Mathematik für Naturwissenschaftler II SS 2010

Größe: px
Ab Seite anzeigen:

Download "Mathematik für Naturwissenschaftler II SS 2010"

Transkript

1 Mathematik für Naturwissenschaftler II SS 2010 Lektion Mai 2010

2 Kapitel 8. Vektoren (Fortsetzung)

3 Lineare Unabhängigkeit (Fortsetzung) Basis und Dimension Definition 80. (Lineare (Un-)Abhängigkeit) Gegeben seien die m Vektoren v 1, v 2,..., v m des R n. Die Vektoren heißen linear unabhängig, wenn die Gleichung c 1 v c m v m = 0 nur die Lösung c 1 = = c m = 0 besitzt. Anderfalls heißen die Vektoren linear abhängig.

4 Lineare Unabhängigkeit (Fortsetzung) Basis und Dimension Wir schließen diesen Abschnitt mit einigen wichtigen Aussagen bezüglich der linearen Unabhängigkeit von Vektoren ab: Satz 56. Zwei Vektoren des R n sind genau dann linear abhängig, wenn sie Vielfache voneinander sind. Im R n sind n + 1 oder mehr Vektoren stets linear abhängig. Beliebig viele Vektoren v 1, v 2,..., v m im R n sind bereits dann linear abhängig, wenn eine Teilmenge hiervon linear abhängig ist. Die Umkehrung jedoch gilt nicht.

5 Lineare Unabhängigkeit (Fortsetzung) Basis und Dimension Satz 56. (Fortsetzung) Sind zwei der drei Vektoren v 1, v 2, v 3 R 3 linear unabhängig, also nicht Vielfache voneinander, so sind alle drei Vektoren linear abhängig, wenn sich der dritte Vektor dann in der Ebene, welche von den ersten beiden aufgespannt wurde, liegt. Lineare Unabhängigkeit liegt hingegen vor, wenn die drei Vektoren nicht in einer Ebene liegen.

6 Lineare Unabhängigkeit (Fortsetzung) Basis und Dimension Lineare Unabhängigkeit im R 3.

7 Lineare Unabhängigkeit (Fortsetzung) Basis und Dimension Definition 81. (Basis und Dimension) Gegeben seien die m Vektoren v 1,..., v m des R n und es sei U = Span { v 1,..., v m }. Dann heißt die Menge { v 1,..., v m } eine Basis von U, wenn die Vektoren v 1,..., v m linear unabhängig sind. Die Zahl m bezeichnet man als die Dimension von U und notiert diese mit dim U.

8 Lineare Unabhängigkeit (Fortsetzung) Basis und Dimension Wie wir bereits festgestellt haben, kann ein Unterraum von den unterschiedlichen Erzeugendensystemen aufgespannt werden. Folglich besitzt ein gegebener Unterraum auch beliebig viele Basen. Unabhängig von der gewählten Basis jedoch ist die jeweilige Anzahl der in einer Basis enthaltenen Vektoren, sprich: seine Dimension, in jedem Fall dieselbe.

9 Lineare Unabhängigkeit (Fortsetzung) Basis und Dimension Satz 57. (Dimension von Unterräumen) Gegeben seien m linear unabhängige Vektoren v 1,..., v m R n und der von ihnen erzeugte Unterraum U = Span { v 1,..., v m }. Liegen die m Vektoren u 1,..., u m ebenfalls in U und sind linear unabhängig, so spannen sie ebenfalls den Raum U auf. Die Dimension von U ist eindeutig bestimmt. Um ihn aufzuspannen, sind immer genau m linear unabhängige Vektoren aus U nötig.

10 Lineare Unabhängigkeit (Fortsetzung) Basis und Dimension Bemerkung. Die Dimension ist damit unabhängig von der betrachteten Basis. Die Dimension ist vielmehr eine Größe, welche nur von dem Unterraum als solchem abhängt.

11 Lineare Unabhängigkeit (Fortsetzung) Basis und Dimension Das folgende Beispiel macht deutlich, wie man eine Basis eines Unterraums U bestimmt und seine Dimension ermittelt: Beispiel In einem Erzeugendensystem streichen wie sukzessive Vektoren, die sich als Linearkombination der anderen darstellen lassen. 2. Haben wir auf diese Weise hinreichend viele linear abhängige Vektoren entfernt, so gewinnen wir letztlich eine lineare unabhängige Menge von Vektoren, die den Unterraum U aufspannen und folglich eine Basis des Unterraum U bilden. 3. Abschließend zählen wir die Vektoren in dieser Basis ab und erhalten die Dimension von U.

12 Die kanonische Einheitsbasis des R n Allgemeine Basisdarstellungen

13 Die kanonische Einheitsbasis des R n Allgemeine Basisdarstellungen Als Standard-Erzeugendensystem des R n gebraucht man die Menge der kanonischen Einheitsvektoren e 1 = , e 2 = ,..., e n = Jeder Vektor des R n kann als Linearkombination dieser kanonischen Vektoren geschrieben werden.

14 Die kanonische Einheitsbasis des R n Allgemeine Basisdarstellungen Darstellung von x R 3 bezüglich der kanonischen Einheitsvektoren

15 Die kanonische Einheitsbasis des R n Allgemeine Basisdarstellungen Die entsprechenden reellen Koeffizienten x 1,..., x n der Linearkombination sind dabei gerade die Einträge des Vektors, d.h. es ist x = x 1 x 2. x n = x 1 e x n e n.

16 Die kanonische Einheitsbasis des R n Allgemeine Basisdarstellungen Eigenschaften. Die Vektoren der Menge { e 1,..., e n } sind linear unabhängig und spannen den ganzen Raum R n auf. Somit bildet { e 1,..., e n } eine Basis des R n und es ist dim R n = n. Die Vektoren e i besitzen allesamt die Länge 1. Die Vektoren e i stehen senkrecht aufeinander, denn wir rechnen leicht nach, dass e i e j = 0 falls i j.

17 Die kanonische Einheitsbasis des R n Allgemeine Basisdarstellungen Definition 82. Jede Basis { v 1,..., v m } des R n oder eines Vektorraums, deren einzelne Basisvektoren orthogonal zueinander sind, wird als Orthogonalbasis bezeichnet. Wir nennen diese verschärfend eine Orthonormalbasis, wenn es sich zusätzlich bei den Basisvektoren um Einheitsvektoren handelt. Beispiel Die Menge der kanonischen Einheitsvektoren { e 1,..., e n } repräsentiert eine ebensolche Orthonormalbasis des R n.

18 Die kanonische Einheitsbasis des R n Allgemeine Basisdarstellungen Betrachten wir wieder m linear unabhängige Vektoren v 1,..., v m des R n und den von ihren Vektoren aufgespannten m-dimensionalen Unterraum U = Span { v 1,..., v m }. Gegeben sei ferner ein Vektor aus dem Unterraum U. w = w 1. w n

19 Die kanonische Einheitsbasis des R n Allgemeine Basisdarstellungen Wir können den Vektor w einerseits als die Auflistung der Koeffizienten w 1,..., w n interpretieren, mit denen sich der Vektor als Linearkombination der kanonischen Einheitsvektoren darstellen lässt: w = w 1 e w n e n. Da w in U liegt und { v 1,..., v m } eine Basis von U ist, lässt sich w andererseits auch als Linearkombination von v 1,..., v m darstellen. Diese Darstellung ist eindeutig.

20 Die kanonische Einheitsbasis des R n Allgemeine Basisdarstellungen Satz 58. (Eindeutige Darstellung) Es seien v 1,..., v m R n linear unabhängig und ferner sei w R n ein Vektor aus U = Span { v 1,..., v m }. Dann besitzt w eine eindeutige Darstellung bezüglich der Basis B = { v 1,..., v m }, d.h. es ist w = c 1 v c m v m mit eindeutig bestimmten Koeffizienten c 1,..., c m, die auch als die Koordinaten von w bezüglich der Basis { v 1,..., v m } bezeichnet werden.

21 Die kanonische Einheitsbasis des R n Allgemeine Basisdarstellungen Satz 58. (Fortsetzung) Der Vektor w kann dann auch in der Form notiert werden. w = c 1. c m B

22

23 Ausgehend von zwei linear unabhängigen Vektoren x, y R 3, die eine Ebene im R 3 aufspannen, wollen wir einen Vektor konstruieren, der auf allen Vektoren dieser Ebene senkrecht steht. (Wir sagen auch: Der Vektor steht senkrecht auf E.)

24 Um dies bewerkstelligen zu können, führen wir den Begriff des Kreuzprodukts (oder auch Vektorprodukts) ein: Definition 83. Zwei Vektoren x = des R 3 werde durch z = z 1 z 2 z 3 = x 1 x 2 x 3 x 1 x 2 x 3 und y = y 1 y 2 y 3 ein dritter Vektor z R 3 zugeordnet. y 1 y 2 y 3 := x 2 y 3 x 3 y 2 x 3 y 1 x 1 y 3 x 1 y 2 x 2 y 1

25 Satz 59. Es seien x, y R 3 gegeben. Dann gilt: Das Vektorprodukt ist eine antisymmetrische Operation, d.h. es gilt x y = y x. Sind die beiden Vektoren x und y linear abhängig, ist also ein Vektor als Vielfaches des anderen Vektors darstellbar, so gilt für das Kreuzprodukt x y = 0.

26 Satz 59. (Fortsetzung) Der Vektor x y steht senkrecht sowohl auf x als auch auf y, d.h. es gilt ( x y ) x = ( x y ) y = 0.

27 Kehren wir nun zu dem eingangs formulierten Problem zurück: Gegeben seien zwei linear unabhängige Vektoren x und y des R 3 und die von ihnen aufgespannte Ebene E = Span { x, y } = { c 1 x + c 2 y c 1, c 2 R }. Wir suchen einen Vektor z, welcher senkrecht auf E steht.

28 Das Kreuzprodukt z = x y leistet dabei das Gewünschte: Denn nach dem Satz 59 ist z x = z y = 0. Da jeder Vektor v E zudem darstellbar ist als v = c 1 x + c 2 y, gilt nun mit den Rechenregeln auch z ( c 1 x + c 2 y ) = c 1 ( z x ) + c 2 ( z y ) = 0.

29 Ein Vektor, der auf eine Ebene senkrecht steht, wird auch als Normalenvektor oder Normale bezüglich dieser Ebene bezeichnet.

30 Beispiel Gegeben seien die Vektoren 1 x = 1 sowie y = und E = Span { x, y } als die von ihnen aufgespannte Ebene.

31 Beispiel (Fortsetzung) Zum Kreuzprodukt

32 Beispiel (Fortsetzung) Der Vektor z = x y = = ( 2) 2 0 ( 1) 1 ( 1) ( 2) 1 0 steht senkrecht auf dieser Ebene = 5 1 2

33 Bemerkung. Selbstverständlich hätten wir im letzen Beispiel auch durch das Kreuzprodukt y x einen Normalvektor berechnen können. In diesem Fall hätten wir ebenfalls einen Vektor erhalten, der senkrecht auf E steht, gegeüber dem oben berechneten Vektor z = x y jedoch in die entgegengesetzte Richtung weist.

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 7 11. Mai 2010 Kapitel 8. Vektoren Definition 76. Betrachten wir eine beliebige endliche Anzahl von Vektoren v 1, v 2,..., v m des R n, so können

Mehr

Einführung in die Mathematik für Informatiker

Einführung in die Mathematik für Informatiker Einführung in die Mathematik für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 21.11.2016 6. Vorlesung aufgespannter Untervektorraum Span(T ), Linearkombinationen von Vektoren Lineare Unabhängigkeit

Mehr

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition) Vektorräume In vielen physikalischen Betrachtungen treten Größen auf, die nicht nur durch ihren Zahlenwert charakterisiert werden, sondern auch durch ihre Richtung Man nennt sie vektorielle Größen im Gegensatz

Mehr

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41. : x i R, 1 i n x n

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41. : x i R, 1 i n x n Kapitel Vektorräume Josef Leydold Mathematik für VW WS 07/8 Vektorräume / 4 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit x R n =. : x i R, i n x n und wird als n-dimensionaler

Mehr

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41 Kapitel 3 Vektorräume Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit R n = x 1. x n : x i R, 1 i n und

Mehr

HÖHERE MATHEMATIK I FÜR MW UND CIW Übungsblatt 5

HÖHERE MATHEMATIK I FÜR MW UND CIW Übungsblatt 5 PROF DR-ING RAINER CALLIES DR THOMAS STOLTE DIPL-TECH MATH KATHRIN RUF DIPL-TECH MATH KARIN TICHMANN WS / HÖHERE MATHEMATIK I FÜR MW UND CIW Übungsblatt Zentralübung Z Bezüglich eines kartesischen Koordinatensystems

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 2: Vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 19. Oktober 2011) Vektoren in R n Definition 2.1

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 9 Aufgabe 9 Finden Sie eine Basis des Lösungsraums L R 5 des linearen

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 19 8. Juli 2010 Kapitel 14. Gewöhnliche Differentialgleichungen zweiter Ordnung 14.1 Systeme gewöhnlicher linearer Differentialgleichungen erster

Mehr

Lineare Algebra I. - 9.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Korrektur: 2. Klausurtermin:

Lineare Algebra I. - 9.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Korrektur: 2. Klausurtermin: Lineare Algebra I - 9.Vorlesung - rof. Dr. Daniel Roggenkamp & Falko Gauß Korrektur: 2. Klausurtermin: 09.02.2017 Linearkombination von Vektoren lineare Hülle Erzeugendensystem S lineare Unabhängigkeit

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

11. BASIS, UNTERRAUM, und DIMENSION

11. BASIS, UNTERRAUM, und DIMENSION 11. BASIS, UNTERRAUM, und DIMENSION 1 Basen werden zu unterschiedlichen Zwecken benutzt: Um lineare Abbildungen in ihrer Matrixdarstellung zu vereinfachen, um die Dimension von Vektorräumen und ihren Unterräumen

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite 1 / 17 Vektoren Kapitel 15 Vektoren Mathematischer Vorkurs TU Dortmund Seite 13 / 17 Vektoren 151 Denition: Vektoren im Zahlenraum

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }.

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }. 154 e Gegeben sind die Vektoren v 1 = ( 10 1, v = ( 10 1. Sei V 1 = v 1 der von v 1 aufgespannte Vektorraum in R 3. 1 Dann besteht V 1 aus allen Vielfachen von v 1, V 1 = { c v 1 c R }. ( 0 ( 01, v 3 =

Mehr

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren Kapitel 13 Vektoren Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren 131 Denition: Vektoren im Zahlenraum Ein Vektor (im Zahlenraum) mit n Komponenten ist ein n-tupel reeller Zahlen,

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 8. Aufgabe 8.1. Dr. V. Gradinaru T. Welti. Herbstsemester 2017.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 8. Aufgabe 8.1. Dr. V. Gradinaru T. Welti. Herbstsemester 2017. Dr. V. Gradinaru T. Welti Herbstsemester 7 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8. Multiple Choice: Online abzugeben. 8.a) (i) Welche der folgenden

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 25 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8 Basen für Bild und Kern Gegeben sind die beiden 2 Matrizen:

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 6. Aufgabe 6.1. Dr. V. Gradinaru K. Imeri. Herbstsemester 2018.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 6. Aufgabe 6.1. Dr. V. Gradinaru K. Imeri. Herbstsemester 2018. Dr. V. Gradinaru K. Imeri Herbstsemester 8 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 6 Aufgabe 6. Multiple Choice: Online abzugeben. 6.a) (i) Welche der folgenden

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors Einführu hnung Was ist ein Vektor? In Bereichen der Naturwissenschaften treten Größen auf, die nicht nur durch eine Zahlenangabe dargestellt werden können, wie Kraft oder Geschwindigkeit. Zur vollständigen

Mehr

m 2 m 3 m 5, m m 2

m 2 m 3 m 5, m m 2 Musterlösung zum 8. Blatt 7. Aufgabe: Seien die folgenden Vektoren im R 4 gegeben: 2m 5 + 2 2m 2 2m 7 + m 2 m 3 m 5 v = m 5, v 2 = m 2, v 3 = m 7 m 2 m 3 m 5 m 2 m 3 m 5, m 5 + m 2 m 7 2m + m 2 m 4 2m

Mehr

Mathematik I. Vorlesung 11. Lineare Unabhängigkeit

Mathematik I. Vorlesung 11. Lineare Unabhängigkeit Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 11 Lineare Unabhängigkeit Definition 11.1. Es sei K ein Körper und V ein K-Vektorraum. Dann heißt eine Familie von Vektoren v i, i I,

Mehr

2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R.

2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R. Übung 6 1) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 + bx 2 + c mit a, b, c R und nennen diesen V. Die Vektoren f 1 (x) = 2x 4 + 2x 2 + 2 und f 2 (x) = 3x 4 + x 2 + 4 sind in diesem Vektorraum

Mehr

Kapitel 13. Lineare Gleichungssysteme und Basen

Kapitel 13. Lineare Gleichungssysteme und Basen Kapitel 13. Lineare Gleichungssysteme und Basen Matrixform des Rangsatzes Satz. Sei A eine m n-matrix mit den Spalten v 1, v 2,..., v n. A habe den Rang r. Dann ist die Lösungsmenge L := x 1 x 2. x n x

Mehr

Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt

Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt a ( b c) bilden. Aus der geometrischen Interpretation von Skalarprodukt und Vektorprodukt ist sofort ersichtlich,

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 05.11.2013 Alexander Lytchak 1 / 14 Linearkombinationen Definition Es sei V ein reeller Vektorraum. Es sei (v i ) i

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 7 Die Lösungsmenge eines homogenen linearen Gleichungssystems in n Variablen über einem Körper K ist ein Untervektorraum

Mehr

Übersicht Kapitel 9. Vektorräume

Übersicht Kapitel 9. Vektorräume Vektorräume Definition und Geometrie von Vektoren Übersicht Kapitel 9 Vektorräume 9.1 Definition und Geometrie von Vektoren 9.2 Teilräume 9.3 Linearkombinationen und Erzeugendensysteme 9.4 Lineare Abhängigkeiten

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

Lineare Algebra. Wintersemester 2017/2018. Skript zum Ferienkurs Tag Claudia Nagel Pablo Cova Fariña. Technische Universität München

Lineare Algebra. Wintersemester 2017/2018. Skript zum Ferienkurs Tag Claudia Nagel Pablo Cova Fariña. Technische Universität München Technische Universität München Wintersemester 27/28 Lineare Algebra Skript zum Ferienkurs Tag 2-2.3.28 Claudia Nagel Pablo Cova Fariña Wir danken Herrn Prof. Kemper vielmals für seine Unterstützung bei

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension Lineare Algebra I WS 205/6 c Rudolf Scharlau 65 2.3 Basis und Dimension In diesem zentralen Abschnitt werden einige für die gesamte Lineare Algebra fundamentale Grundbegriffe eingeführt: Lineare Abhängigkeit

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension 23 Basis und Dimension Erinnerung Gegeben ein K-Vektorraum V, ein Vektorensystem x,, x n in V Eine Linearkombination in den x i ist ein Vektor der Form λ x + + λ n x n mit λ i K Die λ i heißen Koeffizienten

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

Blatt 10 Lösungshinweise

Blatt 10 Lösungshinweise Lineare Algebra und Geometrie I SS 05 Akad. Rätin Dr. Cynthia Hog-Angeloni Dr. Anton Malevich Blatt 0 Lösungshinweise 0 0 Aufgabe 0. Es seien die Vektoren u =, v = und w = in R gegeben. a # Finden Sie

Mehr

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel 4 Orthogonalität 4. Motivation Im euklidischen Raum ist das euklidische Produkt zweier Vektoren u, v IR n gleich, wenn die Vektoren orthogonal zueinander sind. Für beliebige Vektoren lässt sich sogar der

Mehr

Technische Universität München

Technische Universität München Technische Universität München Michael Schreier Ferienkurs Lineare Algebra für Physiker Vorlesung Montag WS 2008/09 1 komplexe Zahlen Viele Probleme in der Mathematik oder Physik lassen sich nicht oder

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 30.10.2012 Bernhard Hanke 1 / 10 Vektorräume (Wiederholung) Ein reeller Vektorraum besteht aus einer Menge V, einem ausgezeichneten Element

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 6 4. Mai 2010 Definition 69. Der Vektor f 3 x 2 (x 1, x 2, x 3 ) f 2 x 3 (x 1, x 2, x 3 ) f 1 x 3 (x 1, x 2, x 3 ) f 3 x 1 (x 1, x 2, x 3 ) f 2 x

Mehr

4.1. Vektorräume und lineare Abbildungen

4.1. Vektorräume und lineare Abbildungen 4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt

Mehr

Prüfung Lineare Algebra , B := ( ), C := 1 1 0

Prüfung Lineare Algebra , B := ( ), C := 1 1 0 1. Es seien 1 0 2 0 0 1 3 0 A :=, B := ( 1 2 3 4 ), C := 1 1 0 0 1 0. 0 0 0 1 0 0 1 0 0 0 0 Welche der folgenden Aussagen ist richtig? A. A und C haben Stufenform, B nicht. B. A und B haben Stufenform,

Mehr

Diagonalisierbarkeit symmetrischer Matrizen

Diagonalisierbarkeit symmetrischer Matrizen ¾ Diagonalisierbarkeit symmetrischer Matrizen a) Eigenwerte und Eigenvektoren Die Matrix einer linearen Abbildung ³: Î Î bezüglich einer Basis ( Ò ) ist genau dann eine Diagonalmatrix wenn jeder der Basisvektoren

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof Dr H Brenner Osnabrück SS 26 Lineare Algebra und analytische Geometrie II Vorlesung 2 Orthogonalität Mit dem Skalarprodukt kann man die Eigenschaft zweier Vektoren, aufeinander senkrecht zu stehen,

Mehr

ein vom Nullvektor verschiedener Vektor, dann ist jeder dazu parallele (kollinear) Veka tor d ein Vielfaches von a. + λ 2 a 2

ein vom Nullvektor verschiedener Vektor, dann ist jeder dazu parallele (kollinear) Veka tor d ein Vielfaches von a. + λ 2 a 2 II. Basis und Dimension ================================================================= 2.1 Linearkombination und Basis -----------------------------------------------------------------------------------------------------------------

Mehr

Kapitel 15 Lineare Gleichungssysteme

Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Mathematischer Vorkurs TU Dortmund Seite 1 / 27 Kapitel 15 Lineare Gleichungssysteme Definition 15.1 (Lineares Gleichungssystem

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine Vektorräume (Teschl/Teschl 9 Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen: Eine

Mehr

5.7 Lineare Abhängigkeit, Basis und Dimension

5.7 Lineare Abhängigkeit, Basis und Dimension 8 Kapitel 5. Lineare Algebra 5.7 Lineare Abhängigkeit, Basis und Dimension Seien v,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von v,...,v n, nämlich { n

Mehr

6.5 Lineare Abhängigkeit, Basis und Dimension

6.5 Lineare Abhängigkeit, Basis und Dimension 6.5. Lineare Abhängigkeit, Basis und Dimension 123 6.5 Lineare Abhängigkeit, Basis und Dimension Seien v 1,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von

Mehr

Basis und Dimension. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Basis und Dimension. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren Basis und Dimension Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren aus V. 1) (v i ) i I heißt ein Erzeugendensystem von V, wenn Span(v i ) = V. 2) (v i ) i I heißt Basis von

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 2: Der Euklidische Raum Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 30. Oktober 2007) Vektoren in R n Definition

Mehr

Lösungen der Aufgaben zu Abschnitt 5.4

Lösungen der Aufgaben zu Abschnitt 5.4 A Filler: Elementare Lineare Algebra Lösungen zu Abschnitt 54 Lösungen der Aufgaben zu Abschnitt 54 B ist linear unabhängig, wenn die Vektorgleichung ( ) ( ) ( ) ( ) 456 λ + λ + λ = bzw das LGS λ +4λ +λ

Mehr

1 Lineare Unabhängigkeit Äquivalente Definition Geometrische Interpretation Vektorräume und Basen 6

1 Lineare Unabhängigkeit Äquivalente Definition Geometrische Interpretation Vektorräume und Basen 6 Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik Dr. Thomas Zehrt Vektorräume und Rang einer Matrix Inhaltsverzeichnis Lineare Unabhängigkeit. Äquivalente Definition.............................

Mehr

Kapitel I: Vektorrechnung 2: Vektoren im Raum

Kapitel I: Vektorrechnung 2: Vektoren im Raum WS 1/14 - Prof Dr Manfred Leitz 2 Vektoren im Raum A Grundbegriffe B Rechnen mit Vektoren C Der euklidische Betrag D Das euklidische Skalarprodukt E Vektorprodukt und Spatprodukt F Geraden und Ebenen im

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Basisdarstellung und das Skalarprodukt (Teil 2)

TECHNISCHE UNIVERSITÄT MÜNCHEN. Basisdarstellung und das Skalarprodukt (Teil 2) TECHNISCHE UNIERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 006/07 en Blatt 11 15.01.007 Basisdarstellung und das Skalarprodukt (Teil )

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

~ v 2. Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k 1. i=1. v k = w k

~ v 2. Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k 1. i=1. v k = w k v 1 v 1 v 2 v 2 W 2 -v (v, v ) 1 1 2 Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k. Schritt: Subtraktion der Komponenten von ṽ k in Richtung von v 1,v 2,...,v k 1 und Normierung von w k auf

Mehr

3.3 Austauschsatz, Basisergänzungssatz und Dimension

3.3 Austauschsatz, Basisergänzungssatz und Dimension 66 Kapitel III: Vektorräume und Lineare Abbildungen 3.3 Austauschsatz, Basisergänzungssatz und Dimension Montag, 15. Dezember 2003 Es sei V ein Vektorraum. Jedes Teilsystem eines linear unabhängigen Systems

Mehr

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5 Vektorrechnung 0. August 07 Inhaltsverzeichnis Vektoren Grundlegende Rechenoperationen mit Vektoren 3 3 Geometrie der Vektoren 5 4 Das Kreuzprodukt 9 Vektoren Die reellen Zahlen R können wir uns als eine

Mehr

Vektoren - Lineare Abhängigkeit

Vektoren - Lineare Abhängigkeit Vektoren - Lineare Abhängigkeit Linearkombination Eine Linearkombination ist ein Ausdruck r a + r a +... Dabei nennt man die (reellen) Zahlen r i auch Koeffizienten. Lineare Abhängigkeit Wenn ein Vektor

Mehr

Das Spatprodukt 25. Insbesondere ist das Spatprodukt in jedem Faktor linear. a 1 = aa 2 + ba 3

Das Spatprodukt 25. Insbesondere ist das Spatprodukt in jedem Faktor linear. a 1 = aa 2 + ba 3 Das Spatprodukt 25 (Sp 4) (aa, b, c) a(a, b, c) Insbesondere ist das Spatprodukt in jedem Faktor linear Montag,3 November 23 Satz 92 Drei Vektoren,, Spatprodukt (,, ) ist sind genau dann linear abhängig,

Mehr

2.1 Vektorräume. 1. für alle x, y U ist x + y U und. 2. für alle x U und alle λ R ist λx U. O V (= O U) U, und dass ( 1) x U, also x U.

2.1 Vektorräume. 1. für alle x, y U ist x + y U und. 2. für alle x U und alle λ R ist λx U. O V (= O U) U, und dass ( 1) x U, also x U. Vektorräume Definition Eine nicht leere Menge V, für die eine Addition (dh eine Rechenvorschrift + derart, dass a + b V für alle a, b V ist und eine skalare Multiplikation (dh λa V für alle λ R (λ ist

Mehr

Mathematik für Chemische Technologie 2

Mathematik für Chemische Technologie 2 Mathematik für Chemische Technologie 2 Themenüberblick: Funktionen mehrerer unabhängigen Veränderlichen Vektoralgebra Lineare Gleichungssysteme und Determinanten Fehlerrechnung Schwerpunkt des Sommersemesters

Mehr

Vektoren - Die Basis

Vektoren - Die Basis Vektoren - Die Basis Motivation (Als Vereinfachung - der Schreibarbeit - wählen wir meistens Vektoren in R 2.) Eigentlich ist ja Alles klar! Für einen Vektor a gilt a = ( a x a y )! Am Ende werden wir

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 4

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 4 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 4 4. (Frühjahr 27, Thema, Aufgabe ) Zeigen Sie, dass die beiden folgenden Unterräume des R 3 übereinstimmen:

Mehr

Kapitel 17 Skalar- und Vektorprodukt

Kapitel 17 Skalar- und Vektorprodukt Kapitel 17 Skalar- und Vektorprodukt Mathematischer Vorkurs TU Dortmund Seite 1 / 22 Bisher hatten wir die Möglichkeit Vektoren des R n zu addieren und Vektoren mit rellen Zahlen zu multiplizieren. Man

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Winter 6 Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT. Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen.

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen. 1. Der Vektorraumbegriff...1 2. Unterräume...2. Lineare Abhängigkeit/ Unabhängigkeit... 4. Erzeugendensystem... 5. Dimension...4 6. Austauschlemma...5 7. Linearität von Abbildungen...6 8. Kern und Bild

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

1 C. Ee 1 D B C. ; : : : ; Ee n D ; Ee 2 D B C : : A 2Rn A : v 1 v 2. Ev D B. A D v 1Ee 1 C v 2 Ee 2 C C v n Ee n : (30.3) v n

1 C. Ee 1 D B C. ; : : : ; Ee n D ; Ee 2 D B C : : A 2Rn A : v 1 v 2. Ev D B. A D v 1Ee 1 C v 2 Ee 2 C C v n Ee n : (30.3) v n Abschnitt 3 Lineare Unabhängigkeit, Basis, Dimension R Plato 77 Die beiden Vektoren und 2 sind hingegen linear unabhängig, ebenso die beiden Vektoren und 3 sowie auch die beiden Vektoren 2 und 3 (Übungsaufgabe)

Mehr

Vektorräume und Lineare Abbildungen

Vektorräume und Lineare Abbildungen Vektorräume und Lineare Abbildungen Die angesprochene Thematik macht den Kern dieser Veranstaltung aus. Lineare Techniken sind zentral für weite Bereiche mathematischen Argumentierens. Durch in der Analysis

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 25/6 Bearbeiten Sie bitte

Mehr

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z);

5 Vektorräume. (V1) für alle x, y V : x + y = y + x; (V2) für alle x, y, z V : (x + y) + z = x + (y + z); 5 Vektorräume Was wir in den vorangegangenen Kapiteln an Matrizen und Vektoren gesehen haben, wollen wir nun mathematisch abstrahieren. Das führt auf den Begriff des Vektorraumes, den zentralen Begriff

Mehr

1 Linearkombinationen

1 Linearkombinationen Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Linearkombinationen Unter einer Linearkombination versteht man in der linearen Algebra einen Vektor, der sich durch

Mehr

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 4.3 und 4.4

Mehr

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS WS 0/0 Blatt 0. Entscheiden Sie, ob die Vektoren v = (,,,4), v = (,0, ), v = (0,,,0), v 4 = (,,, ) linear unabhängig sind. Schreiben Sie,

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Aufgabe 1. Die ganzen Zahlen Z sind ein R-Vektorraum bezüglich der gewöhnlichen Multiplikation in R.

Aufgabe 1. Die ganzen Zahlen Z sind ein R-Vektorraum bezüglich der gewöhnlichen Multiplikation in R. Aufgabe Die ganzen Zahlen Z sind ein Q-Vektorraum bezüglich der gewöhnlichen Multiplikation in Q. Die reellen Zahlen R sind ein Q-Vektorraum bezüglich der gewöhnlichen Multiplikation in R. Die komplexen

Mehr

Lineare Algebra. 5. Übungsstunde. Steven Battilana.

Lineare Algebra. 5. Übungsstunde. Steven Battilana. Lineare Algebra 5. Übungsstunde Steven Battilana stevenb@student.ethz.ch November, 6 Vektoräume Eine Menge E zusammen mit zwei Verknüpfungen +: E E! E, (x, y) 7! x + y (Addition) : E E! E, (x, y) 7! x

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

Wiederholungs-Modulprüfung: zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 1.Klausur

Wiederholungs-Modulprüfung: zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 1.Klausur Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Wiederholungs-Modulprüfung: zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 1.Klausur Bearbeiten

Mehr

Die Dimension eines Vektorraumes

Die Dimension eines Vektorraumes Die Dimension eines Vektorraumes Ist (b 1, b 2,..., b n ) eine Basis des Vektorraums V, so heißt n die Dimension von V. Die Möglichkeit dieser Definition beruht auf dem folgenden nichttrivialen Satz. Je

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

Kapitel 14 Lineare Gleichungssysteme

Kapitel 14 Lineare Gleichungssysteme Kapitel 4 Lineare Gleichungssysteme Kapitel 4 Lineare Gleichungssysteme Mathematischer Vorkurs TU Dortmund Seite 83 / 246 Kapitel 4 Lineare Gleichungssysteme Definition 4. (Lineares Gleichungssystem LGS)

Mehr

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 3: Vektorräume 24. April 2016 1 / 20 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume Erinnerung:

Mehr

Orthonormalbasis. Orthogonalentwicklung

Orthonormalbasis. Orthogonalentwicklung Orthonormalbasis Eine Orthogonal- oder Orthonormalbasis des R n (oder eines Teilraums) ist eine Basis {v,..., v n } mit v i = und v i, v j = für i j, d. h. alle Basisvektoren haben Norm und stehen senkrecht

Mehr

5.4 Basis, Lineare Abhängigkeit

5.4 Basis, Lineare Abhängigkeit die allgemeine Lösung des homogenen Systems. Wieder ist 2 0 L i = L h + 0 1 Wir fassen noch einmal zusammen: Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbekannten hat n Rang(A)

Mehr

Lösungen zur Mathematik für Informatiker I

Lösungen zur Mathematik für Informatiker I Lösungen zur Mathematik für Informatiker I Wintersemester 00/03 Prof Dr H Lenzing Blatt 7 Sei M Ihre Matrikelnummer mit den Ziffern m, m, m 3, m 4, m 5, m 6, m 7 Aufgabe 6 ( Bonuspunkt): Wir betrachten

Mehr

Kapitel II. Vektorräume. Inhalt: 7. Vektorräume 8. Basis und Dimension 9. Direkte Summen und Faktorräume

Kapitel II. Vektorräume. Inhalt: 7. Vektorräume 8. Basis und Dimension 9. Direkte Summen und Faktorräume Kapitel II. Vektorräume Inhalt: 7. Vektorräume 8. Basis und Dimension 9. Direkte Summen und Faktorräume Die fundamentale Struktur in den meisten Untersuchungen der Linearen Algebra bildet der Vektorraum.

Mehr

Ausgangsfrage: gegeben Vektorraum, wieviele Komponenten hat. allgemein: ein Vektorraum mit, heisst 'Unterraum' von. ist ein Unterraum von V.

Ausgangsfrage: gegeben Vektorraum, wieviele Komponenten hat. allgemein: ein Vektorraum mit, heisst 'Unterraum' von. ist ein Unterraum von V. L2.3 Basis und Dimension Ausgangsfrage: gegeben Vektorraum, wieviele Komponenten hat Formaler: was ist die 'Dimension' von Sei Definition: 'Span' 'lineare Hülle' = alle möglichen Linearkombination der

Mehr