in eines Rechtecks berechnet. 90X.2 Erkläre wie man ein Parallelogramm in ein Rechteck verwandeln kann und somit auch dessen Fläche berechnen kann. 90X.3 Erkläre wie man

Mehr

Übungsaufgaben zur Vergleichsarbeit über die Inhalte der Klasse 5

Übungsaufgaben zur Vergleichsarbeit über die Inhalte der Klasse 5 Übungsaufgaben zur Vergleichsarbeit über die Inhalte der Klasse 5 Anmerkung: Da die Vergleichsarbeiten im März geschrieben werden, deckt dieser Übungszettel nur die Unterrichtsinhalte ab, die bis zum März

Mehr

Notwendiges Grundwissen am Ende der Klasse 5 für den Übergang in Klasse 6

Notwendiges Grundwissen am Ende der Klasse 5 für den Übergang in Klasse 6 Notwendiges Grundwissen am Ende der Klasse 5 für den Übergang in Klasse 6 In dieser Anfangsphase sollen die Schülerinnen und Schüler keine Wiederholung des Grundschulstoffs durchmachen, sondern bereits

Mehr

M ATHEMATIK Klasse 3. Stoffverteilungsplan Berlin Brandenburg Mecklenburg-Vorpommern. Der Zahlenraum bis 1000 (S )

M ATHEMATIK Klasse 3. Stoffverteilungsplan Berlin Brandenburg Mecklenburg-Vorpommern. Der Zahlenraum bis 1000 (S ) M ATHEMATIK Klasse 3 Stoffverteilungsplan Berlin Brandenburg Mecklenburg-Vorpommern Duden Mathematik 3 Lehrplan: Anforderungen / Inhalte Der Zahlenraum bis 1000 (S. 14 25) Entwickeln von Zahlvorstellungen

Mehr

Aufgaben aus den Vergleichenden Arbeiten im Fach Mathematik Verschiedenes Verschiedenes

Aufgaben aus den Vergleichenden Arbeiten im Fach Mathematik Verschiedenes Verschiedenes 2012 A 1e) Verschiedenes Schreiben Sie die Namen der drei Vierecke auf. 2011 A 1e) Verschiedenes Wie heißen diese geometrischen Objekte? Lösungen: Aufgabe Lösungsskizze BE 2012 A 1e) Rechteck Parallelogramm

Mehr

Gymnasium OHZ Schul-KC Mathematik Jahrgang 5 eingeführtes Schulbuch: Lambacher Schweizer 5

Gymnasium OHZ Schul-KC Mathematik Jahrgang 5 eingeführtes Schulbuch: Lambacher Schweizer 5 6 Wochen mathematische Sachverhalte, Begriffe, Regeln, Verfahren und Zusammenhänge mit eigenen Worten und geeigneten Fachbegriffen erläutern Lösungswege beschreiben, begründen und Mit symbolischen, formalen

Mehr

Aufgaben aus dem Klassenzimmer

Aufgaben aus dem Klassenzimmer Susanne Meßmer, 78532 Tuttlingen, Universität Dortmund 1 Aufgaben aus dem Klassenzimmer Blitzblick Rate meine Zahl 0 100 Universität Dortmund Universität Dortmund 2 1 Zähle geschickt! Tempel Treppe Universität

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

denken sie schon? Projekt der kreativen Mathematik

denken sie schon? Projekt der kreativen Mathematik Woche EINS Bereich 1 Pizza Fiesta Brettspiel zum Erlernen und Verwenden von Bruchzahlen/ Bruchstücken zu beziehen bei ivo haas, Lehrmittelversand und Verlag www.ivohaas.com office@ivohaas.com Bereich 2

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Illustrierende Aufgaben zum LehrplanPLUS

Illustrierende Aufgaben zum LehrplanPLUS Unterrichtssequenz mit Anregungen zur Leistungsbeobachtung und Leistungserhebung Würfelnetze Jahrgangsstufe 3 Fach Inhalte Mathematik Allgemeine Hinweise Kopfgeometrie Leistungsbeobachtung zu Beginn der

Mehr

Anhangsverzeichnis. Kompetenzen... S. II, III, IV. Die Maus und der Elefant... S. V + VI. Tafelbild... S. VII. Arbeitsblätter... S.

Anhangsverzeichnis. Kompetenzen... S. II, III, IV. Die Maus und der Elefant... S. V + VI. Tafelbild... S. VII. Arbeitsblätter... S. Anhangsverzeichnis Kompetenzen.................. S. II, III, IV Die Maus und der Elefant....... S. V + VI Tafelbild..................... S. VII Arbeitsblätter................ S. VIII, IX Literaturangaben...............

Mehr

Geometrische Körper bauen

Geometrische Körper bauen www.erfolgreicheslernen.de April 2009 Geometrische Körper bauen Michael Schmitz Zusammenfassung Aus dünner Pappe oder stabilem Kopierpapier (z.b. 200 g/m 2 ) und Gummiringen kann man ebenflächig begrenzte

Mehr

1 Pyramide, Kegel und Kugel

1 Pyramide, Kegel und Kugel 1 Pyramide, Kegel und Kugel Pyramide und Kegel sind beides Körper, die - anders als Prismen und Zylinder - spitz zulaufen. Während das Volumen von Prismen mit V = G h k berechnet wird, wobei G die Grundfläche

Mehr

Mathematik Klasse 6. Übungsbausteine mit Kompetenzerwerb, abgestimmt auf das Leitbild der Schule Verantwortungsbereitschaft.

Mathematik Klasse 6. Übungsbausteine mit Kompetenzerwerb, abgestimmt auf das Leitbild der Schule Verantwortungsbereitschaft. Mathematik Klasse 6 Inhalt/Thema von Maßstab Band 2 1. Fit nach den Sommerferien Runden und Überschlagen Große Zahlen Zahlen am Zahlenstrahl Rechnen mit Größen Schriftliche Rechenverfahren 2. Brüche und

Mehr

Kleines. Kleines MATHE-LEXIKON MATHE-LEXIKON. von. von

Kleines. Kleines MATHE-LEXIKON MATHE-LEXIKON. von. von Kleines Kleines MATHE-LEXIKON MATHE-LEXIKON von von Schriftliche Addition: Schriftliche Addition: Große Zahlen, die man nur schwer im Kopf rechnen kann, rechnest Du schriftlich. Dabei ist es sehr wichtig,

Mehr

Station Von Zuckerwürfeln und Schwimmbecken Teil 1

Station Von Zuckerwürfeln und Schwimmbecken Teil 1 Schule Station Von Zuckerwürfeln und Teil 1 Klasse Tischnummer Arbeitsheft Teilnehmercode Mathematik-Labor Station Von Zuckerwürfeln und Liebe Schülerinnen und Schüler! Was haben ein Zuckerwürfel und

Mehr

Übungsserie 1: Würfel und Quader

Übungsserie 1: Würfel und Quader Kantonsschule Solothurn Stereometrie RYS Übungsserie 1: Würfel und Quader 1. Berechne die fehlenden Quadergrössen: a b c V O a) 7 cm 11 cm 3 cm b) 8 mm 12.5 cm 45 cm 3 c) 3 cm 4 cm 108 cm 2 d) 54 cm 16.4

Mehr

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17 Textgleichungen Aus der Geometrie Lösungen 1. Von zwei Strecken ist die eine viermal so lang wie die andere. Zusammen ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke:

Mehr

Kennzahlen. Online-Ergänzung CHRISTOPH HORMANN HELMUT MALLAS. MNU 67/7 ( ) Seiten 1 5, ISSN , Verlag Klaus Seeberger, Neuss

Kennzahlen. Online-Ergänzung CHRISTOPH HORMANN HELMUT MALLAS. MNU 67/7 ( ) Seiten 1 5, ISSN , Verlag Klaus Seeberger, Neuss Kennzahlen CHRISTOPH HORMANN HELMUT MALLAS Online-Ergänzung MNU 67/7 (15.10.2014) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss 1 CHRISTOPH HORMANN HELMUT MALLAS Kennzahlen S. I S. I + II S.

Mehr

Jahresarbeitsplan denkstark 1 ( )

Jahresarbeitsplan denkstark 1 ( ) Jahresarbeitsplan denkstark 1 (978-3-507-84815-3) Schulwoche Zeitraum Leitidee Projekte und Inhalt denkstark 1 (978-3-507-84815-3) Kompetenzen Denkstark 1 1-2 2 Wochen Raum und Form Projekt: Kunst und

Mehr

Geometrie: Körper. 50 Duden Mathematik 4 Kommentare zu den Kapiteln. Kapitelinformationen. Überblick

Geometrie: Körper. 50 Duden Mathematik 4 Kommentare zu den Kapiteln. Kapitelinformationen. Überblick Geometrie: Körper Kapitelinformationen Überblick Schülerbuch Seite 28: Geometrische Körper und ihre Eigenschaften Seite 29: Körpermodelle Seiten 30/31: Körpernetze Seiten 32/33: Schrägbilder von Körpern

Mehr

Archimedische und Platonische Körper

Archimedische und Platonische Körper Archimedische und Platonische Körper Eine Bauanleitung für den Einsatz in der Lehre Mai 2016 Julia Bienert Inhalt 1 Einleitung... 1 2 Konstruktion... 1 2.1 Idee und Material... 1 2.2 Grundkörper (Archimedischer

Mehr

Download. Selbstkontrollaufgaben Mathematik für die Klasse. Raum und Form. Sandra Sommer/Markus Sommer. Downloadauszug aus dem Originaltitel:

Download. Selbstkontrollaufgaben Mathematik für die Klasse. Raum und Form. Sandra Sommer/Markus Sommer. Downloadauszug aus dem Originaltitel: Download Sandra Sommer/Markus Sommer Selbstkontrollaufgaben Mathematik für die 3.-4. Klasse Raum und Form Selbstkontrollaufgaben Mathe 3. /4. Klasse Grundschule Sandra Sommer Markus Sommer 65 lehrplanrelevante

Mehr

Flächeninhalt, Volumen und Integral

Flächeninhalt, Volumen und Integral Flächeninhalt, Volumen und Integral Prof. Herbert Koch Mathematisches Institut - Universität Bonn Schülerwoche 211 Hausdorff Center for Mathematics Donnerstag, der 8. September 211 Inhaltsverzeichnis 1

Mehr

2 Das Bild In Schulbüchern und Arbeitsblättern sieht man oft Würfel -Darstellungen wie etwa in der Abbildung 1. Abb. 1: Was ist denn das?

2 Das Bild In Schulbüchern und Arbeitsblättern sieht man oft Würfel -Darstellungen wie etwa in der Abbildung 1. Abb. 1: Was ist denn das? Hans Walser, [20131013], [20160331], [20160401] Quetschwürfel 1 Worum geht es? Es wird auf die Problematik der in Schulen weitverbreiteten Schrägbilder eingegangen. 2 Das Bild In Schulbüchern und Arbeitsblättern

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

Der dreidimensionale Raum wird als unendliche Punktmenge aufgefasst. Geraden und Ebenen sind dann Teilmengen dieser Punktmenge.

Der dreidimensionale Raum wird als unendliche Punktmenge aufgefasst. Geraden und Ebenen sind dann Teilmengen dieser Punktmenge. STEREOMETRIE I Grundlagen 1. Punkte, Geraden und Ebenen Der dreidimensionale Raum wird als unendliche Punktmenge aufgefasst. Geraden und Ebenen sind dann Teilmengen dieser Punktmenge. a) Gerade Axiom:

Mehr

MTG Grundwissen Mathematik 5.Klasse

MTG Grundwissen Mathematik 5.Klasse MTG Grundwissen Mathematik 5.Klasse Umgang mit großen Zahlen Beispiel: 47.035.107.006 = 4 10 10 + 7 10 9 + 3 10 7 + 5 10 6 + 10 5 + 7 10 3 + 6 10 0 A1: Schreibe 117 Billionen 12 Milliarden vierhundertsiebentausendsechzig

Mehr

Holzwürfel. Worum geht es? Das Material. Was soll gefördert werden? Leitidee Raum und Ebene. Leitidee Muster und Strukturen.

Holzwürfel. Worum geht es? Das Material. Was soll gefördert werden? Leitidee Raum und Ebene. Leitidee Muster und Strukturen. Holzwürfel Worum geht es? Das Material Es handelt sich um Holzwürfel mit einer Kantenlänge von 2 Zentimetern. Die schlichten, einfarbigen Holzwürfel eignen sich insbesondere dazu, dreidimensionale Objekte

Mehr

Rotary International Distrikt 1810 Berufsdienst Werte + Bildung + Beruf

Rotary International Distrikt 1810 Berufsdienst Werte + Bildung + Beruf Rudi Rechenmeister und die Mathe Kiste ergänzen sich gegenseitig. Die Mathe Kiste ist ein Werkzeug für alle 7 Hefte. Die 7 Hefte unterstützen den Wirkungsgrad der Mathe Kiste Rudi Rechenmeister 1 Vorkurs

Mehr

Das Geobrett. Fachkonferenz Mathematik

Das Geobrett. Fachkonferenz Mathematik Das Geobrett Fachkonferenz Mathematik 01.11.2011 Das Geo-Brett stammt aus dem angelsächsischen Sprachraum. Didaktisch vielseitig einsetzbares Material, welches von Klasse 1 bis zur Klasse 7 benutzt

Mehr

Schulcurriculum der Schillerschule

Schulcurriculum der Schillerschule Schulcurriculum der Schillerschule Fach: Mathematik 1. Tertial: Schuljahresanfang Weihnachten 2. Tertial: Neujahr Ostern 3. Tertial: Ostern Schuljahresende Klassenstufe: 3. Klasse 1. Tertial Inhalt/Thema

Mehr

SINUS an Grundschulen Saarland Offene Aufgaben zur Leitidee Raum und Form

SINUS an Grundschulen Saarland Offene Aufgaben zur Leitidee Raum und Form Aufgabe 2.5 Idee und Aufgabenentwurf: Volker Morbe, Grundschule der Gemeinde Nohfelden / Dependance Sötern, Klassenstufe 4 (November 2012) Baue mit 3, 4 oder 5 Würfeln. Skizziere die Anordnungen, die du

Mehr