TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

Größe: px
Ab Seite anzeigen:

Download "TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik"

Transkript

1 TEHNISHE UNIVERSITÄT MÜNHEN Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Martin von Gagern Geometriekalküle WS 00/ Lösungen u ufgabenblatt (0. Oktober 00) Präsenaufgaben ufgabe. Dualität. Gegeben seien die folgenden drei iome. (i) Zwei Geraden schneiden sich in genau einem Punkt. (ii) Durch wei Punkte geht genau eine Gerade. (iii) Es gibt vier paarweise verschiedene Punkte,,, D, so dass keine drei von ihnen auf einer Geraden liegen. Zeigen Sie, dass wenn die drei iome vorausgesett werden, der folgende Sat gilt: Es gibt vier paarweise verschiedene Geraden a, b, c, d, so dass sich keine drei von ihnen in einem Punkt schneiden. Lösung: In diesem eweis seien,,, D die vier Punkte aus iom (iii). Das Symbol stellt die Operation join, also die Verbindungsgerade weier Punkte dar, das Symbol entsprechend die Operation meet, also den Schnittpunkt weier Geraden. ehauptung: die folgenden vier Geraden erfüllen die im Sat angegebenen edingungen. a = b = c = D d = D eweis: Eisten: Nach iom (ii) eistieren die angegebenen Geraden, und sind eindeutig festgelegt. Paarweise verschieden: ngenommen, wei Geraden seien identisch. Dann folgt daraus sofort, dass mindestens drei der Punkte,,, D auf dieser Geraden liegen müssten. Das ist ein Widerspruch u iom (iii). lso sind die Geraden paarweise verschieden. Keine drei schneiden sich in einem Punkt: ngenommen, dass drei der Geraden durch einen Punkt gehen. Ohne eschränkung der llgemeinheit seien dies die Geraden a, b und c. Die Geraden a und b haben nach ihrer Definition den Punkt gemeinsam, und nach iom (i) keine weiteren gemeinsamen Punkte. nalog haben b und c genau Punkt gemeinsam. Da und nach iom (iii) verschieden sind, gibt es keinen gemeinsamen Punkt, durch den alle drei Geraden verlaufen.

2 Keine drei schneiden sich in einem Punkt (lternative): Statt sich o..d.. auf drei Geraden u konentrieren, kann man auch systematisch alle Schnittpunkte untersuchen. Wir bestimmen unächst alle sechs Schnittpunkte a b, a c, a d, b c, b d und c d dieser vier Geraden. a b = ( ) ( ) = wegen auf a und auf b (nach Definition) und Schnittpunkt eindeutig nach iom (i). Mit analogem rgument gilt a D a d = ( ) (D ) = c b c = ( ) ( D) = c d = ( D) (D ) = D P b d Die beiden übrigen Schnittpunkte seien mit P und P beeichnet. P a c = ( ) ( D) = P Skie ur Illustration b d = ( ) (D ) = P Nun ist noch u eigen, dass alle diese sechs Schnittpunkte voneinander verschieden sind.,,, D untereinander verschieden: Die Punkte,,, D sind nach iom (iii) voneinander verschieden. P, verschieden von,,, D: ngenommen der Punkt P sei mit einem dieser vier Punkte identisch. Ohne eschränkung der llgemeinheit können wir annehmen, dass er mit dem Punkt identisch sei, also P =. Da P nach Definition auf c liegt, hätte man damit drei Punkte,, D auf der Geraden c. Das ist ein Widerspruch u iom (iii). Daher ist der Punkt P mit keinem der vier Punkte,,, D identisch. Ein analoges rgument gilt für P. P verschieden von P : ngenommen P = P. Dann läge dieser Punkt nach Definition von P auf a und gleicheitig nach Definition von P auf d. Die Verbindungsgerade dieses Punktes mit dem Punkt wäre nach iom (ii) eindeutig. lso müssten die Geraden a und d identisch sein. Dies ist ein Widerspruch ur oben bewiesenen Tatsache, dass die Geraden verschieden voneinander sind. lso muss P verschieden von P sein. Somit sind alle sechs Schnittpunkte voneinander verschieden. Daher können sich keine drei der vier Geraden in einem Punkt schneiden, da die paarweisen Schnittpunkte dieser drei Geraden verschieden voneinander sind.

3 ufgabe. ndere Einbettung. Nun sei die euklidische Ebene im R nicht kanonisch auf = eingebettet, sondern so, dass sie durch die Punkte = (, 0, 0) T, = (0,, 0) T und = (0, 0, ) T des R verläuft. Rechts finden Sie eine Draufsicht auf die eingebettete Ebene. a) Skiieren Sie die Lage der Ebene in einem dreidimensionalen Koordinatensystem. b) Zeichnen Sie die Punkte mit den folgenden homogenen Koordinaten in diese Draufsicht ein: p = (,, 0) T p = (,, ) T p = (, 0, ) T p = (,, ) T p 5 = (, 6, 7) T c) Geben Sie die homogenen Koordinaten der Ferngerade dieser Einbettung an. Lösung: a) Um die Ebene u skiieren, eichnet man ein dreidimensionales Koordinatensystem und verbindet die drei angegebenen Punkte. Die so erhaltenen Linien kenneichnen ugleich die Schnitte der eingebetteten Ebene mit den von den Koordinatenachsen aufgespannten Ebenen, also der (, y)-ebene, der (, )-Ebene und der (y, )- Ebene. y b) Die Ebene im R durch die Punkte, und erfüllt die Gleichung + y + =. Um einen Punkt in diese Ebene einueichnen, müssen also seine homogenen Koordinaten so skaliert werden, dass diese Gleichung erfüllt ist. Die sich so ergebenden drei Koordinaten seien mit a, b und c beeichnet. y = ( + y + ) +y+ y +y+ +y+ a := b := c := +y+ y +y+ +y+ Somit ergibt sich für die Punkte aus der ngabe: p = = p = = p = 0 = p = = p 5 = 6 = 7 7

4 Die so gefundenen Punkte in der eingebetteten Ebene muss man jett noch richtig in die Zeichenebene eintragen. Zum besseren Verständnis unterscheidet diese Erklärung wischen den dreidimensionalen Einheitsvektoren,,, wie sie in der ngabe vorgegeben sind, und ihren weidimensionalen ildern, und, wie man sie in der Zeichenebene sehen kann. Da die einelnen Einträge der umgeformten Vektoren sich u addieren, kann man sie auch als baryentrische Koordinaten des gesuchten Punktes auffassen. Wenn man die kartesischen Koordinaten der ilder, und in der Ebene R hätte, könnte man die Koordinaten der gewünschten Punkte als a + b + c errechnen. Will man sich den Umweg über das kartesische Koordinatensystem sparen, kann man auch direkt in Dreieckskoordinaten denken. Dabei stellen alle u paralellen Geraden diejenigen Linien dar, die die gleiche c-koordinate haben. ei selbst ist diese Koordinate 0, da sich alle Punkte auf der Geraden allein als Linearkombination aus und ergeben. ei ist diese Koordinate und die anderen beiden Koordinaten hingegen 0. Werte wischen 0 und sind dawischen auf Parallelen u in gleichmäßigen bständen verteilt. Gleiches gilt für die anderen Koordinaten. In der Skie ist dieses Verfahren für den Punkt p illustriert. a = p 5 p p p c = p b = c) Die Ferngerade entspricht dem weidimensionalen Untervektorraum des R, der mit der eingebetteten Ebene keine gemeinsamen Punkte hat, also parallel u dieser Verläuft. Repräsentiert wird dieser Untervektorraum durch seinen Normalenvektor. Das ist in diesem Fall der Vektor (,, ) T. Die Ferngerade entspricht im Dreidimensionalen also dem durch + y + = 0 beschriebenen Untervektorraum. ufgabe. Parallelogramm. Gegeben seien die homogenen Koordinaten der Punkte, und. Zusammen mit einem vierten Punkt D bilden diese ein Parallelogramm D, wobei die Ecke D der Ecke gegenüber liegt. Geben Sie eine Formel an, mit der die homogenen Koordinaten des Punktes D ausgerechnet werden können. a b d D c

5 Lösung: P d D a b c Q Homogene Koordinaten von Verbindungsgeraden lassen sich einfach über das Kreuprodukt der homogenen Koordinaten von wei Punkten bestimmen. So ist die Gerade a, die mit verbindet, wie folgt ausurechnen: a = Parallele Geraden schneiden sich im Unendlichen. Der ugehörige Fernpunkt lässt sich als Schnitt einer Geraden mit der Geraden im Unendlichen ermitteln. Für die Gerade a sei dies der Punkt P : P = a l Die Gerade c durch und parallel u a ist jett gegeben als Verbindungsgerade dieses Fernpunktes P mit dem Punkt : c = P Die Verbindungsgerade b von und, ihr Fernpunkt Q sowie die Parallele d durch sind analog u bestimmen: Damit ergibt sich D als Schnitt weier Geraden: Das führt abschließend u folgender Formel: b = Q = b l d = Q D = c d D = ((( ) l ) ) ((( ) l ) ) = ( ) 0 0 ( ) 0 0 5

6 Hausaufgaben ufgabe. Koordinatenachsen. estimmen Sie homogene Koordinaten für die - und y-chse sowie den Koordinatenursprung der Zeichenebene. Verwenden Sie die Standardeinbettung mit =. Lösung: Der Koordinatenursprung hat die weidimensionalen Koordinaten (0, 0) T (0, 0, ) T (oder ein vielfaches davon). und somit die homogenen Koordinaten Die -chse erfüllt die Gleichung y = 0 oder ausführlicher 0 + y +0 = 0. Sie hat daher die homogenen Koordinaten (0,, 0) T. nalog hat die y-chse die homogenen Koordinaten (, 0, 0) T. ufgabe 5. Homogene Koordinaten. Zeichnen Sie die folgenden Objekte in die rechts abgebildete gewöhnlichen (, y)-ebene (eingebettet in den R auf = ) ein. a) Punkte mit homogenen Koordinaten: 7 p = p = 5 0 p = 0 p = 0 b) Geraden mit homogenen Koordinaten: l = l = 6 l 5 = l = 6 l = 0 l 6 = 0 Lösung: a) Um die Punkte in die Ebene eineichnen u können, müssen sie dehomogenisiert werden. Dau werden ihre homogenen Koordinaten wie folgt umgeformt: y = y Im Einelnen ergeben sich so: p =, p = 0 0, p = nschließend kann die dritte Koordinate weggelassen werden. Der Punkt p befindet sich im Unendlichen und ist daher nicht direkt einueichnen. Obiger nsat hätte eine Division durch Null ur Folge. Lediglich die Richtung, in die er liegt, kann man durch einen Pfeil andeuten. 6

7 b) Um die Geraden in R u bestimmen, gibt es verschiedene nsäte. Man kann etwa für Vektoren (a, b, c) die ugehörige Gleichung a + by + c = 0 aufstellen und durch scharf hinschauen wei Punkte finden, die diese Gleichung erfüllen und somit die Gerade definieren. So sieht man etwa, dass l die Gleichungen = 0 sowie = 0 erfüllt und daher die Verbindungsgerade von (, 0) T mit (, ) T sein muss. lternativ kann man die Gerade auch durch Kreuprodukte mit wei beliebigen anderen, nicht parallelen Geraden schneiden, um so wei Punkte auf der Geraden u erhalten. Schneidet man etwa die Gerade l mit der - und der y-chse, so erhält man: 0 = Die gesuchte Gerade ergibt sich wieder als Verbindung dieser Punkte. 0 0 = 6 0 Die Gerade l 5 ist die Gerade im Unendlichen. Sie lässt sich nicht korrekt in die Skie eineichnen. Will man sie dennoch veranschaulichen, kann man die Skie verbiegen, um das Unendliche auch noch drauf u quetschen. p p p l l p l 5 p l l l 6 l l l p p p l 6 p l Skie als Lösung der ufgabe Verbogene Skie mit Unendlichkeit ur besseren Vorstellung ufgabe 6. Projektives Konstruieren. Gegeben sei die folgende (unvollständige) Photographie vom Umriss eines Schachbretts. Zeichnen Sie die Felder des Schachbretts perspektivisch richtig ein. enuten Sie dau die Tatsache, dass eine solche (Zentral-)Projektion Kollinearitäten erhält: Punkte, die in der Ebene des Schachbretts auf einer Gerade liegen, liegen auch auf dieser bbildung auf einer Geraden. 7

8 Lösung: Zur Lösung dieser ufgabe muss man sich nur auf die grundlegenden Eigenschaften projektiver Geometrie besinnen: Projektive Transformationen bilden Geraden auf Geraden ab. Schnittpunkte von Geraden bleiben unter projektiven Transformationen erhalten. Euklidisch parallele Geraden schneiden sich im Unendlichen. Sich gegenüberliegende Seiten des Schachbretts sind natürlich parallel. Ihre jeweiligen Schnittpunkte im Unendlichen werden unter der gewählten Perspektive (die praktisch eine projektive Transformation darstellt) sichtbar. Die so bestimmten Schnittpunkte werden im untenstehenden ild mit und beeichnet. Da der Schnitt von Geraden erhalten bleibt, lässt sich durch den Schnittpunkt der beiden Diagonalen der perspektivisch richtige Mittelpunkt M des Schachbretts bestimmen. Die Gerade durch M bw. M teilen dann das Schachbrett perspektivisch richtig in obere und untere bw. rechte und linke Spielbretthälfte ein, da sie Linien entsprechen, die parallel um Rand verlaufen. Wiederholte nwendung dieses Verfahrens bringt weitere Unterteilungen und somit schließlich das perspektivisch richtig geeichnete Schachbrett. M 8

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TEHNISHE UNIVERSITÄT MÜNHEN Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Martin von Gagern Geometriekalküle WS / Lösungen u ufgabenblatt (9. Oktober ) Präsenaufgaben ufgabe. Dualität. Gegeben

Mehr

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Michael Strobel Geometriekalküle WS 217/18 http://www-m1.ma.tum.de/geometriekalkuelews1718 Lösungen zu Aufgabenblatt 7 (29. Februar 217) Aufgabe 1. Abstand

Mehr

Projektive Geometrie 2

Projektive Geometrie 2 Technische Universität München Fakultät für Mathematik Klausur Projektive Geometrie 2 Modul M3204 7. ugust 2017, 11 12 Uhr Prof. Dr. Dr. Jürgen Richter-Gebert Musterlösung ufgabe 1. Diagramme mit Kegelschnitten

Mehr

Geometriekalküle. Rechnen mit projektiver Geometrie. Michael Schmid. 3. März Berufliche Oberschule Rosenheim

Geometriekalküle. Rechnen mit projektiver Geometrie. Michael Schmid. 3. März Berufliche Oberschule Rosenheim Geometriekalküle Rechnen mit projektiver Geometrie Michael Schmid Berufliche Oberschule Rosenheim 3. März 2016 Michael Schmid (BOS Rosenheim) Geometriekalküle 3. März 2016 1 / 34 1 Axiomatische Grundlagen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TEHNISHE UNIVERSITÄT MÜNHEN Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Martin von Gagern Geometriekalküle WS 00/ Lösungen zu Aufgabenblatt 5 (5. Dezember 00) Präsenzaufgaben Aufgabe 6. Kegelschnitte

Mehr

Landeswettbewerb Mathematik Baden-Württemberg

Landeswettbewerb Mathematik Baden-Württemberg Landeswettbewerb athematik aden-württemberg Lösungsvorschläge für die ufgaben der Runde 006/00 ufgabe us Streichhölzern wird wie in der bbildung ein (6 3) Rechteckgitter gelegt Für die ganze Figur sind

Mehr

Abitur 2010 Mathematik LK Geometrie V

Abitur 2010 Mathematik LK Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik LK Geometrie V Gegeben sind in einem kartesischen Koordinatensystem des R der Punkt A( ) und die Menge der Punkte B k ( k) mit k R. Die Punkte

Mehr

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Prof Dr Dr Jürgen Richter-Gebert, Bernhard Werner Projective Geometry SS 7 www-mmatumde/projectivegeometryss7 Lösungen zu Aufgabenblatt 5 Juli 7 Aufgabe

Mehr

Abitur 2016 Mathematik Geometrie V

Abitur 2016 Mathematik Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik Geometrie V Betrachtet wird der abgebildete Würfel A B C D E F G H. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen

Mehr

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Aufgabe. Objekte im Raum Technische Universität München Zentrum Mathematik rof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner rojective Geometry (SS 07) www-m0.ma.tum.de/rojectivegeometryss7 Lösungen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Aufgabe 50. Projektivspiegelung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Martin von Gagern Projektive Geometrie WS 2010/11 Lösungen zu Aufgabenblatt 12 (24.

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 3 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

1 Grundlagen der analytischen Geometrie

1 Grundlagen der analytischen Geometrie M. Pester 3 Grundlagen der analtischen Geometrie. Punkte, Vektoren, Geraden, Ebenen Einsat rechnerischer Methoden für die Behandlung geometrischer Beiehungen. Punkten werden Zahlentupel (Koordinaten) ugeordnet.

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Klausuren Jahrgangsstufe 11, 1. Halbjahr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Klausuren Jahrgangsstufe 11, 1. Halbjahr Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Klausuren Jahrgangsstufe 11, 1. Halbjahr Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Klausuren Jahrgangsstufe

Mehr

Technische Universität München Fakultät für Mathematik. Klausur. Geometriekalküle. Modul MA März 2018, 16:00 17:00 Uhr

Technische Universität München Fakultät für Mathematik. Klausur. Geometriekalküle. Modul MA März 2018, 16:00 17:00 Uhr Technische Universität München Fakultät für Mathematik Klausur Geometriekalküle Modul MA2203 1. März 2018, 16:00 17:00 Uhr Prof. Dr. Dr. Jürgen Richter-Gebert Musterlösung Aufgabe 1. Kegelschnitt mit Parameter

Mehr

Technische Universität München Fakultät für Mathematik. Klausur. Geometriekalküle. Modul MA März 2017, 08:30 09:30 Uhr

Technische Universität München Fakultät für Mathematik. Klausur. Geometriekalküle. Modul MA März 2017, 08:30 09:30 Uhr Technische Universität München Fakultät für Mathematik Klausur Geometriekalküle Modul MA2203 2. März 207, 08:30 09:30 Uhr Prof. Dr. Dr. Jürgen Richter-Gebert Musterlösung Aufgabe. Wahr oder Falsch Entscheiden

Mehr

Merkhilfe Vektorrechnung

Merkhilfe Vektorrechnung Merkhilfe Vektorrechnung 1. Was ist ein Vektor? 2. Verbindungsvektor AB =? 3. Punkte A und B, Gerade g Punkte A, B und C, Ebene E 4. Mitte M der Strecke AB OM =? a 1 a = a 2, b 1 b = b 2 a 3 b 3 5. Betrag

Mehr

Archimedische Spirale 3

Archimedische Spirale 3 ufgabenblatt-rchimedische Spirale +Lösungen.doc rchimedische Spirale ufgabe Gegeben sind der ol und zwei unkte und wie in der Zeichnung, die olarachse soll durch gehen. y cm 0 - - - - - - - 8 9 - - cm

Mehr

Proseminar Einführung in die Mathematik 1 WS 2010/11 2. Dezember 2010 Lösungen

Proseminar Einführung in die Mathematik 1 WS 2010/11 2. Dezember 2010 Lösungen Proseminar Einführung in die Mathematik 1 WS 1/11. Deember 1 Lösungen 46) Wie kann man nach Wahl eines Nullpunktes die Zeichenebene in natürlicher Weise als Vektorraum betrachten? Skriptum Kapitel 4, Par.

Mehr

Abitur 2013 Mathematik Geometrie V

Abitur 2013 Mathematik Geometrie V Seite 1 http://www.abiturloesung.de/ Seite Abitur 1 Mathematik Geometrie V Teilaufgabe b ( BE) Ein auf einer horizontalen Fläche stehendes Kunstwerk besitzt einen Grundkörper aus massiven Beton, der die

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I (Wintersemester 3/4) Aufgabenblatt (9. Januar

Mehr

13 Lösen von Gleichungssystemen

13 Lösen von Gleichungssystemen Vorkurs Mathematik 2 3 LÖSEN VON GLEICHUNGSSYSTEMEN 3 Lösen von Gleichungssystemen Zu Beginn des Kurses haben wir folgendes Gleichungssystem gelöst: 2 + 3y = 5 () + 2y = 4 (2) In diesem Beispiel haben

Mehr

Aufgabe A6/13. Aufgabe A7/13. Aufgabe A6/14

Aufgabe A6/13. Aufgabe A7/13. Aufgabe A6/14 Aufgabe A6/ Gegeben sind die Ebene 4 : Abituraufgaben Analytische Geometrie (Pflichtteil) ab und : 8. Bestimmen Sie eine Gleichung der Schnittgeraden. (Quelle Abitur BW Aufgabe 6) Aufgabe A7/ Gegeben sind

Mehr

9. Landeswettbewerb Mathematik Bayern

9. Landeswettbewerb Mathematik Bayern 9 Landeswettbewerb Mathematik aern ufgaben und Lösungsbeispiele Runde 006/00 ufgabe us Streichhölzern wird wie in der bbildung ein (6 3) Rechteckgitter gelegt ür die ganze igur sind 6² 3² Streichhölzer

Mehr

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene Rechnen mit 1. im Koordinatensystem 1.1. Freie in der Ebene 1) Definition Ein Vektor... Zwei sind gleich, wenn... 2) Das ebene Koordinatensystem Wir legen den Koordinatenursprung fest, ferner zwei zueinander

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 24 Unter den drei klassischen Problemen der antiken Mathematik versteht man (1) die Quadratur des Kreises, (2) die Dreiteilung

Mehr

4 Ein wenig analytische Geometrie. 4.1 Einige Grundgebilde der projektiven Geometrie Geraden in homogenen Koordinaten

4 Ein wenig analytische Geometrie. 4.1 Einige Grundgebilde der projektiven Geometrie Geraden in homogenen Koordinaten 4 Ein wenig analytische Geometrie 4.1 Einige Grundgebilde der projektiven Geometrie 4.1.1 Geraden in homogenen Koordinaten (a) Im Raum/Ebene in Parameterform Siehe Figur-4-1-1-a (ohne X g = P Q) P ( p),

Mehr

Abitur 2011 G8 Abitur Mathematik Geometrie V

Abitur 2011 G8 Abitur Mathematik Geometrie V Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Abitur Mathematik Geometrie V In einem kartesischen Koordinatensystem sind die Punkte A( 6 ), B( 8 6 6) und C( 8 6) gegeben. Teilaufgabe 1a (8

Mehr

2. Isometrien oder Kongruenzabbildungen

2. Isometrien oder Kongruenzabbildungen 6 2. Isometrien oder Kongruenzabbildungen 2.1 Einführende Überlegungen Kongruente Figuren sind deckungsgleiche Figuren. Eine Figur wird so bewegt, dass sie mit einer anderen Figur zur Deckung gebracht

Mehr

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projektive Geometrie SS 6 www-m.ma.tum.de/projektivegeometriess6 Lösungen zu Aufgabenblatt (6-6-3

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK Projektive Geometrie (Sommersemester 2005) Lösungen zu Aufgabenblatt 4 (25. Mai 2005) Präsenzaufgaben

Mehr

Städtewettbewerb Frühjahr 2012 Lösungsvorschläge

Städtewettbewerb Frühjahr 2012 Lösungsvorschläge Städtewettbewerb Frühjahr 01 Lösungsvorschläge Hamburg. März 01 [Version 7. pril 01] M Mittelstufe ufgabe M.1 (3 P.). Ein Schatz ist unter einem Feld eines 8 8-retts vergraben. Unter jedem anderen Feld

Mehr

Abitur 2011 G8 Musterabitur Mathematik Geometrie VI

Abitur 2011 G8 Musterabitur Mathematik Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur G8 Musterabitur Mathematik Geometrie VI In einem kartesischen Koordinatensystem ist ein Würfel W der Kantenlänge gegeben. Die Eckpunkte G ( ) und D ( ) legen

Mehr

Geometrie in der Ebene und im Raum

Geometrie in der Ebene und im Raum KAPITEL Geometrie in der Ebene und im Raum. Koordinaten Wir beschreiben nach einer Idee von René Descartes (596 650) jeden Punkt in der Ebene durch ein Paar reeller Zahlen. Die Menge der Paare reeller

Mehr

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche" Punkte mit inhomogenen K

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche Punkte mit inhomogenen K Kapitel IV Projektive Geometrie In diesem Kapitel wird eine kurze Einführung in die projektive Geometrie gegeben. Es sollen unendlich ferne Punkte mit Hilfe von homogene Koordinaten eingeführt werden und

Mehr

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projektive Geometrie SS 2016 www-m10.ma.tum.de/projektivegeometriess16 Lösungen zu Aufgabenblatt 11

Mehr

Lagebeziehung zweier Geraden GTR

Lagebeziehung zweier Geraden GTR Lagebeiehung weier Geraden GTR Es bestehen folgende Möglichkeiten. Die Geraden. schneiden sich oder sind. windschief,. identisch,. parallel und nicht identisch. Gegeben sind die beiden Geraden g: = ( )

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrück SS 2015 Elemente der Algebra Vorlesung 25 Auch Albrecht Dürer hatte Spaß an der Quadratur des Kreises Unter den drei klassischen Problemen der antiken Mathematik versteht

Mehr

(Quelle Landungsbildungsserver BW) (Quelle Landungsbildungsserver BW)

(Quelle Landungsbildungsserver BW) (Quelle Landungsbildungsserver BW) Aufgabe M01 Lösen Sie das lineare Gleichungssystem 7 2 2 3 5 4 4 7 Aufgabe M02 14 Stellen Sie den Vektor 5 als Linearkombination der drei Vektoren 7 0 1 5 1, 3 und 2 dar. 3 7 2 Aufgabe M03 0 2 Gegeben

Mehr

Abitur 2017 Mathematik Geometrie VI

Abitur 2017 Mathematik Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur 7 Mathematik Geometrie VI Gegeben sind die beiden bezüglich der x x 3 -Ebene symmetrisch liegenden Punkte A( 3 ) und B( 3 ) sowie der Punkt C( ). Teilaufgabe

Mehr

Aufgabe A7/08 Die Ebene geht durch die Punkte 1,5 0 0,!0 3 0 und " Untersuchen

Aufgabe A7/08 Die Ebene geht durch die Punkte 1,5 0 0,!0 3 0 und  Untersuchen Aufgabe A6/08 Gegeben sind die zwei parallelen Gerade und durch 2 3 1 6 : 9 4, : 2 8;, 4 1 5 2 Bestimmen Sie den Abstand der beiden Geraden. (Quelle Abitur BW 2008 Aufgabe 6) Aufgabe A7/08 Die Ebene geht

Mehr

Analytische Geometrie II

Analytische Geometrie II Analytische Geometrie II Rainer Hauser März 212 1 Einleitung 1.1 Geradengleichungen in Parameterform Jede Gerade g in der Ebene oder im Raum lässt sich durch einen festen Punkt auf g, dessen Ortsvektor

Mehr

Klausur zum Modul 2 im SS 2004 und Klausur zur Einführung in die Geometrie im SS 2004

Klausur zum Modul 2 im SS 2004 und Klausur zur Einführung in die Geometrie im SS 2004 Klausur zum Modul im SS 004 und Klausur zur Einführung in die Geometrie im SS 004 PO neu PO alt Name, Vorname... Matr.Nr.... Semester-nzahl im SS 004:... Studiengang G/H/R... Tutor/in:... ufg.1 ufg, ufg.3

Mehr

Abitur 2010 Mathematik GK Geometrie VI

Abitur 2010 Mathematik GK Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur Mathematik GK Geometrie VI In einem kartesischen Koordinatensystem mit Ursprung O sind die Punkte A( ), B( ) und die Gerade g : x = O A + λ, λ R, gegeben.

Mehr

Übung Elementarmathematik im WS 2012/13. Lösung zum Klausurvorbereitung IV

Übung Elementarmathematik im WS 2012/13. Lösung zum Klausurvorbereitung IV Technische Universität Chemnitz Fakultät für Mathematik Dr. Uwe Streit Jan Blechschmidt Aufgabenkomplex 7 - Vektoren Übung Elementarmathematik im WS 202/3 Lösung zum Klausurvorbereitung IV. (5 Punkte -

Mehr

4. Parallelität ohne Metrik

4. Parallelität ohne Metrik 4. Parallelität ohne Metrik In der Euklidischen Geometrie wird nicht gemessen. as hat zwei Gründe. Erstens, gab es bei den Griechen noch kein entwickeltes Stellenwertsystem. Zweitens, haben sie ja schon

Mehr

Philipp-Melanchthon-Gymnasium Bautzen Lk Mathematik Kl. 11. Schwerpunkt: Aufgaben ohne HM Abitur Sachsen

Philipp-Melanchthon-Gymnasium Bautzen Lk Mathematik Kl. 11. Schwerpunkt: Aufgaben ohne HM Abitur Sachsen Übungen zur Analytischen Abitur 00 Die Punkte A( 0), B( 0) und C(5 0) sind Eckpunkte eines Rechtecks ABCD. Der Punkt S ist die Spitze einer geraden Pyramide mit dem Rechteck ABCD als Grundfläche und der

Mehr

Vektorrechnung Einführung

Vektorrechnung Einführung Vektorrechnung Einführung In der Phsik treten häufig Größen wie Kraft und Geschwindigkeit auf, die sich nicht nur durch eine Zahl erfassen lassen. Sie besiten neben einem bestimmten etrag noch eine Richtung

Mehr

5. Gegenseitige Lage von Geraden und Ebenen. 5.1 Gegenseitige Lage zweier Geraden (siehe Kap. 3.2) 5.2: Schnittpunkt einer Geraden mit einer Ebene

5. Gegenseitige Lage von Geraden und Ebenen. 5.1 Gegenseitige Lage zweier Geraden (siehe Kap. 3.2) 5.2: Schnittpunkt einer Geraden mit einer Ebene 5 5. Gegenseitige Lage von Geraden und Ebenen 5. Gegenseitige Lage zweier Geraden (siehe Kap..) 5.: Schnittpunkt einer Geraden mit einer Ebene Beispiel: : x + y + 4z - 4 = g = P(6, -, )Q(, 6, 4) geometrisch:

Mehr

Vektorrechnung Einführung

Vektorrechnung Einführung Vektorrechnung Einführung In der Phsik treten häufig Größen wie Kraft und Geschwindigkeit auf, die sich nicht nur durch eine Zahl erfassen lassen. Sie besiten neben einem bestimmten etrag noch eine Richtung

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 2016 Prof. Dr. Matthias Lesch, Regula Krapf Lösungen Übungsblatt 9 ufgabe 31 (6 Punkte). Konstruieren Sie mit Zirkel und Lineal alle Dreiecke mit folgenden ngaben: (a)

Mehr

A Vektorrechnung. B Geraden und Ebenen

A Vektorrechnung. B Geraden und Ebenen A Vektorrechnung Seite 1 Lineare Gleichungssysteme... 4 2 Gauß-Algorithmus... 6 3 Vektoren... 10 4 Vektorberechnungen und Vektorlängen... 12 5 Linearkombination und Einheitsvektor... 16 6 Lineare Abhängigkeit

Mehr

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe

Mehr

Das Wichtigste auf einen Blick

Das Wichtigste auf einen Blick Das Wichtigste auf einen Blick Zusammenfassung Geometrie.Parameterform einer Geraden Eine Gerade ist wie auch in der Analysis durch zwei Punkte A, B im Raum eindeutig bestimmt einer der beiden Punkte,

Mehr

Inhaltsverzeichnis Bausteine Analytische Geometrie

Inhaltsverzeichnis Bausteine Analytische Geometrie Graf-Zeppelin-Gmnasium Bausteine Analtische Geometrie Inhaltsvereichnis Bausteine Analtische Geometrie Umgang mit Vektoren1 Länge von Vektoren1 Winkel φ wischen wei Vektoren1 Normale u wei (linear unabhängigen)

Mehr

Aus folgt: 1; 3 Eingesetzt in : $$$$$ #! * 1 + ; # $$$$$$$ # $$$$$ 2 $$$$$! * 3 Der Bildpunkt hat die Koordinaten

Aus folgt: 1; 3 Eingesetzt in : $$$$$ #! * 1 + ; # $$$$$$$ # $$$$$ 2 $$$$$! * 3 Der Bildpunkt hat die Koordinaten Abituraufgaben Analytische Geometrie (Pflichtteil) ab Lösung A6/ Wir stellen die gegebene Normalengleichung von in die Koordinatengleichung um und bilden. Im Gleichungssystem mit drei Unbekannten und zwei

Mehr

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, ernhard Werner Projektive Geometrie SS 26 www-m.ma.tum.de/projektivegeometriess6 Lösungen zu Aufgabenblatt 3 (26-4-28)

Mehr

Gruppenarbeit: Lagebeziehungen Gruppe A

Gruppenarbeit: Lagebeziehungen Gruppe A Gruppe A Hier soll die Lage von Geraden im Koordinatensystem untersucht werden. Bearbeiten Sie folgende Fragen (am besten mit Hilfe von Skizzen): 1) Wie kann man überprüfen, ob eine gegebene Gerade durch

Mehr

5A. Von der Perspektive zu den projektiven Ebenen.

5A. Von der Perspektive zu den projektiven Ebenen. 5A. Von der Perspektive zu den projektiven Ebenen. Neben der Euklidischen Geometrie, wie sie im Buch von Euklid niedergelegt und wie wir sie im vorigen Abschnitt behandelt haben, gibt es noch weitere Geometrien.

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 13 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

5. Geraden und Ebenen im Raum 5.1. Lineare Abhängigkeit und Unabhängigkeit von Vektoren

5. Geraden und Ebenen im Raum 5.1. Lineare Abhängigkeit und Unabhängigkeit von Vektoren 5 Geraden und Ebenen im Raum 5 Lineare Abhängigkeit und Unabhängigkeit von Vektoren Definition: Die Vektoren a,a,,a n heißen linear abhängig, wenn mindestens einer dieser Vektoren als Linearkombination

Mehr

Analytische Geometrie I

Analytische Geometrie I Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend

Mehr

Übungsklausur zur Vorlesung Lineare Algebra und Analytische Geometrie I

Übungsklausur zur Vorlesung Lineare Algebra und Analytische Geometrie I Humboldt-Universität zu Berlin.0.08. Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik A. Filler Übungsklausur zur Vorlesung Lineare Algebra und Analytische Geometrie I Bitte lösen

Mehr

HTW MST Mathematik 1. Vektorrechnung. Zu Aufgabe 1. Zu Aufgabe Lösungen zu Übungsblatt 5. Lösung: Lösung: = 39

HTW MST Mathematik 1. Vektorrechnung. Zu Aufgabe 1. Zu Aufgabe Lösungen zu Übungsblatt 5. Lösung: Lösung: = 39 Vektorrechnung Zu Aufgabe 1 Berechnen Sie den Flächeninhalt des Dreiecks, das durch die Vektoren 1 a =, b =, 3 1 c = 6 1 aufgespannt wird! Zu Aufgabe Berechnen Sie das Volumen des durch folgende 3 Vektoren

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 8 18. Mai 2010 Kapitel 8. Vektoren (Fortsetzung) Lineare Unabhängigkeit (Fortsetzung) Basis und Dimension Definition 80. (Lineare (Un-)Abhängigkeit)

Mehr

A c. C a. C b. P A b. A B c. B a. Über Parallelen zu Dreiecksseiten Darij Grinberg

A c. C a. C b. P A b. A B c. B a. Über Parallelen zu Dreiecksseiten Darij Grinberg Über Parallelen zu Dreiecksseiten Darij Grinberg c a b P b c Fig. 1 Wir werden zuerst zeigen (Fig. 1): Satz 1: Sei P ein Punkt in der Ebene eines Dreiecks : Die Parallele zu der Geraden durch den Punkt

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Themen des Pflichtteils... Analysis Von der Gleichung

Mehr

eingesetzt in die Ebenengleichung

eingesetzt in die Ebenengleichung 25 5. Gegenseitige Lage von Geraden und Ebenen 5.1 Gegenseitige Lage zweier Geraden (siehe Kap. 3.2) 5.2: Schnittpunkt einer Geraden mit einer Ebene Beispiel: ε: 2x + 3y + 4z - 24 = 0 g = P(6, -2, 2)Q(0,

Mehr

Übungen 4 Gerade, Ebene - Kurze Aufgaben Ebene: Spurpunkte, Spurgerade, Achsenabschnittsform Gerade, Ebene U04 Übungen 4 - Seite 1 (von 5)

Übungen 4 Gerade, Ebene - Kurze Aufgaben Ebene: Spurpunkte, Spurgerade, Achsenabschnittsform Gerade, Ebene U04 Übungen 4 - Seite 1 (von 5) Übungen Gerade, Ebene - Kurze Aufgaben ) Gesucht ist Normalenform einer Ebene, die den Punkt P( ) enthält und auf der x- Achse senkrecht steht. ) Gegeben ist die Ebene E: x ( Gesucht ist der Winkel zwischen

Mehr

14 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE. x y

14 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE. x y 4 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE 4 Projektionen 4. Parallelprojektion (a) Senkrechte Projektion auf eine Koordinatenebene Wir wählen als Projektionsebene die Ebene, d. h. in den Beeichnungen

Mehr

6. Analytische Geometrie : Geraden in der Ebene

6. Analytische Geometrie : Geraden in der Ebene M 6. Analtische Geometrie : Geraden in der Ebene 6.. Vektorielle Geradengleichung Eine Gerade ist durch einen Punkt A und einen Richtungsvektor r eindeutig bestimmt. Durch die Einführung eines Parameters

Mehr

Abiturprüfung Mathematik 200 Baden-Württemberg (ohne CAS) Wahlteil Aufgaben Analytische Geometrie II, 2 Gegeben sind der Punkt A(,/6/,) sowie die Gerade g: x = 0 + t. a) Bestimmen Sie den Schnittpunkt

Mehr

9. Übung zur Linearen Algebra I -

9. Übung zur Linearen Algebra I - 9. Übung zur Linearen lgebra I - Lösungen Kommentare an Hannes.Klarner@FU-erlin.de FU erlin. WS 2009-10. ufgabe 33 Sei ϕ : X X eine lineare bbildung, dim(x) = n und ϕ n = 0, ϕ n 1 0. (i) Zu Zeigen: x X,

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

Algebra 3.

Algebra 3. Algebra 3 www.schulmathe.npage.de Aufgaben 1. In einem kartesischen Koordinatensystem sind die Punkte A( 3), B( ) sowie für jedes a (a R) ein Punkt P a (a a a) gegeben. a) Zeigen Sie, dass alle Punkte

Mehr

Aufgabe 1 Zwei Kreise und k mit gleichem Radius schneiden sich in den Punkten A und B. Der Kreis um A

Aufgabe 1 Zwei Kreise und k mit gleichem Radius schneiden sich in den Punkten A und B. Der Kreis um A 1997 Runde ufgabe 1 Zwei Kreise und k mit gleichem Radius schneiden sich in den Punkten und Der Kreis um k1 k 1 durch schneidet zum zweiten Mal in einem Punkt Zeige, dass die Gerade () Tangente an den

Mehr

Zusammenfassung der Analytischen Geometrie

Zusammenfassung der Analytischen Geometrie Zusammenfassung der Analytischen Geometrie 1. Rechnen mit Vektoren (Addition, Subtraktion, S-Multiplikation, Linearkombinationen) 1. Gegeben sind die Punkte A(2-6 ) und B(-1 14-4), 4 4 sowie die Vektoren

Mehr

4. Übungsblatt zur Mathematik I für Maschinenbau

4. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 4. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-7.. Aufgabe G (Geraden im R ) Bestimmen

Mehr

2. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 11 Saison 1962/1963 Aufgaben und Lösungen

2. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 11 Saison 1962/1963 Aufgaben und Lösungen 2. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 11 Saison 1962/1963 ufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 11 ufgaben Hinweis: Der Lösungsweg mit egründungen

Mehr

Mathematische Probleme, SS 2019 Donnerstag $Id: dreieck.tex,v /04/12 17:03:16 hk Exp $

Mathematische Probleme, SS 2019 Donnerstag $Id: dreieck.tex,v /04/12 17:03:16 hk Exp $ $Id: dreieck.tex,v 1.53 2019/04/12 17:03:16 hk Exp $ 1 Dreiecke 1.1 Rechtwinklige Dreiecke Wir beschäftigen uns gerade mit den primitiven pythagoräischen Tripeln. Haben wir ein solches Tripel, also teilerfremde

Mehr

12 Der Abstand eines Punktes von einer Geraden Seite 1 von Der Abstand eines Punktes von einer Geraden

12 Der Abstand eines Punktes von einer Geraden Seite 1 von Der Abstand eines Punktes von einer Geraden 12 Der Abstand eines Punktes von einer Geraden Seite 1 von 5 12 Der Abstand eines Punktes von einer Geraden Die Bestimmung des Abstands eines Punktes von einer Geraden gehört zu den zentralen Problemen

Mehr

Aufgaben zu Lagebeziehungen Gerade-Ebene und Ebene-Ebene

Aufgaben zu Lagebeziehungen Gerade-Ebene und Ebene-Ebene Aufgaben zu Lagebeziehungen Gerade-Ebene und Ebene-Ebene. Im sind die Punkte A(/-4/7), B(-/4/-), die Ebene E:x x +x 5 sowie die Geradenschar (Abitur BI) gegeben.. Die Gerade h AB schneidet die Ebene E

Mehr

2. Kongruenzsätze (SWS und SSS) ohne Parallelen.

2. Kongruenzsätze (SWS und SSS) ohne Parallelen. 2. Kongruenzsätze (SWS und SSS) ohne Parallelen. In diesem Kapitel beginnen wir mit der systematischen ufstellung der Euklidischen Geometrie wie man sie in [Euklid, Elemente] findet. ls erstes Lehrstück

Mehr

FOS 1994, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B I

FOS 1994, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B I FOS 994, Ausbildungsrichtungen Technik und Agrarwirtschaft Aufgabenstellung In einem kartesischen Koordinatensystem sind die Punkte A( ), B(3 ) und C( ) gegeben, sowie die Punkte D a (a a a + ) mit a R..

Mehr

Mathematik LK 12 M1, 3. KA LA I / Analytische Geometrie Lösung

Mathematik LK 12 M1, 3. KA LA I / Analytische Geometrie Lösung Mathematik LK M,. KA LA I / Analytische Geometrie Lösung 6..7 Aufgabe : Rechnen mit Vektoren Berechne... und vereinfache das Ergebnis so weit wie möglich. Falls der Term keinen gültigen Ausdruck darstellt,

Mehr

Übungsaufgaben zu Kapitel 1 und 2

Übungsaufgaben zu Kapitel 1 und 2 Hochschule für Technik und Wirtschaft Dresden Wintersemester 8/9 Fakultät Informatik/Mathematik Prof. Dr. B. Jung Übungsaufgaben zu Kapitel und Aufgabe : Vereinfachen Sie die folgenden komplexen Ausdrücke

Mehr

Gleiche Vorgehensweise wie beim Einheitsvektor in der Ebene (also wie bei 2D).Beispiel:

Gleiche Vorgehensweise wie beim Einheitsvektor in der Ebene (also wie bei 2D).Beispiel: VEKTOREN Vektoren im Raum (3D) Länge/Betrag eines räumlichen Vektors Um die Länge eines räumlichen Vektors zu bestimmen, berechnen wir dessen Betrag. Auch hier rechnet man genauso wie bei einem zweidimensionalen

Mehr

x = r cos ', y = r sin ',wobei 0 6 r 6 2, z = z und somit

x = r cos ', y = r sin ',wobei 0 6 r 6 2, z = z und somit zu c). Ü erechnen Sie das Volumen und die Masse des Körpers aus Ü.; Der Körper aus Aufgabe Ü.; ist begrenzt durch die Flächen mit den Gleichungen z, + y und y z mit z >. Für die Dichte gelte (; y; z) +

Mehr

Lk Mathematik 12 Analytische Geometrie Arbeitsblatt A.1

Lk Mathematik 12 Analytische Geometrie Arbeitsblatt A.1 Lk Mathematik 2 Analytische Geometrie Arbeitsblatt A.. Die Grundäche eines Spielplatzes liegt in der x - -Ebene. Auf ihm steht eine innen begehbare, senkrechte, quadratische Pyramide aus Holz mit den Eckpunkten

Mehr

b 1 b 2 b 3 = a 1 b 1 + a 2 b 2 + a 3 b 3 a b = a 1 b 1 + a 2 b 2 + a 3 b 3

b 1 b 2 b 3 = a 1 b 1 + a 2 b 2 + a 3 b 3 a b = a 1 b 1 + a 2 b 2 + a 3 b 3 1. Rechnen mit Vektoren Skalarprodukt a b = a b cosα = a 1 a 2 a 3 b 1 b 2 b 3 = a 1 b 1 + a 2 b 2 + a 3 b 3 b a 1. Betrag = Länge eines Vektors: a = a a = a 2 1 + a 2 2 + a 2 3 2. Winkel zwischen 2 Vektoren:

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Abituraufgaben bis 2018 Baden-Württemberg. Geraden, Ebenen, Abstand

Abituraufgaben bis 2018 Baden-Württemberg. Geraden, Ebenen, Abstand Abituraufgaben bis 8 Baden-Württemberg Geraden, Ebenen, Abstand allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com August 8 Aufgabe : (Abiturprüfung 8) Gegeben sind die Ebenen E: xx x

Mehr

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5 Vektorrechnung 0. August 07 Inhaltsverzeichnis Vektoren Grundlegende Rechenoperationen mit Vektoren 3 3 Geometrie der Vektoren 5 4 Das Kreuzprodukt 9 Vektoren Die reellen Zahlen R können wir uns als eine

Mehr