2 Selbstähnlichkeit, Selbstähnlichkeitsdimension

Größe: px
Ab Seite anzeigen:

Download "2 Selbstähnlichkeit, Selbstähnlichkeitsdimension"

Transkript

1 9 2 Selbstähnlichkeit, Selbstähnlichkeitsdimension und Fraktale 2.1 Selbstähnlichkeit Bei den Betrachtungen zur Dimension in Kapitel 1 haben wir ähnliche (im geometrischen Sinn) Figuren miteinander verglichen. Dabei wird eine Figur durch eine zentrische Streckung mit einem Skalierungsfaktor k verkleinert oder vergrößert. In diesem Kapitel soll es nun darum gehen, dass die kleinere Figur in der großen wiederzufinden ist. Diese Eigenschaft nennt man Selbstähnlichkeit. Definition (Selbstähnlichkeit) Eine Struktur heißt selbstähnlich, wenn Teile von ihr verkleinerte Kopien des Ganzen sind. Eine Struktur heißt exakt selbstähnlich, wenn sie sich in einzelne, genaue Kopien des Ganzen zerlegen lässt. Jeder dieser Teile einer exakt selbstähnlichen Struktur ist eine genaue Kopie des Ganzen. 4 Genauer heißt das, dass es zu einer exakt selbstähnlichen Figur (Punktmenge) einen Skalierungsfaktor s < 1 und eine Zahl n gibt, so dass die Vereinigung von n mit s verkleinerten Kopien die Figur reproduziert. Beispiele: Jede Strecke kann in eine gewisse Anzahl von Strecken zerlegt werden. Da alle Strecken trivialerweise zueinander ähnlich sind, ist jede Strecke also selbstähnlich. Jeder Quader kann in 8, 27, 64,... gleichgroße Teilquader, die zum ursprünglichen Quader ähnlich sind, zerlegt werden. Jeder Quader ist also selbstähnlich. Nicht alle Figuren sind selbstähnlich. So lässt sich zum Beispiel ein Kreis nicht vollständig durch kleinere Kopien von sich selbst, also Kreisen, reproduzieren. Das gleiche gilt für ein Sechseck oder eine Pyramide. Abb. 2.1: Nicht-selbstähnliche Figuren 4 Fraktale, Selbstähnlichkeit, Chaosspiel, Dimension, Ein Arbeitsbuch, Peitgen u. a., Seite 1

2 Selbstähnlichkeitsdimension In Kapitel 1.4 haben wir bereits Einblicke in die Dimensionen erhalten, die wir nun auf selbstähnliche Figuren übertragen wollen. Dort hatten wir ein Ausgangsbild B 0 durch eine Skalierung mit einem Faktor k abgebildet auf ein Bild B 1. Wir nennen in den folgenden Betrachtungen den Skalierungsfaktor s. Bei der (exakten) Selbstähnlichkeit erzeugen wir Verkleinerungen B 1 mit dem Faktor s!0 < s <1, von denen wir n Kopien brauchen, um die Ausgangsfigur B 0 zu reproduzieren. Sind B 0 und B 1 von der Dimension d, dann gilt! B 1 = sd B 0. Gleichzeitig wissen wir, dass n verkleinerte Kopien B 1 wieder das Ausgangsbild B 0 ergeben, also n B = B. Setzt man beide Gleichungen zusammen,! 1 0 erhält man! n s d B 0 = B 0!!n s d = 1!!n = 1 s d. Beispiel Eine Strecke der Länge 5 wird mit dem Verkleinerungsfaktor! s = 1 5 verkleinert. n = 5 Kopien füllen die Originalstrecke aus. 5 = 1 ( 1 5 )1 Zerlegen wir ein Quadrat in kleinere Teilquadrate, die jeweils! 1 5 der Seitenlänge des Originalquadrates besitzen, passen 25 Teilquadrate in dieses große Quadrat. 25 = 1 ( 1 5 )2 Wie am Ende des Kapitels 1 machen wir auch hier wieder einen großen, verallgemeinernden Schritt zur Definition der Dimension d. Wird die Ausgangsfigur mit dem Skalierungsfaktor s verkleinert und ist n die Anzahl der Verkleinerungen, die das Original beinhaltet, so gilt: n = 1 s = 1 d 1 log n = log d = log n log( 1 s ) d d = d log 1 Liegt also eine exakt selbstähnliche Figur vor, die in n verkleinerte Kopien ihrer selbst zerfällt und ist der Verkleinerungsfaktor von der Ausgangsfigur zur verkleinerten Kopie s, dann kann man die Dimension der Figur über die obige Formel berechnen.

3 11 Diese Methode führt zur Selbstähnlickeitsdimension. Um Verwechslungen mit anderen Dimensionsbegriffen zu vermeiden, bezeichnen wir sie mit d s,. 2.3 Fraktale Was sind Fraktale Es gibt bis jetzt noch keine umfassende Definition von Fraktalen. Um einen Arbeitsbegriff zur Verfügung zu haben, werden wir einige typische Eigenschaften nennen, die als hinreichende Bedingungen für ein Fraktal gelten. Das bedeutet, wenn eine dieser Eigenschaften auftritt, sprechen wir von einem Fraktal, wissend, dass es möglicherweise auch Fraktale ohne diese Eigenschaft gibt. Der von B. Mandelbrot geprägte Begriff Fraktal leitet sich von dem lateinischen Wort frangere bzw. fractum ab (deutsch: brechen, bzw. gebrochen) und bezieht sich auf die oft nicht ganzzahlige Dimension von Fraktalen. Eine nicht ganzzahlige Dimension ist ein hinreichendes Erkennungsmerkmal von Fraktalen. 5 Wir haben im letzten Kapitel den Begriff der Selbstähnlichkeit eingeführt und gezeigt, dass manche wohlvertraute Figur exakt selbstähnlich ist. Eine weitere Methode wurde von Mandelbrot selbst beschrieben: durch mehrfaches Anwenden einer Verkleinerungs- und Vervielfältigungsvorschrift, angewendet auf eine Ausgangsfigur, wird eine geometrische Figur erzeugt. Führt man diese Vorschrift unendlich oft durch, erhalten wir als Grenzbild dieses Prozesses eine exakt selbstähnliche Figur, bei der in jedem geeigneten Teil der Figur stets die Struktur des Ganzen erkennbar ist. Diese Selbstähnlichkeit ist eine weitere typische Eigenschaft für ein Fraktal. Bei den so erzeugten Figuren kann man die Selbstähnlichkeitsdimension sehr leicht bestimmen und es zeigt sich, dass die so ermittelte Dimension in den meisten Fällen nicht ganzzahlig ist. Es gibt aber auch Fraktale, die nicht selbstähnlich oder nur eingeschränkt selbstähnlich sind. Für solche Fraktale kann man die Dimension nicht über die Selbstähnlichkeit bestimmen. Diese Problematik wird im dritten Kapitel durch einen weiteren Dimensionsbegriff, die Boxdimension, gelöst Konstruktion von selbstähnlichen Fraktalen Es gibt verschiedene Wege, Fraktale zu erzeugen. Allen Verfahren gemein ist ein rekursives Vorgehen. Wir beschränken uns auf das Erstellen von selbstähnlichen Fraktalen durch einen rekursiven Prozess, der in jeder Stufe die drei Komponenten Verkleinern, 5 Einige besondere Fraktale mit ganzzahliger Dimension sind z.b. der Sierpinski- Tetraeder, die Peano-Kurve und die Hilbert-Kurve. Alle drei Fraktale haben die Dimension 2.

4 12 mehrfaches Kopieren und anschließendes Zusammensetzen der Kopien beinhaltet. 1. Beispiel Nehmen wir als Grundelement (Initiator) eine einfache Strecke. Wir verkleinern die Strecke mit dem Skalierungsfaktor s = 1 3 und erstellen von diesem Element 4 Kopien. Diese setzen wir nun so zusammen, wie in Stufe 1 bei Abb. 2.2 gezeigt. (Generator) Die gewonnene Figur wird wiederum mit s = 1 3 verkleinert, kopiert und mit den Kopien zusammengefügt, usw. (Stufe 2, Stufe 3,...). Stufe 0 Stufe 1 Stufe 2 Stufe 3 Abb. 2.2: Entstehung der Koch-Kurve Das beschriebene Verfahren zum Erstellen von Fraktalen wird oft auch unter Verwendung eines Initiators und eines Generators dargestellt. Der Vorteil dabei ist, dass die Art des Zusammenfügens der Kopien im Allgemeinen im Generator ablesbar ist. Das Grundelement, der Initiator, ist in unserem Fall die Ausgangsstrecke. Der Generator ist eine Figur, durch welche der Initiator ersetzt werden soll. Er besteht aus einer bestimmten Anzahl von entsprechend verkleinerten

5 13 Initiatorelementen. In Abb. 2.2 entspricht Stufe 1 dem Generator. In jeder weiteren Stufe wird nun jedes Initiatorelement durch eine entsprechend verkleinerte Kopie des Generators ersetzt. Dieses wird unendlich oft fortgesetzt. 2. Beispiel Abb. 2.3: Konstruktion mit Initiator und Generator Hier werden 3 Kopien des mit s =! 1 verkleinerten Initiators (Quadrat) 2 zum Generator zusammengesetzt. Wählt man nun denselben Initiator und ergänzt im Generator verschiedene Drehvorschriften, ergeben sich eine Vielzahl an Fraktalen, die gebildet werden können. Um die Drehvorschrift im Generator ablesen zu können, ist eine Ecke des Initiators markiert. Abb. 2.4: Drehungen im Generator

Fraktale. Mathe Fans an die Uni. Sommersemester 2009

Fraktale. Mathe Fans an die Uni. Sommersemester 2009 Fraktale Mathe Fans an die Uni Ein Fraktal ist ein Muster, das einen hohen Grad Selbstähnlichkeit aufweist. Das ist beispielsweise der Fall, wenn ein Objekt aus mehreren verkleinerten Kopien seiner selbst

Mehr

Wiederholung der Modulabschlussklausur

Wiederholung der Modulabschlussklausur Sommersemester 2010 Dr. Reimund Albers Modul EM1: Mathematisches Denken in Arithmetik und Geometrie Wiederholung der Modulabschlussklausur Name: Mat.Nr.: Schulschwerpunkt: Grund- oder Sekundarbitte ankreuzen

Mehr

Martin-Anderson-Nexö-Gymnasium, Dresden

Martin-Anderson-Nexö-Gymnasium, Dresden Fraktale Wechselspiel zwischen Chaos und Ordnung Teilnehmer: David Burgschweiger Tim Gabriel Welf Garkisch Anne Kell Leonard König Erik Lorenz Sofie Martins Niklas Schelten Heinrich-Hertz-Oberschule, Berlin

Mehr

Fraktale Geometrie. F. Springer 6. September 2008

Fraktale Geometrie. F. Springer 6. September 2008 Fraktale Geometrie F. Springer (felix.springer@uni-muenster.de) 6. September 2008 Geometrie kommt vom griechischen γεωµέτρηζ, was Erdmaß oder Landvermessung bedeutet. In der Schule begegnet einem meist

Mehr

2. Fraktale Geometrie

2. Fraktale Geometrie 2. Fraktale Geometrie Komplexe Systeme ohne charakteristische Längenskala z.b. Risse in festen Materialien, Küstenlinien, Flussläufe und anderes.. Skaleninvariante Systeme Gebrochene Dimensionen Fraktale

Mehr

Kapitel 7: Ähnlichkeit

Kapitel 7: Ähnlichkeit Kapitel 7: Ähnlichkeit 1. Gleiche Form andere Grösse Zwei Figuren, die die gleiche Form haben, sind.! Ähnliche Figuren lassen sich durch Vergrössern oder Verkleinern einer Figur herstellen. Wie viel vergrössert

Mehr

Wissen und Können zum Maßstab und zur Ähnlichkeit 1

Wissen und Können zum Maßstab und zur Ähnlichkeit 1 Wissen und Können zum Maßstab und zur Ähnlichkeit 1 1. Bedeutungen der Begriffe in der Mathematik Der Begriff Maßstab wird in der Mathematik nur bei der Eintafelprojektion eines Köpers zur Angabe der Höhe

Mehr

9 Fraktale. Dabei hängt das Ergebnis vom Maßstab der Karte und von der eingestellten Weite des Stechzirkels

9 Fraktale. Dabei hängt das Ergebnis vom Maßstab der Karte und von der eingestellten Weite des Stechzirkels 79 9 Fraktale Problemstellung Im Jahr 1967 veröffentlichte der Mathematiker Benoit Mandelbrot 3 eine Arbeit mit dem Titel How long is the coast of Britain? Statistical self-similarity and fractional dimension.

Mehr

3. Untergruppen. 3. Untergruppen 23

3. Untergruppen. 3. Untergruppen 23 3. Untergruppen 23 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Die Chaostheorie und Fraktale in der Natur

Die Chaostheorie und Fraktale in der Natur Hallertau-Gymnasium Wolnzach Abiturjahrgang 2009/2011 Facharbeit aus dem Leistungskurs Physik Die Chaostheorie und Fraktale in der Natur Eine physikalisch-philosophische Abhandlung über das Wesen der Natur

Mehr

1 Fraktale Eigenschaften der Koch-Kurve

1 Fraktale Eigenschaften der Koch-Kurve Anhang Inhaltsverzeichnis Fraktale Eigenschaften der Koch-Kurve iii. Einführung.................................. iii.2 Defintion.................................... iii.3 Gesamtlänge der Koch-Kurve........................

Mehr

Vorlesung Modelle in Biophysik/Biochemie 4. Fraktale

Vorlesung Modelle in Biophysik/Biochemie 4. Fraktale Vorlesung Modelle in Biophysik/Biochemie 4. Fraktale c Priv.-Doz. Dr. Adelhard Köhler May 19, 2005 1 Gebrochene (fraktale) Dimension Fraktale haben eine gebrochene Dimension. Unterschiedliche Dimensionsbegriffe

Mehr

9 Das Problem der Überschneidung

9 Das Problem der Überschneidung Reimund Albers Papierfalten Kapitel 9 Das Problem der Überschneidung 129 9 Das Problem der Überschneidung Variation des Auffaltwinkels Winkel kleiner als 90 Bei der geometrischen Interpretation der Papierfaltungswörter

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Hans Walser, Studie [ a] Zerlegungen des Zwölfeckes / Dissections of the Dodekagon

Hans Walser, Studie [ a] Zerlegungen des Zwölfeckes / Dissections of the Dodekagon Hans Walser, Studie [20040320a] Zerlegungen des Zwölfeckes / Dissections of the Dodekagon 1 Spielregeln 1.1 Gleichschenklige Dreiecke Regelmäßiges Zwölfeck Das regelmäßige Zwölfeck soll in gleichschenklige

Mehr

fraktal kommt von f : C C : x x 3.

fraktal kommt von f : C C : x x 3. Kapitel 4 Fraktale und Dimension 4.1 Selbstähnlichkeit Was sind Fraktale? Das Wort fraktal kommt von zerbrochen und steht für die nicht-ganzzahlige Dimension. Wir betrachten also Objekte deren Dimension

Mehr

Modulabschlussklausur

Modulabschlussklausur Sommersemester 2010 Dr. Reimund Albers Modul EM1: Mathematisches Denken in Arithmetik und Geometrie Modulabschlussklausur Name: Mat.Nr.: Schulschwerpunkt: Grund- oder Sekundarbitte ankreuzen Aufgabe 1

Mehr

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus Kantonsschule Solothurn Geometrie: Zentrische Streckung und Ähnlichkeit RYS Zentrische Streckung und Ähnlichkeit Einleitung Aufgaben: Vergrössern / Verkleinern 1. Die Geo-Maus a) Zeichne die Geo-Maus noch

Mehr

Kompetenzraster Geometrie

Kompetenzraster Geometrie Mathebox 6 I Themenbereich 3 Kompetenzraster Geometrie Eigenschaften von Vierecken und Dreiecken finden Einfachen Anwendungsaufgaben Vierecken lösen unterscheiden Symmetrieachsen in Vierecken und Dreiecken

Mehr

Zählen ist Messen in der nullten Dimension Oder: Was macht man mit halben Koordinatenachsen?

Zählen ist Messen in der nullten Dimension Oder: Was macht man mit halben Koordinatenachsen? Bulletin Zählen ist Messen in der nullten Dimension Oder: Was macht man mit halben Koordinatenachsen? Rainer Hauser, Thalwil, Schweiz (rainer.hauser@gmail.com) Zusammenfassung Die Dimension eines Vektorraums

Mehr

Abb. 1: Aus Rechtecken zusammengesetzte Spirale. Bauteile

Abb. 1: Aus Rechtecken zusammengesetzte Spirale. Bauteile Hans Walser Folgen sehen Publiziert in: Mathematik Lehren. Heft 96, Oktober 1999. S. 47-50 Kurzfassung Figurenfolgen entstehen entweder aufbauend durch schrittweises Ansetzen einer einfachen Grundfigur

Mehr

Copylab. Ein System zum Experimentieren mit Fraktalen. R.Deissler. Pädagogische Hochschule Freiburg

Copylab. Ein System zum Experimentieren mit Fraktalen. R.Deissler. Pädagogische Hochschule Freiburg Copylab Ein System zum Experimentieren mit Fraktalen R.Deissler Pädagogische Hochschule Freiburg 1 Inhalt Copylab - Ein System zum Experimentieren mit Fraktalen... 2 Der Kopierer von Copylab... 4 Beschreibung

Mehr

Beispiel: Die abgebildeten Geo-Dreiecke und das Wandtafelmodell habe dieselbe Form.

Beispiel: Die abgebildeten Geo-Dreiecke und das Wandtafelmodell habe dieselbe Form. 1 5. Abbildung durch zentrische Streckung Beispiel: Die abgebildeten Geo-Dreiecke und das Wandtafelmodell habe dieselbe Form. a) Worin stimmen die Dreiecke überein? b) Angenommen die Kathete des Wandtafeldreiecks

Mehr

Lösung - Serie 2. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Welche der folgenden Funktionen ( 1, 1) R sind strikt monoton wachsend?

Lösung - Serie 2. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Welche der folgenden Funktionen ( 1, 1) R sind strikt monoton wachsend? D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie.. Welche der folgenden Funktionen (, R sind strikt monoton wachsend? (a (b (c + 3 (d e (e (f arccos Keine. Auf (, 0] ist strikt monoton

Mehr

BERÜHMTE KURVEN Logarithmische Spirale. Die Logarithmische Spirale wird durch eine Gleichung in Polarkoordinaten angegeben: r(φ)=a*e k φ

BERÜHMTE KURVEN Logarithmische Spirale. Die Logarithmische Spirale wird durch eine Gleichung in Polarkoordinaten angegeben: r(φ)=a*e k φ BERÜHMTE KURVEN Gruppenleiter: Jürgen Appell, Kristina Appell, Anna Martellotti Hilfskräfte: Alison Cross, Ruth Smith Teilnehmer(innen): Ann-Christin Gerstner, Matthias Geuder, Michael Kierstein, Lukas

Mehr

Fraktale und Chaos. Wir beschftigten uns mit Fraktalen, die aus dem Studium komplexer dynamischer

Fraktale und Chaos. Wir beschftigten uns mit Fraktalen, die aus dem Studium komplexer dynamischer Fraktale und Chaos Teilnehmer: Markus Auricht (Heinrich-Hertz-Oberschule) Martin Czudra (Andreas-Oberschule) Robert Foellmer (Heinrich-Hertz-Oberschule) Aser Hage-Ali (Heinrich-Hertz-Oberschule) Alexej

Mehr

Beschreibung der Fähigkeitsniveaus Mathematik VERA 2009

Beschreibung der Fähigkeitsniveaus Mathematik VERA 2009 Beschreibung der Fähigkeitsniveaus Mathematik Beschreibung der Fähigkeitsniveaus Mathematik VERA 2009 Projekt VERA Universität Koblenz-Landau Campus Landau, FB Psychologie Telefon (063 41) 280-118 / -119

Mehr

Aufgaben zu Merkmalen und Eigenschaften von Körpern 1. 1 Allgemeine Merkmale vergleichen und beschreiben

Aufgaben zu Merkmalen und Eigenschaften von Körpern 1. 1 Allgemeine Merkmale vergleichen und beschreiben Aufgaben zu Merkmalen und Eigenschaften von Körpern 1 Sicheres Wissen und Können am Ende der Klasse 6 1 Allgemeine Merkmale vergleichen und beschreiben 1. Die folgenden Zeichnungen zeigen Körper. Fülle

Mehr

How To Build A Pyramid In Autocad

How To Build A Pyramid In Autocad Tutorial CAD - Baumfraktal Fraktal Dieses Beispiel ist eine einfache Version eines Fraktals. Dazu wird ein Pyramidenstumpf als Basisobjekt genommen und dieses Objekt immer wieder nach einem festgelegten

Mehr

HTL 1, Innsbruck Fraktale Kurven Seite 1 von 13

HTL 1, Innsbruck Fraktale Kurven Seite 1 von 13 HTL, Innsbruck Fraktale Kurven Seite von 3 Robert Salvador Fraktale Kurven salvador@htlinn.ac.at Mathematische / Fachliche Inhalte in Stichworten: Fraktale, Komplexe Zahlen, Iteration Kurzzusammenfassung

Mehr

AB1: Ähnliche Figuren untersuchen und zeichnen Was heißt Vergrößern und Verkleinern? Was ist eine zentrische Streckung?

AB1: Ähnliche Figuren untersuchen und zeichnen Was heißt Vergrößern und Verkleinern? Was ist eine zentrische Streckung? AB1: Ähnliche Figuren untersuchen und zeichnen Was heißt Vergrößern und Verkleinern? Was ist eine zentrische Streckung? 1 Finde möglichst viele Gemeinsamkeiten und Unterschiede der folgenden Abbildungen.

Mehr

Fraktale: Eine Einführung

Fraktale: Eine Einführung Fraktale: Eine Einführung Fraktale Geometrie und ihre Anwendungen Seminar im WS 06/07 Florian Daikeler Übersicht: I. Einführung: Die Cantor-Drittelmenge II. Fraktale in 2D: Selbstähnlichkeit III. Beispiele:

Mehr

Iteriertes Funktionensystem. Martin Aigner Rainer Brodinger Martin Rieger

Iteriertes Funktionensystem. Martin Aigner Rainer Brodinger Martin Rieger Iteriertes Funktionensystem Martin Aigner Rainer Brodinger Martin Rieger Agenda Einleitendes Beispiel Definition und Beschreibung Einsatzgebiete / Anwendungen weitere Beispiele Sierpinski-Dreieck "Das

Mehr

Wir wollen zunächst unsere bisherigen Betrachtungen zum Lebesguemaß in einen allgemeineren Rahmen stellen. Dazu die

Wir wollen zunächst unsere bisherigen Betrachtungen zum Lebesguemaß in einen allgemeineren Rahmen stellen. Dazu die Kapitel 13 Das Hausdorffmaß Wir wollen zunächst unsere bisherigen Betrachtungen zum Lebesguemaß in einen allgemeineren Rahmen stellen. Dazu die Definition 13.1. Gegeben sei eine Funktion µ : P(R n ) [0,+]

Mehr

Spielen mit Zahlen Seminarleiter: Dieter Bauke

Spielen mit Zahlen Seminarleiter: Dieter Bauke Spielen mit Zahlen Seminarleiter: Dieter Bauke EINLEITUNG Was ist Mathematik? Geometrie und Arithmetik: Untersuchung von Figuren und Zahlen. Wir kombinieren Arithmetik und Geometrie mittels figurierter

Mehr

Maturitätsprüfung Mathematik

Maturitätsprüfung Mathematik Maturitätsprüfung 007 Mathematik Klasse 4bN Kantonsschule Solothurn Mathematisch-naturwissenschaftliches Maturitätsprofil Name: Note: Hinweise zur Bearbeitung der Prüfung: Zur Lösung der Aufgaben stehen

Mehr

Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA

Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA Satz des Pythagoras Aufgabe 1.1.1 Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA a ) Die Katheten in einem rechtwinkligen Dreieck sind 8 cm bzw. 15 cm lang. Berechne die Länge der Hypotenuse.

Mehr

Übung 11. Fachwerkträger. Aufgabe 01: Aufgabe 02: Aufgabe 03: Aufgabe 04: Aufgabe 05: 170 m. 85 m SEE. E 160 m. x =? 4,4 m.

Übung 11. Fachwerkträger. Aufgabe 01: Aufgabe 02: Aufgabe 03: Aufgabe 04: Aufgabe 05: 170 m. 85 m SEE. E 160 m. x =? 4,4 m. Übung 11 Aufgabe 01: C D 170 m 85 m Aufgabe 02: E 160 m B SEE =? A Fachwerkträger 5 m 3 m 3 m 4,4 m Aufgabe 03: 10 40 36 z 15 25 Aufgabe 04: 4 13 18 10 Aufgabe 05: 7 3 Aufgabe 06: 4 m 1 m Aufgabe 07: Ein

Mehr

Ähnlichkeitsabbildungen und Ähnlichkeitslehre

Ähnlichkeitsabbildungen und Ähnlichkeitslehre Ähnlichkeitsabbildungen und Ähnlichkeitslehre Lisa Laudan, Christopher Wolf 1 Rahmenlehrplan Sek I Berlin Klasse 9/10 Standards für das Ende der Klasse 10: Die SuS berechnen Streckenlängen und Winkelgrößen

Mehr

Fraktale und Lindenmayer-Systeme Zusammenfassung des Vortrages

Fraktale und Lindenmayer-Systeme Zusammenfassung des Vortrages Proseminar Grundlagen der theoretischen Informatik Dozent: Prof. Helmut Alt Fraktale und Lindenmayer-Systeme Zusammenfassung des Vortrages Richard Wilhelm Wintersemester 2007 Fraktale Vorgestellt wurden

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

Mathematik VERA Projekt VERA. Ann Christin Halt, Florian Henk, Ingmar Hosenfeld, Jens Holger Lorenz, Sonja Wagner, Michael Zimmer-Müller

Mathematik VERA Projekt VERA. Ann Christin Halt, Florian Henk, Ingmar Hosenfeld, Jens Holger Lorenz, Sonja Wagner, Michael Zimmer-Müller Projekt VERA VERgleichsArbeiten in der Grundschule BESCHREIBUNG DER FÄHIGKEITSNIVEAUS Mathematik VERA 2008 Projekt VERA Ann Christin Halt, Florian Henk, Ingmar Hosenfeld, Jens Holger Lorenz, Sonja Wagner,

Mehr

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene Rechnen mit 1. im Koordinatensystem 1.1. Freie in der Ebene 1) Definition Ein Vektor... Zwei sind gleich, wenn... 2) Das ebene Koordinatensystem Wir legen den Koordinatenursprung fest, ferner zwei zueinander

Mehr

6. Ähnlichkeitsabbildungen

6. Ähnlichkeitsabbildungen 3 6. Ähnlichkeitsabbildungen Ein gegebenes Vieleck ABCDE ist durch Hintereinanderausführen von Kongruenzabbildungen (Geradenspiegelungen, Drehungen, Translationen, Punktspiegelungen) und zentrischen Streckungen

Mehr

Und so weiter... Annäherung an das Unendliche Lösungshinweise

Und so weiter... Annäherung an das Unendliche Lösungshinweise Stefanie Anzenhofer, Hans-Georg Weigand, Jan Wörler Numerisch und graphisch. Umfang einer Quadratischen Flocke Abbildung : Quadratische Flocke mit Seitenlänge s = 9. Der Umfang U der Figur beträgt aufgrund

Mehr

Mathematik für die Sekundarstufe 1

Mathematik für die Sekundarstufe 1 Hans Walser Mathematik für die Sekundarstufe 1 Modul 406 Fraktale Hans Walser: Modul 406, Fraktale ii Inhalt 1 Was ist ein Fraktal?... 1 2 Fragen... 2 2.1 Wie viele Kurven hat die Gotthardstraße?... 2

Mehr

Aufgaben I Dienstag

Aufgaben I Dienstag Aufgaben I Dienstag 27.06.2017 Erstelle Programme (- Scratch / mblock sind als Freeware frei Internet verfügbar-), welche geometrische Figuren zeichnen, speichere die Programme jeweils auf einem USB-Stick

Mehr

So viel wie möglich Extremwertaufgaben aus Geometrie

So viel wie möglich Extremwertaufgaben aus Geometrie So viel wie möglich Extremwertaufgaben aus Geometrie Andreas Ulovec 1 Einführung Die meisten Leute sind mit Extremwertaufgaben vertraut: Was ist das flächengrößte Dreieck, das man in einen Kreis einschreiben

Mehr

MATHEMATISCHE MONSTER - ALGORITHMEN der FRAKTALEN GEOMETRIE II

MATHEMATISCHE MONSTER - ALGORITHMEN der FRAKTALEN GEOMETRIE II MATHEMATISCHE MONSTER - ALGORITHMEN der FRAKTALEN GEOMETRIE II Wolf Bayer. Februar 00 Zusammenfassung Viele Formen der Natur lassen sich nicht mit der klassischen, auf Euklid basierenden Mathematik beschreiben.

Mehr

Beispiele. Strecke A R 1 (genauso für R d ):

Beispiele. Strecke A R 1 (genauso für R d ): Definition 6.1.1 (fraktale Dimension). Sei A R d beschränkt und für ε > 0 sei N A (ε) die minimale Anzahl der d-dimensionalen Kugeln vom Radius ε, mit denen A überdeckt werden kann. Die fraktale Dimension

Mehr

Ein modularer Ring mit 11 Ecken

Ein modularer Ring mit 11 Ecken www.mathegami.de September 2017 Ein modularer Ring mit 11 Ecken Michael Schmitz In [2], [3] und [4] haben wir bereits verschiedene regelmäßige n-ecke aus Modulen zusammengesetzt. Dazu kam die Anregung

Mehr

Pythagoreische Rechtecke Vier gleiche rechtwinklige Dreiecke 1.1 Allgemeiner Fall Startdreieck

Pythagoreische Rechtecke Vier gleiche rechtwinklige Dreiecke 1.1 Allgemeiner Fall Startdreieck Hans Walser, [20040416a] Pythagoreische Rechtecke 1 Vier gleiche rechtwinklige Dreiecke 1.1 Allgemeiner Fall Wir starten mit einem beliebigen rechtwinkligen Dreieck in der üblichen Beschriftung. Startdreieck

Mehr

Kurven. Modul 4 Fraktale Kurvenmonster

Kurven. Modul 4 Fraktale Kurvenmonster Modul 4 Fraktale Kurvenmonster Wie lang ist die Küste Großbritanniens? Die Antwort auf diese Frage scheint klar zu sein. Allerdings findet man in jedem Nachschlagewerk einen (nicht nur geringfügig) anderen

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $ $Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis

Mehr

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $ $Id: convex.tex,v.28 206/05/3 4:42:55 hk Exp $ 3 Konvexgeometrie 3. Konvexe Polyeder In der letzten Sitzung haben wir begonnen uns mit konvexen Polyedern zu befassen, diese sind die Verallgemeinerung der

Mehr

Flächeninhalt und Umfang von Rechtecken und anderen Figuren Umfang der Figur Gleich große Rechtecke mit verschieden großen Umfängen

Flächeninhalt und Umfang von Rechtecken und anderen Figuren Umfang der Figur Gleich große Rechtecke mit verschieden großen Umfängen Flächeninhalt und Umfang von Rechtecken und anderen Figuren Auf kariertem Papier (Papier mit quadratischen Rechenkästchen) kann man ohne besondere Hilfsmittel ein Rechteck zeichnen. Um ein Quadrat (also

Mehr

C/(D) Anspruchsniveau

C/(D) Anspruchsniveau Niveaustufe C/(D) des BOA Förderbedarf Lernen (B 5) Unterscheiden von Strecken, Strahlen und Geraden Erkennen und Beschreiben der Eigenschaften von Winkeln und Dreiecken Erkennen, Benennen und Beschreiben

Mehr

LernJob(Mathematik( LU05:)Form)

LernJob(Mathematik( LU05:)Form) mathbu.ch)9) LU05: Form Ich$kann$ähnliche$Figuren$und$Körper$erkennen$und$die$Grössenverhältnisse$an$ähnlichen$ Figuren$und$Körpern$verstehen.$Mir$gelingt$es,$Figuren$zu$vergrössern$und$zu$verkleinern.$

Mehr

2. Platonische Körper

2. Platonische Körper 2 Platonische Körper 27 2. Platonische Körper Dieses Kapitel legt den Schwerpunkt auf die Geometrie. Geometrie in der Grundschule befasst sich mit zwei zentralen Gebieten: Symmetrie und Raumvorstellung.

Mehr

Vortragsthemen. Reelle Dynamik

Vortragsthemen. Reelle Dynamik Vortragsthemen Jede Teilnehmende ist für ein Thema verantwortlich, das sie im Kurs vorstellen wird. Es gibt also insgesamt 15 Vorträge, 4 aus den Gebieten Reelle bzw. Komplexe Dynamik und 7 aus dem Gebiet

Mehr

STATISTISCHE UNTERSTÜTZUNG BEI DER KREBSDIAGNOSTIK. Philipp Hermann & Milan Stehlik Institut für Angewandte Statistik

STATISTISCHE UNTERSTÜTZUNG BEI DER KREBSDIAGNOSTIK. Philipp Hermann & Milan Stehlik Institut für Angewandte Statistik STATISTISCHE UNTERSTÜTZUNG BEI DER KREBSDIAGNOSTIK Philipp Hermann & Milan Stehlik Institut für Angewandte Statistik Idee: Entwickelt zwischen 1980-2000 Prof. Mattfeldt ist mit folgendem Problem gekommen:

Mehr

Falten regelmäßiger Vielecke

Falten regelmäßiger Vielecke Blatt 1 Gleichseitige Dreiecke Ausgehend von einem quadratischen Stück Papier kann man ohne weiteres Werkzeug viele interessante geometrische Figuren nur mit den Mitteln des Papierfaltens (Origami) erzeugen.

Mehr

Mathematik erzeugt grafische Kunstwerke und zauberhafte Videos: Was sind Fraktale?

Mathematik erzeugt grafische Kunstwerke und zauberhafte Videos: Was sind Fraktale? Mathematik erzeugt grafische Kunstwerke und zauberhafte Videos: Was sind Fraktale? Klaus Kusche Frühjahr 2019 Inhalt Unser Ziel Was ist ein Fraktal? Von linearen geometrischen Abbildungen zu iterierten

Mehr

Kapitel 1. Koordinaten im Raum. 1.1 Schrägbilder - Kavalier-Perspektive Koordinaten

Kapitel 1. Koordinaten im Raum. 1.1 Schrägbilder - Kavalier-Perspektive Koordinaten Kapitel Koordinaten im Raum Schrägbilder - Kavalier-Perspektive Koordinaten Im Raum benötigt man drei Angaben, um die Lage eines Punktes zu beschreiben So beschreiben Geographen durch N5 0"E07 38 7"H5m

Mehr

Oktaeder. Bernhard Möller. 22. Dezember 2010

Oktaeder. Bernhard Möller. 22. Dezember 2010 Oktaeder Bernhard Möller. Dezember 00 Ein Oktaeder ist ein regelmäßiges Polyeder, dessen Oberfläche aus acht kongruenten, gleichseitigen Dreiecken besteht. Jedes Oktaeder kann einem Würfel so einbeschrieben

Mehr

GOLDENER SCHNITT UND FIBONACCI-FOLGE

GOLDENER SCHNITT UND FIBONACCI-FOLGE GOLDENER SCHNITT UND FIBONACCI-FOLGE NORA LOOSE Der Goldene Schnitt - Eine Irrationalität am Ordenssymbol der Pythagoreer Schon im 5 Jahrhundert v Chr entdeckte ein Pythagoreer eine Konsequenz der Unvollständigkeit

Mehr

Herbert Zeitler Wolfgang Neidhardt. Fraktale und Chaos. Eine Einführung. Wissenschaftliche Buchgesellschaft Darmstadt

Herbert Zeitler Wolfgang Neidhardt. Fraktale und Chaos. Eine Einführung. Wissenschaftliche Buchgesellschaft Darmstadt Herbert Zeitler Wolfgang Neidhardt Fraktale und Chaos Eine Einführung Wissenschaftliche Buchgesellschaft Darmstadt f INHALT Einleitung 1 I. Iteration reeller Funktionen und Chaos in dynamischen Systemen.

Mehr

Mathematische Modellierung Lösungen zum 10. Übungsblatt

Mathematische Modellierung Lösungen zum 10. Übungsblatt Mathematische Modellierung Lösungen zum Klaus G. Blümel Lars Hoegen 30. Januar 2006 Aufgabe 1 Die Figur (a) zeigt bei einem Skalierungsfaktor s 3 eine selbstähnliche Vielfachheit von N 5 auf, sie hat demnach

Mehr

Jgst. 11/I 2.Klausur

Jgst. 11/I 2.Klausur Jgst. 11/I 2.Klausur 10.12.2010 A1. Gegeben sind die vier Punkte A(2/2), B(3/6), C(7/5) und D(6/1). Berechne die Gleichung des größten Kreises, den man in das Viereck, das aus diesen Punkten gebildet wird,

Mehr

1.10 Geometrie. 1 Die zentrische Streckung Einführung und Definition der zentrischen Streckung... 2

1.10 Geometrie. 1 Die zentrische Streckung Einführung und Definition der zentrischen Streckung... 2 1.10 Geometrie Inhaltsverzeichnis 1 Die zentrische Streckung 2 1.1 Einführung und Definition der zentrischen Streckung..................... 2 1.2 Flächeninhalte bei zentrischer Streckung............................

Mehr

Polyeder und Platonische Körper

Polyeder und Platonische Körper Polyeder und Platonische Körper Ausarbeitung zum 30.11.2016 Linus Leopold Boes Matrikelnummer: 2446248 Algorithmen für planare Graphen Institut für Informatik HHU Düsseldorf Inhaltsverzeichnis 1 Einleitung

Mehr

Flächeninhalt, Volumen und Integral

Flächeninhalt, Volumen und Integral Flächeninhalt, Volumen und Integral Prof. Herbert Koch Mathematisches Institut - Universität Bonn Schülerwoche 211 Hausdorff Center for Mathematics Donnerstag, der 8. September 211 Inhaltsverzeichnis 1

Mehr

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke edeutung+winkelsumme 1 Kapitel 5: Dreieckslehre 5.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke

Mehr

Hausdorff-Maß und Hausdorff-Dimension. Jens Krüger

Hausdorff-Maß und Hausdorff-Dimension. Jens Krüger Hausdorff-Maß und Hausdorff-Dimension Jens Krüger Inhaltsverzeichnis 1 Einleitung 2 2 Grundlagen aus der Maßtheorie 3 3 Die Konstruktion des Hausdorff-Maßes 4 4 Eigenschaften des Hausdorff-Maßes und Hausdorff-Dimension

Mehr

Aehnlichkeit. 1. Kapitel aus meinem Lehrgang Geometrie. Ronald Balestra CH St. Peter

Aehnlichkeit. 1. Kapitel aus meinem Lehrgang Geometrie. Ronald Balestra CH St. Peter Aehnlichkeit 1. Kapitel aus meinem Lehrgang Geometrie Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch 31. Oktober 2009 Inhaltsverzeichnis 1 Aehnlichkeit 1 1.1 Definition & Eigenschaften.....................

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 5.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 5.2 Inhaltsverzeichnis Geometrie 0 Geometrie!? 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen

Mehr

Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Das Dreieck ist rechtwinklig, da 13 2 =

Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Das Dreieck ist rechtwinklig, da 13 2 = Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Lösung Das Dreieck ist rechtwinklig, da 13 2 = 12 2 + 5 2 Also gilt für die gesuchte Höhe auf der Hypotenuse

Mehr

Elemente der Mathematik 9 Arbeitsplan ( nach Themen ) Klasse 9

Elemente der Mathematik 9 Arbeitsplan ( nach Themen ) Klasse 9 Die prozessbezogenen Kompetenzen, wie sie im Kerncurriculum insbesondere für die Kompetenzen mathematisches Argumentieren, Problem lösen, mathematisches Modellieren und Kommunizieren stehen, werden hier

Mehr

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke Kapitel 4: Dreieckslehre 4.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke (z.. Winkelsumme,

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Bildungsstandards Mathematik (5. Klasse)

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Bildungsstandards Mathematik (5. Klasse) Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Bildungsstandards Mathematik (5. Klasse) Das komplette Material finden Sie hier: School-Scout.de Inhaltsverzeichnis Vorwort... 4 1.

Mehr

Kapitel im Fokus. Ich kann / kenne. 5. Klasse Stand Juni **Anzahl der KA: 6 pro Schuljahr** Daten und Zufall. Größen messen

Kapitel im Fokus. Ich kann / kenne. 5. Klasse Stand Juni **Anzahl der KA: 6 pro Schuljahr** Daten und Zufall. Größen messen Daten und Zufall Sammeln und Auswerten von Daten Strichliste Absolute Häufigkeit Säulendiagramm Daten erfassen (Strichlisten, Tabellen). gesammelte Daten auswerten. Daten mithilfe von Diagrammen darstellen.

Mehr

Fraktale und Julia-Mengen

Fraktale und Julia-Mengen Uutner, J. Roser, A. Unseld, F. Fraktale und Julia-Mengen mit 77 Abbildungen Verlag Harri Deutsch Inhalt I Klassische Fraktale l 1 Cantor-Menge 2 1.1 Konstruktion und Eigenschaften 2 1.2 Triadische Darstellung

Mehr

Einführung in GeoGebra Geometrie

Einführung in GeoGebra Geometrie ICT an der KZN Einführung in GeoGebra Geometrie Ähnlichkeit Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 28. Februar 2017 Inhaltsverzeichnis 1 Einleitung und Zielsetzung 2 2 freeware

Mehr

Stoffverteilung Mathematik Klasse 9 auf Basis der Bildungsstandards 2004

Stoffverteilung Mathematik Klasse 9 auf Basis der Bildungsstandards 2004 Umgang mit Hilfsmitteln wie elsammlung, grafikfähigem Taschenrechner, Rechner mit geeigneter Software, elektronische Medien, Internet Alle Kapitel Vernetzung In allen Lerneinheiten sollten die folgenden

Mehr

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt 1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:

Mehr

Lineare Algebra. 1 Lineare Abbildungen

Lineare Algebra. 1 Lineare Abbildungen Lineare Algebra Die lineare Algebra ist ein Teilgebiet der Mathematik, welches u. A. zur Beschreibung geometrischer Abbildungen und diverser Prozesse und zum Lösen linearer Gleichungssysteme mit Hilfe

Mehr

Seite 10 Aufgaben Zentrische Streckung 1 a) Konstruktionsbericht (Vorschlag):

Seite 10 Aufgaben Zentrische Streckung 1 a) Konstruktionsbericht (Vorschlag): Seite 10 1 a) Konstruktionsbericht (Vorschlag): 1. Alle Eckpunkte mit Z verbinden 2. Die Strecke ZC halbieren (das entspricht der Streckung mit k 0.5) C 3. Parallelverschieben CB // durch C B 4. AB //

Mehr

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }.

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }. 154 e Gegeben sind die Vektoren v 1 = ( 10 1, v = ( 10 1. Sei V 1 = v 1 der von v 1 aufgespannte Vektorraum in R 3. 1 Dann besteht V 1 aus allen Vielfachen von v 1, V 1 = { c v 1 c R }. ( 0 ( 01, v 3 =

Mehr

Zehner und Einer unterscheiden, Zahlen bis 100 lesen und schreiben. in der Zahlenreihe vorwärts und rückwärts zählen

Zehner und Einer unterscheiden, Zahlen bis 100 lesen und schreiben. in der Zahlenreihe vorwärts und rückwärts zählen Grundschule Tangstedt Mathematik Kompetenzen Klasse 1 Klasse 2 Klasse 3 Klasse 4 Zahlen Zahlen lesen und schreiben Ziffern schreiben, Zahlen bis 20 lesen und schreiben Zehner und Einer unterscheiden, Zahlen

Mehr

10 Kapitel I: Anschauliche Vektorrechnung

10 Kapitel I: Anschauliche Vektorrechnung 10 Kapitel I: Anschauliche Vektorrechnung haben. In Mengenschreibweise ist G = {x x = a + tb für ein t R}. Wir werden für diese einführenden Betrachtungen im Interesse einer knappen Redeweise jedoch häufig

Mehr

Kunst und Wissenschaft

Kunst und Wissenschaft Kunst und Wissenschaft HS 8 Visualisierung von Newton-Fraktalen Inhalt 1. Ist Schönheit Harmonie? Mathematik in Musik und Malerei 2. Warum heissen Fraktale Fraktale? oder: was ist hier zerbrochen? 3. Was

Mehr

1 Yin Yang Figur Die Abbildung 1 zeigt das Yin Yang, wie es leibt und lebt. Es ist unter Farbwechsel punktsymmetrisch. Weiter hat es keine Symmetrien.

1 Yin Yang Figur Die Abbildung 1 zeigt das Yin Yang, wie es leibt und lebt. Es ist unter Farbwechsel punktsymmetrisch. Weiter hat es keine Symmetrien. Hans Walser, [20130505] Yin Yang Eine nostalgische fraktale Erinnerung. Anregung: Strick (2013) 1 Yin Yang Figur Die Abbildung 1 zeigt das Yin Yang, wie es leibt und lebt. Abb. 1: Yin Yang Es ist unter

Mehr

Zentrische Streckung Mündliche Aufgaben

Zentrische Streckung Mündliche Aufgaben Zentrische Streckung Mündliche Aufgaben Aufgabe 1 Was ist eine zentrische Streckung mit Zentrum Z und Streckungsfaktor k? Aufgabe 1 Was ist eine zentrische Streckung mit Zentrum Z und Streckungsfaktor

Mehr

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1 Inhaltsverzeichnis 1 Grundlagen 2 2 Der Graph einer Funktion

Mehr

17. Berliner Tag der Mathematik 2012 Wettbewerb Stufe III: Klassen 11 bis 12/13

17. Berliner Tag der Mathematik 2012 Wettbewerb Stufe III: Klassen 11 bis 12/13 17. Berliner Tag der Mathematik 2012 Wettbewerb Stufe III: Klassen 11 bis 12/13 Aufgabe 1 Sei M eine Menge von in einem Dreieck verlaufenden Strecken, über die Folgendes vorausgesetzt wird: Die Kanten

Mehr

DIPLOMARBEIT. Titel der Diplomarbeit. Fraktale Geometrie im GZ- und DG-Unterricht. 1 von 1. Verfasserin. Michaela Schmöger

DIPLOMARBEIT. Titel der Diplomarbeit. Fraktale Geometrie im GZ- und DG-Unterricht. 1 von 1. Verfasserin. Michaela Schmöger DIPLOMARBEIT Titel der Diplomarbeit Fraktale Geometrie im GZ- und DG-Unterricht 1 von 1 Verfasserin Michaela Schmöger angestrebter akademischer Grad Magistra der Naturwissenschaften (Mag. rer. nat. ) Wien,

Mehr

11: Die Euler sche Polyederformel für planare Graphen

11: Die Euler sche Polyederformel für planare Graphen Chr.Nelius: Graphentheorie (WS 2016/17) 38 11: Die Euler sche Polyederformel für planare Graphen (11.1) BEM: a) Ein Polyeder (auch Vielflach oder Vielflächner) ist ein geometrischer Körper, der nur von

Mehr

Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $

Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $ $Id: convex.tex,v 1.12 2013/10/22 15:58:28 hk Exp $ 3 Konvexgeometrie 3.1 Konvexe Polyeder Wir hatten einen konvexen Polyeder P im R n als die konvexe Hülle von endlich vielen Punkten definiert, wobei

Mehr

3 Abbildungen in der Ebene

3 Abbildungen in der Ebene 18 3 Abbildungen in der Ebene Wir behandeln in diesem Kapitel Abbildungen von Punkten der Ebene auf Punkte. Ziel dieser Betrachtung ist, Funktionsgraphen mit diesen Abbildungen (punktweise) abzubilden

Mehr