Lotto-Spiel (Wahrscheinlichkeiten für 6 aus 49 mit/ohne Zusatzzahl und mit/ohne Superzahl)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lotto-Spiel (Wahrscheinlichkeiten für 6 aus 49 mit/ohne Zusatzzahl und mit/ohne Superzahl)"

Transkript

1 Lotto-Spiel (Wahrscheinlichkeiten für aus mit/ohne Zusatzzahl und mit/ohne Superzahl) Jürgen Zumdick aus : Aus durchnummerierten Kugeln werden Kugeln ohne Zurücklegen und ohne Beachtung der Reihenfolge gezogen Mit Zusatzzahl: Aus den restlichen Kugeln wird zusätzlich eine weitere Kugel gezogen. Mit Superzahl: Aus 0 durchnummerierten Kugeln (0 bis ) wird zusätzlich eine Kugel gezogen.. Ziehen von Kugeln X: Anzahl der Richtigen p(x = k) = Anzahl der Richtigen Möglichkeiten = 0 =8 =. =.80 =.8.0 = =.0. 0 Summe: =.8.8 (Von den gezogenen Zahlen muss der Spieler k Zahlen und von den übrigen nicht gezogen Zahlen muss er k Zahlen getippt haben) Zur Information: n n! = (Binomialkoeffizient) k!( n k)! n! = n und 0! = (Fakultät). Ziehen von Kugeln und einer Zusatzzahl X: Anzahl der Richtigen (mit oder ohne Zusatzzahl) Y: Anzahl der Richtigen mit Zusatzzahl Z: Anzahl der Richtigen ohne Zusatzzahl a) Der Zufallsprozess wird aus der Sicht des Tippers betrachtet, der Kreuze macht:

2 p(x = k) wie. p(y = k) = (Von den zuerst gezogenen Zahlen muss er k Zahlen haben, von den nicht gezogenen Zahlen muss er -k Zahlen haben, als.zahl muss er die gezogene Zusatzzahl haben) p(z = k) = (Von den zuerst gezogenen Zahlen muss er k Zahlen haben, von den nicht gezogenen Zahlen muss er -k Zahlen haben folglich hat er die gezogene Zusatzzahl nicht) p(x = k) = p(y = k) + p(z = k) Anzahl der Richtigen Möglichkeiten mit Zusatzzahl ohne Zusatzzahl mit Zusatzzahl 0 ohne Zusatzzahl. mit Zusatzzahl 7.0 ohne Zusatzzahl.00 mit Zusatzzahl 7.00 ohne Zusatzzahl.78.0 mit Zusatzzahl 7.80 ohne Zusatzzahl mit Zusatzzahl ohne Zusatzzahl..78 Summe: =.8.8 b) Der Zufallsprozess wird aus der Sicht der Lotto-Gesellschaft betrachtet, die 7 Zahlen zieht. Der Zufallsversuch wird in einen zweistufigen Versuch zerlegt (Ziehen von Zahlen, Ziehen einer Zahl: Anzahl der möglichen Fälle: ( Möglichkeiten für die Zusatzzahl) p(x = k) = k

3 Der Zufallsprozess besteht aus dem Ziehen von 7 Kugeln. Damit der Tipp des Spielers eine Teilmenge hiervon ist, muss er auch 7 Kugeln wählen ( bewertete und eine imaginäre 7. Kugel). p(y = k) = (Von den zuerst gezogenen Zahlen muss der Spieler k Zahlen haben, von den nicht gezogenen Zahlen muss er -k Zahlen haben, als. Zahl muss er die gezogene Zusatzzahl haben, für ein 7., imaginäres Kreuz hat er Möglichkeiten) p(z = k) = Es ergibt sich natürlich die gleiche Tabelle wie unter a). Ziehen von Kugeln mit Zusatzzahl und einer Superzahl (aktuelle Variante) Der Zufallsprozess wird aus der Sicht des Tippers betrachtet, der Kreuze macht und einen Tippschein mit einer Registrierungsnummer wählt/erhält. Die letzte Ziffer der Registrierungsnummer entspricht der Superzahl. Der Zufallsversuch hat jetzt 0 =.88.0 verschiedene Ausfälle. Für den Ausfall Richtige mit Superzahl gibt es eine Möglichkeit und für den Ausfall Richtige ohne Superzahl gibt es Möglichleiten ( Möglichkeit für Richtige, Möglichkeiten für die falsche Superzahl). Da für alle anderen Ausfälle lt. Spielregel die Superzahl keine Rolle spielt, gibt es für diese Ausfälle jeweils 0-mal so viele Ausfälle wie in der Tabelle bei a): SZ: Superzahl; ZZ. Zusatzzahl Gewinnklasse Anzahl der Richtigen Möglichkeiten mit SZ ohne SZ mit ZZ 0 ohne ZZ.0 mit ZZ.00 ohne ZZ.0 7 mit ZZ ohne ZZ..000 mit ZZ ohne ZZ mit ZZ ohne ZZ mit ZZ ohne ZZ.7.80 Summe:.88.0

4 Aus vorstehender Tabelle lassen sich die Gewinnwahrscheinlichkeiten für die einzelnen Gewinnklassen angeben: Gewinnklasse Wahrscheinlichkeit = Ziehen von Kugeln und einer Superzahl (Variante ab Mai 0) Die Ziehung der Zusatzzahl entfällt. Damit gibt es ebenfalls.88.0 Ausfälle Ist X die Anzahl der Richtigen mit Superzahl und Y die Anzahl der Richtigen ohne Superzahl, dann gilt: P(X=k)= und P(Y=k)= Gewinnklasse Anzahl der Richtigen Möglichkeiten mit SZ ohne SZ mit SZ 8 ohne SZ. mit SZ. ohne SZ.0 7 mit SZ.80 8 ohne SZ..80 mit SZ.8.0 ohne ZZ.0.0 mit SZ ohne SZ mit SZ.0. 0 ohne SZ Summe:.88.0 Nun lassen sich die Gewinnwahrscheinlichkeiten für die einzelnen Gewinnklassen angeben:

5 Gewinnklasse Wahrscheinlichkeit = Aufgabe Von der Lottogesellschaft werden für das neue Lottospiel folgende theoretische Auszahlungsquoten veröffentlicht (bei einem Einsatz von,00 pro Lottoreihe): Gewinnklasse Theoretische Quote 8..,0 7.,0 0.0,00.0,0 0,80,0 7 0,0 8 0,0 (feste Quote),00 Als Gesamtgewinnchance wird : angegeben. a) Ist die Angabe der Gesamtgewinnchance korrekt? b) Wie viel Prozent der Auszahlung entfallen auf die einzelnen Gewinnklassen? c) Welches ist der Erwartungswert der Auszahlung wie viel Prozent der Einnahmen werden also ausgezahlt? d) Welche theoretischen Quoten entsprächen den Gewinnwahrscheinlichkeiten (Entsprechen soll bedeuten: Verdoppelt sich die Wahrscheinlichkeit, halbiert sich die Quote antiproportionaler Zusammenhang)? Lösung: a) Die Addition der Wahrscheinlichkeiten der einzelnen Gewinnklassen ergibt:

6 b) Die gesamte theoretische Auszahlung beträgt: 8..,0 + 7., , ,0 +. 0,80 +.0, , , ,00 =.7.7,0 Damit ergeben sich folgende prozentualen Auszahlungsquoten: Gewinnklasse Auszahlungsquote in % 8.. =,8% 7.,0 = 7,% 8 0.0,0 =,7%..0,0 =,%. 0,80 =,7%.0,0 = 7,% ,0 = 7,% ,0 =,%.8.0,00 =,% c).7.7,0 = , Es werden also etwa 0% der Einnahmen ausgezahlt. d) Bei einer Auszahlung entsprechend den Gewinnwahrscheinlichkeiten müssten in jeder Gewinnklasse 00% : =,% ausgezahlt werden.,% der Auszahlungssumme von sind ,7. Damit ergeben sich folgende theoretische (absolute) Quoten: Gewinnklasse Auszahlungsquote in % , ,7 : = 80.0, ,7 : 8 = 0.00, ,7 : =., ,7 : =

7 7, ,7 :0 =, ,7 :80 =, ,7 :..80 =, ,7 :.8.0 =,8

mathphys-online Zahlenlotto 6 aus 49 Quelle: Akademiebericht 470 Dillingen

mathphys-online Zahlenlotto 6 aus 49 Quelle: Akademiebericht 470 Dillingen Zahlenlotto aus Quelle: Aademiebericht 470 Dillingen Spielregeln Beim Spiel Sechs aus Neunundvierzig werden jeden Mittwoch und Samstag sechs Gewinnzahlen gezogen. Dazu befinden sich nummerierte Kugeln

Mehr

4. Schularbeit/7C/2-stündig Schularbeit. 7C am

4. Schularbeit/7C/2-stündig Schularbeit. 7C am 4. Schularbeit 7C am 24.5.2017 Name: Note: Beispiel-Nr. 1 2 3 4 5 6 7 8 9 10 11 12 AP Teil 1: Teil 2: Punkte Teil 1 (inkl. AP) Punkte Teil 2 Gesamtpunkte Notenschlüssel: 0 7 P von Teil 1 (inkl. Anrechnungspunkte

Mehr

Stochastik: Erwartungswert Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 10 Alexander Schwarz

Stochastik: Erwartungswert Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 10 Alexander Schwarz Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 0 Alexander Schwarz www.mathe-aufgaben.com November 20 Aufgabe : Ein Glücksrad besteht aus Feldern, die folgendermaßen beschriftet sind:.feld:

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 12. Dezember 2012 1 Kombinatorik Fakultät Binomialkoeffizienten Urnenmodelle 2 Definition Fakultät Die Zahl n! =

Mehr

Übungen Abgabetermin: Freitag, , 10 Uhr

Übungen Abgabetermin: Freitag, , 10 Uhr Universität Münster Institut für Mathematische Statistik Stochastik für Lehramtskandidaten SoSe 015, Blatt 1 Löwe/Heusel Übungen Abgabetermin: Freitag, 10.7.015, 10 Uhr Hinweis: Dies ist nur eine Beispiellösung.

Mehr

Kombinatorik. Kombinatorik ist die Lehre vom Bestimmen der Anzahlen

Kombinatorik. Kombinatorik ist die Lehre vom Bestimmen der Anzahlen Kombinatorik Kombinatorik ist die Lehre vom Bestimmen der Anzahlen 1 Man benötigt Kombinatorik, um z.b. bei Laplace-Experimenten die große Anzahl von Ergebnissen zu bestimmen. Bsp: Beim Lotto 6 aus 49

Mehr

Aufgabe A1 Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors

Aufgabe A1 Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors Level Grundlagen Blatt Dokument mit Aufgaben Aufgabe A Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors gilt.

Mehr

Ableitung der Wahrscheinlichkeit für einen unabsichtlichen Verbindungsaufbau im Mobilfunk ( Hosentaschenverwähler )

Ableitung der Wahrscheinlichkeit für einen unabsichtlichen Verbindungsaufbau im Mobilfunk ( Hosentaschenverwähler ) Ableitung der Wahrscheinlichkeit für einen unabsichtlichen Verbindungsaufbau im Mobilfunk ( Hosentaschenverwähler ) Auftraggeber: PRANG Interim Management & Consulting Fallbeschreibung Eine Studentin fährt

Mehr

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 016

Mehr

Es wird aus einer Urne mit N Kugeln gezogen, die mit den Zahlen 1,..., N durchnummiert sind. (N n)! n! = N! (N n)!n! =

Es wird aus einer Urne mit N Kugeln gezogen, die mit den Zahlen 1,..., N durchnummiert sind. (N n)! n! = N! (N n)!n! = Übungsblatt Höhere Mathematik - Weihenstephan SoSe 00 Michael Höhle, Hannes Petermeier, Cornelia Eder Übung: 5.6.00 Die Aufgaben -3 werden in der Übung am Donnerstag (5.6. besprochen. Die Aufgaben -6 sollen

Mehr

KAPITEL 5. Erwartungswert

KAPITEL 5. Erwartungswert KAPITEL 5 Erwartungswert Wir betrachten einen diskreten Wahrscheinlichkeitsraum (Ω, P) und eine Zufallsvariable X : Ω R auf diesem Wahrscheinlichkeitsraum. Die Grundmenge Ω hat also nur endlich oder abzählbar

Mehr

Trainingsaufgabe WS_02 Mathematik Cusanus-Gymnasium Wittlich Leistungskurse M1/M2 ZIM/LAN

Trainingsaufgabe WS_02 Mathematik Cusanus-Gymnasium Wittlich Leistungskurse M1/M2 ZIM/LAN Mathematik Cusanus-Gymnasium Wittlich Leistungskurse M/M2 ZIM/LA Aufgabe Stochastik Die Glückskreisel I und II werden gedreht. Sie bleiben dabei jeweils auf einer Kante liegen. Die dort notierte Zahl gilt

Mehr

Diese Besonderen Geschäftsbedingungen wurden zuletzt am aktualisiert.

Diese Besonderen Geschäftsbedingungen wurden zuletzt am aktualisiert. Besondere Geschäftsbedingungen für das Produkt Lottowette der Lotto Limited, 28, Jasmine Court, Friars Hill Road, P. O. Box 1767, St. John's, Antigua, W.I. Diese Besonderen Geschäftsbedingungen ergänzen

Mehr

Infos Fakten Gewinntabellen. Mehr Kreuze. Mehr Chancen.

Infos Fakten Gewinntabellen. Mehr Kreuze. Mehr Chancen. Infos Fakten Gewinntabellen Mehr Kreuze. Mehr Chancen. 3 Spielteilnahme ab 18 Jahren. Glücksspiel kann süchtig machen. Rat und Hilfe unter: www.lotto-hessen.de Infotelefon: 0800 13 72 700 (kostenlos und

Mehr

Permutation und Kombination

Permutation und Kombination Permutation und Kombination Aufgaben Aufgabe 1 Wie viele verschiedene Wörter lassen sich durch Umstellen der Buchstaben aus den Wörtern a. Mississippi, b. Larissa, c. Stuttgart, d. Abrakadabra, e. Thorsten,

Mehr

Das Einmaleins des Glücks.

Das Einmaleins des Glücks. Das Einmaleins des Glücks. Sonderteilnahmebedingungen zum Lotto-Systemspiel NÄCHSTE WOCHE DU. Infos zum Lotto-Systemspiel Reich mit System Wie viele Kreuze müssen Sie beim Lotto machen? Sechs, richtig.

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Zahlenoptimierung Herr Clever spielt optimierte Zahlen

Zahlenoptimierung Herr Clever spielt optimierte Zahlen system oder Zahlenoptimierung unabhängig. Keines von beiden wird durch die Wahrscheinlichkeit bevorzugt. An ein gutes System der Zahlenoptimierung ist die Bedingung geknüpft, dass bei geringstmöglichem

Mehr

Systembroschüre für das LOTTO 6aus49

Systembroschüre für das LOTTO 6aus49 broschüre broschüre für das LOTTO aus Stand: Mai 0 Sehr geehrte Spielteilnehmerin, sehr geehrter Spielteilnehmer! Die Saarland-Sporttoto GmbH bietet seit Jahren bewährte spiele an. Diese Broschüre soll

Mehr

TeilsystemX computeroptimiertes System mit 45 Zahlen in 12 Reihen

TeilsystemX computeroptimiertes System mit 45 Zahlen in 12 Reihen TeilsystemX computeroptimiertes System mit 45 Zahlen in 12 Reihen Inhaltsverzeichnis 1. Systemdefinition und Abrollschema 1.1 Basis-Systemdefinition 1.2 Abrollschema 2. Gewinnwahrscheinlichkeiten/Gewinnplan

Mehr

Lotto Voll- und Teil-Systeme

Lotto Voll- und Teil-Systeme Lotto Voll und TeilSysteme Spielteilnahme ab 18 Jahren. Glücksspiel kann süchtig machen. Nähere Informationen unter www.lottorlp.de. Hotline der BZgA: 0800 1 372 700 (kostenlos und anonym). INHALT SystemLotto

Mehr

Level 1 Grundlagen Blatt 2

Level 1 Grundlagen Blatt 2 Level 1 Grundlagen Blatt 2 Dokument mit 1 Aufgaben Aufgabe A9 Ein Glücksrad besteht aus 3 Feldern, die folgendermaßen beschriftet sind: 1.Feld: 2,00 2. Feld: 5,00 3. Feld: 0,00 Das 1. Feld hat einen Mittelpunktswinkel

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben

Mehr

Kombinatorik. Jörn Loviscach. Versionsstand: 31. Oktober 2009, 17:22. 1 Begriff Kombinatorik; Zahl aller Teilmengen

Kombinatorik. Jörn Loviscach. Versionsstand: 31. Oktober 2009, 17:22. 1 Begriff Kombinatorik; Zahl aller Teilmengen Kombinatorik Jörn Loviscach Versionsstand: 31. Oktober 2009, 17:22 1 Begriff Kombinatorik; Zahl aller Teilmengen Die Kombinatorik ein recht kleines Gebiet der Mathematik befasst sich mit dem Abzählen von

Mehr

b) P( Schüler/in ist in Sek I) c) P( Schüler/in ist in Sek II und ein Mädchen)

b) P( Schüler/in ist in Sek I) c) P( Schüler/in ist in Sek II und ein Mädchen) R. Brinkmann http://brinkmann-du.de Seite 1 17.09.2012 Lösungen Relative Häufigkeit, Wahrscheinlichkeit II en: A1 A1 Über die Zusammensetzung der Schülerschaft eines Gymnasiums ist bekannt: In der Sek.

Mehr

TeilsystemX Systemsammlung für Lotterien mit 6 Zahlen pro Tipp

TeilsystemX Systemsammlung für Lotterien mit 6 Zahlen pro Tipp TeilsystemX Systemsammlung für Lotterien mit 6 Zahlen pro Tipp Inhaltsverzeichnis 1. TeilsystemX - Systeme mit optimierter Verteilung... 3 2. Das Abrollschema... 4 3. Systemwahrscheinlichkeit... 6 4. TeilsystemX-System

Mehr

Lotto-system. spiel-erklärung. Sonderteilnahmebedingungen zum LOTTO-Systemspiel.

Lotto-system. spiel-erklärung. Sonderteilnahmebedingungen zum LOTTO-Systemspiel. Lotto-system spiel-erklärung Sonderteilnahmebedingungen zum LOTTO-Systemspiel www.westlotto.de DER WEG ZUM GLÜCK SEIT ÜBER 0 JAHREN Keine Spielteilnahme unter 8 Jahren. Glücksspiel kann süchtig machen!

Mehr

Stochastik (Laplace-Formel)

Stochastik (Laplace-Formel) Stochastik (Laplace-Formel) Übungen Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com August 05 Übungsaufgaben:

Mehr

Beispiele: Beim Zahlenlotto sollte jede Sechserserie von Zahlen mit derselben Wahrscheinlichkeit auftreten.

Beispiele: Beim Zahlenlotto sollte jede Sechserserie von Zahlen mit derselben Wahrscheinlichkeit auftreten. 3. Laplaceexperimente. Beispiele: Beim Zahlenlotto sollte jede Sechserserie von Zahlen mit derselben Wahrscheinlichkeit auftreten. Laplace-Münze: p(k) = p(z) = / Laplace-Würfel: p() =... = p(6) = / 6.

Mehr

( ) ( ) ( ) Mehrstufige Zufallsversuche

( ) ( ) ( ) Mehrstufige Zufallsversuche R. Brinkmann http://brinkmann-du.de Seite 1 19.11.2009 Mehrstufige Zufallsversuche Häufig müssen Zufallsversuche untersucht werden, die aus mehr als einem einzigen Experiment bestehen. Diese Versuche setzen

Mehr

Musterlösung. Abitur Mathematik Bayern G Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Stochastik II

Musterlösung. Abitur Mathematik Bayern G Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Stochastik II Abitur Mathematik: Bayern 2012 Aufgabe 1 a) VIERFELDERTAFEL P(R ) = 88 % und P(V) = 18 % stehen in der Aufgabenstellung. 60 % in der Angabe stehen für die bedingte Wahrscheinlichkeit P R (V). P(R V) =

Mehr

Spielen mit Verantwortung

Spielen mit Verantwortung Spielen mit Verantwortung Herausgeber: Lotto und Toto Mecklenburg-Vorpommern Staatliche Lotterie des Landes Mecklenburg-Vorpommern Erich-Schlesinger-Straße 1809 Rostock Telefon: 081-0-700 Telefax: 081-0-780

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Absolute und relative Häufigkeiten Wenn man mit Reißzwecken würfelt, dann können sie auf den Kopf oder auf die Spitze fallen. Was ist wahrscheinlicher? Ein Versuch schafft Klarheit. Um nicht immer wieder

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Aufgabenstellung und Ergebnisse Dr. Martin Becker Hinweise für die

Mehr

Stochastik - Kapitel 2

Stochastik - Kapitel 2 " k " h(a) n = bezeichnet man als die relative Häufigkeit des Ereignisses A bei n Versuchen. n (Anmerkung: für das kleine h wird in der Literatur häufig auch ein r verwendet) k nennt man die absolute Häufigkeit

Mehr

Aufgabe Punkte

Aufgabe Punkte Institut für Mathematik Freie Universität Berlin Carsten Hartmann, Stefanie Winkelmann Musterlösung für die Nachklausur zur Vorlesung Stochastik I im WiSe 20/202 Name: Matr.-Nr.: Studiengang: Mathematik

Mehr

A B A A A B A C. Übungen zu Frage 110:

A B A A A B A C. Übungen zu Frage 110: Übungen Wahrscheinlichkeit Übungen zu Frage : Nr. : Die Abschlussklassen der Linden-Realschule organisieren zugunsten eines sozialen Projekts eine Tombola. Die Tabelle zeigt die Losverteilung und die damit

Mehr

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien R. Brinmann http://brinmann-du.de Seite 4.0.2007 Bestimmen der Wahrscheinlicheiten mithilfe von Zählstrategien Die bisherigen Aufgaben zur Wahrscheinlicheitsrechnung onnten im Wesentlichen mit übersichtlichen

Mehr

BSZ für Bau- und Oberflächentechnik des Landkreises Zwickau Außenstelle Limbach-Oberfrohna STOCHASTIK

BSZ für Bau- und Oberflächentechnik des Landkreises Zwickau Außenstelle Limbach-Oberfrohna STOCHASTIK . Ordnen Sie die in den folgenden Bildern dargestellten Wahrscheinlichkeitsfunktionen nach den Erwartungswerten ihrer Zufallsgröße X mit x, 2,, 4, 5 größten Erwartungswert. i. Beginnen Sie mit dem Bild

Mehr

Population und Stichprobe Wahrscheinlichkeitstheorie II

Population und Stichprobe Wahrscheinlichkeitstheorie II Population und Stichprobe Wahrscheinlichkeitstheorie II 5. Sitzung 1 S. Peter Schmidt 2003 1 Stichprobenziehung als Zufallsexperiment Definition Stichprobe: Teilmenge der Elemente der Grundgesamtheit bzw.

Mehr

Lotto-Millionär in 6 Wochen

Lotto-Millionär in 6 Wochen Marcus Pentzek Jia Jia-Pentzek www.lottoziehung.net Lotto-Millionär in 6 Wochen von Marcus Pentzek und Jia Jia-Pentzek Lottomillionär in 6 Wochen - Leseprobe/ 2 Vorwort Den Lotto-Jackpot zu knacken, da

Mehr

Wenn es sich um ein faires Spiel handeln soll, muss der Einsatz 1 betragen (2) Weniger als 3 mal Wappen ( ) 32 (3) Mindestens 1 mal Wappen ( )

Wenn es sich um ein faires Spiel handeln soll, muss der Einsatz 1 betragen (2) Weniger als 3 mal Wappen ( ) 32 (3) Mindestens 1 mal Wappen ( ) R. Brinkmann http://brinkmann-du.de Seite 7.09.0 Lösungen Stochastik vermischt II Ergebnisse: E E E E4 E E6 Ergebnis Wenn es sich um ein faires Spiel handeln soll, muss der Einsatz betragen. Ergebnisse

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.--

Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.-- 1 Ein Würfel wird geworfen. : Fr. 1.-- : Fr. 6.-- Der Spieler hat gewonnen falls eine 6 erscheint. 2 Zwei Würfel werden geworfen. : Fr. 1.-- : Fr. 7.-- Der Spieler hat gewonnen falls die Augensumme gleich

Mehr

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen Vorlesung 3a Der Erwartungswert von diskreten reellwertigen Zufallsvariablen X sei eine Zufallsvariable, deren Zielbereich R (die Menge der reellen Zahlen) (oder eine Teilmenge davon) ist. Es existiere

Mehr

für eine rote Kugel denn von auf den 100% (da rot, rot rot, blau blau, rot blau, blau

für eine rote Kugel denn von auf den 100% (da rot, rot rot, blau blau, rot blau, blau Berechnung von Wahrscheinlichkeiten beim Ziehen mit und ohne Zurücklegenn Ziehen mit Zurücklegenn Wir betrachten folgendes Beispiel: In einer Urne sind 2 rote und 3 blaue Kugeln.. Wenn man hier eine Kugel

Mehr

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Alexander Schwarz www.mathe-aufgaben.com Oktober 205 Aufgabe : In einer Urne befinden sich drei gelbe, eine rote und

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 10/1 13.03.2013 Klausur: Diskrete Strukturen I Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede Aufgabe ein neues Blatt an. Beschreiben Sie

Mehr

1 Begriff Kombinatorik; Zahl aller Teilmengen

1 Begriff Kombinatorik; Zahl aller Teilmengen 6 Kombinatorik Jörn Loviscach Versionsstand: 2. Dezember 2011, 16:25 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.j3l7h.de/videos.html This work

Mehr

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt.

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt. . Mehrstufige Zufallsversuche und Baumdiagramme Entsprechend der Anmerkung in. wollen wir nun auf der Basis von bekannten Wahr- scheinlichkeiten weitere Schlüsse ziehen. Dabei gehen wir immer von einem

Mehr

Wahrscheinlichkeit1 (Laplace)

Wahrscheinlichkeit1 (Laplace) Wahrscheinlichkeit1 (Laplace) Aufgaben A1 In der schriftlichen Abiturarbeit im Fach Mathematik gab es folgende Noten: 3; 4; 3; 2; 3; 1; 5; 5; 4; 3; 3; 2; 1; 4; 2; 5; 4; 2; 4; 3 a) Erstellen Sie eine Häufigkeitstabelle

Mehr

Elemente der Stochastik (SoSe 2016) 6. Übungsblatt

Elemente der Stochastik (SoSe 2016) 6. Übungsblatt Dr. M. Weimar 19.05.2016 Elemente der Stochastik (SoSe 2016 6. Übungsblatt Aufgabe 1 ( Punkte Eine Klausur, die insgesamt von zwölf Kursteilnehmern geschrieben wurde, soll von drei Gutachtern bewertet

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 3. November 2010 1 Kombinatorik Fakultät Binomialkoeffizienten Urnenmodelle 2 Definition Tabellen Fakultät, Beispiel

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

DEMO für Wahrscheinlichkeitsrechnung Erwartungswert u.a. 1. Erwartungswert INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

DEMO für  Wahrscheinlichkeitsrechnung Erwartungswert u.a. 1. Erwartungswert INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Wahrscheinlichkeitsrechnung Erwartungswert u.a.. Erwartungswert. Varianz und Standardabweichung. Spiele bewerten Datei Nr. Stand. April 0 Friedrich W. Buckel DEMO für INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

alte Maturaufgaben zu Stochastik

alte Maturaufgaben zu Stochastik Stochastik 01.02.13 alte Maturaufgaben 1 alte Maturaufgaben zu Stochastik 1 07/08 1. (8 P.) In einer Urne liegen 5 rote, 8 gelbe und 7 blaue Kugeln. Es werden nacheinander drei Kugeln gezogen, wobei die

Mehr

Hypergeometrische Verteilung

Hypergeometrische Verteilung Hypergeometrische Verteilung Aufgaben Aufgabe 1 Eine Firma produziert insgesamt 30 elektronische Bauteile des gleichen Typs. Aus langjähriger Erfahrung weiß man das davon jedes 70te defekt ist. Um die

Mehr

Eine neue Modellierung für benachbarte Zahlen beim Lotto

Eine neue Modellierung für benachbarte Zahlen beim Lotto Eine neue Modellierung für benachbarte Zahlen beim Lotto GERD RIEHL, BARSINGHAUSEN Zusammenfassung: Die Frage, wie wahrscheinlich es ist, dass von den sechs Zahlen einer Lottoziehung mindestens zwei benachbart

Mehr

Wahrscheinlichkeit und Zufall

Wahrscheinlichkeit und Zufall Wahrscheinlichkeit und Zufall Rechnen mit Wahrscheinlichkeiten 16. Juni 2009 Dr. Katja Krüger Universität Paderborn 1 Inhalt Ereignisse i und deren Wahrscheinlichkeit h hk i Laplace-Regel Baumdiagramm

Mehr

Vorkurs Mathematik für Informatiker Kombinatorik --

Vorkurs Mathematik für Informatiker Kombinatorik -- Vorkurs Mathematik für Informatiker -- 10 Kombinatorik -- Thomas Huckle Stefan Zimmer 30.09.2014 1 Urnenmodell In der Kombinatorik interessiert man sich dafür, wie viele Möglichkeiten es für die Ergebnisse

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜBUNG 7.2 - LÖSUNGEN POISSONVERTEILUNG. Fahrzeuge, die eine Brücke passieren Zufallsexperiment: Zeitpunkt des

Mehr

Kombinatorik: Einführung. Vorlesung Mathematische Strukturen. Sommersemester Ziehen aus Urnen. Ziehen aus Urnen

Kombinatorik: Einführung. Vorlesung Mathematische Strukturen. Sommersemester Ziehen aus Urnen. Ziehen aus Urnen Kombinatorik: Einführung Vorlesung Mathematische Strukturen Sommersemester 04 Prof. Barbara König Übungsleitung: Henning Kerstan Es folgt eine Einführung in die Kombinatorik. Dabei geht es darum, die Elemente

Mehr

Wahlteil Geometrie/Stochastik B 1

Wahlteil Geometrie/Stochastik B 1 Abitur Mathematik: Wahlteil Geometrie/Stochastik B 1 Baden-Württemberg 214 Aufgabe B 1.1 a) 1. SCHRITT: SKIZZE ANFERTIGEN Die Lage der Pyramide im Koordinatensystem ist wie folgt: 2. KOORDINATENGLEICHUNG

Mehr

Zusammenfassung Stochastik

Zusammenfassung Stochastik Zusammenfassung Stochastik Die relative Häufigkeit Ein Experiment, dessen Ausgang nicht vorhersagbar ist, heißt Zufallsexperiment (ZE). Ein Würfel wird 40-mal geworfen, mit folgendem Ergebnis Augenzahl

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsverteilungen 1. Binomialverteilung 1.1 Abzählverfahren 1.2 Urnenmodell Ziehen mit Zurücklegen, Formel von Bernoulli 1.3 Berechnung von Werten 1.4 Erwartungswert und Standardabweichung

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Stochastik Wintersemester 00/0 Klausur vom 09.06.0 Aufgabe (++4=9 Punkte) Bei einer Umfrage wurden n Personen befragt, an wievielen Tagen

Mehr

Mathematik Lösung Klassenarbeit Nr. 2 Klasse 10a

Mathematik Lösung Klassenarbeit Nr. 2 Klasse 10a Der GTR ist erlaubt, wird mitunter wirklich benötigt. Bitte lest die Lösungen in Ruhe durch. Ich hoffe sie sind so ausführlich, dass jeder alle Zwischenschritte versteht. Wenn nicht, meldet Euch bitte.

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 16. November 2017 1/35 Modulare Arithmetik Modulare Arithmetik Definition 3.33 Es sei

Mehr

3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik

3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik 3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten lassen sich häufig durch Abzählen der günstigen und möglichen Fällen lösen. Kompliziertere Fragestellungen bedürfen aber der Verwendung mathematischer

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Was du wissen musst: Die Begriffe Zufallsexperiment, Ereignisse, Gegenereignis, Zufallsvariable und Wahrscheinlichkeit sind dir geläufig. Du kannst mehrstufige Zufallsversuche

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Inhaltsverzeichnis: Lösungen zur Vorlesung Statistik Kapitel 4 Seite 1 von 19 Prof. Dr. Karin Melzer, Fakultät Grundlagen

Inhaltsverzeichnis: Lösungen zur Vorlesung Statistik Kapitel 4 Seite 1 von 19 Prof. Dr. Karin Melzer, Fakultät Grundlagen Inhaltsverzeichnis: Aufgabenlösungen zu Kapitel 4 3 Lösung zu Aufgabe 3 Lösung zu Aufgabe 9 3 Lösung zu Aufgabe 30 3 Lösung zu Aufgabe 3 3 Lösung zu Aufgabe 3 3 Lösung zu Aufgabe 33 3 Lösung zu Aufgabe

Mehr

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen.1 Pfadregeln.1.1 Pfadmultiplikationsregel Eine faire Münze und

Mehr

Wie hoch ist der zu erwartende Gewinnausschüttung des Anbieters des Glücksspiels pro Spiel? (Erwartungswert)

Wie hoch ist der zu erwartende Gewinnausschüttung des Anbieters des Glücksspiels pro Spiel? (Erwartungswert) 1. Einheit: Erwartungswert Beispiel 1: Bei einem einfachen Glücksspiel möchte der Anbieter eines Glücksspiels (Zufallsexperiment) wissen, wie groß die Summe ist, die er pro Spiel an den Spieler auszahlen

Mehr

Kurs 2 Stochastik EBBR Vollzeit (1 von 2)

Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 281 Bremen Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Name: Ich 1. 2. 3. 4.. 6. 7. So schätze ich meinen Lernzuwachs ein.

Mehr

Sei X eine auf dem Intervall [2, 6] (stetig) gleichverteilte Zufallsvariable.

Sei X eine auf dem Intervall [2, 6] (stetig) gleichverteilte Zufallsvariable. Aufgabe 1 (5 + 2 + 1 Punkte) Sei X eine auf dem Intervall [2, 6] (stetig) gleichverteilte Zufallsvariable. a) Wie lautet die Verteilungsfunktion von X? Zeichnen Sie diese! 0 x < 2 1 F (x) = x 0.5 2 x 6

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente Universität Basel Wirtschaftswissenschaftliches Zentrum Kombinatorik Dr. Thomas Zehrt Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente 2 Teil 1 Endliche Mengen Eine endliche Menge M ist eine Menge,

Mehr

TeilsystemX computeroptimiertes System mit 49 Zahlen in 24 Reihen

TeilsystemX computeroptimiertes System mit 49 Zahlen in 24 Reihen TeilsystemX computeroptimiertes System mit 49 Zahlen in 24 Reihen Inhaltsverzeichnis 1. Systemdefinition und Abrollschema 1.1 Basis-Systemdefinition 1.2 Abrollschema 2. Gewinnwahrscheinlichkeiten/Gewinnplan

Mehr

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen:

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 Diskrete Verteilungen 1 Kapitel 5: Diskrete Verteilungen A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 0.6 x 0.4 5 x (i) P x (x)

Mehr

Inhaltsverzeichnis Inhaltsverzeichnis Lotto System 3 Vorteile von Lotto System 3

Inhaltsverzeichnis Inhaltsverzeichnis Lotto System 3 Vorteile von Lotto System 3 Systembroschüre Inhaltsverzeichnis Inhaltsverzeichnis Lotto System Vorteile von Lotto System Vollsysteme Systemangebote Vollsystem Vollsysteme VEWSysteme Systemangebote VEWSysteme n VEWSysteme 0 0 Lotto

Mehr

Mathe K2 Stochastik Sj. 16/17

Mathe K2 Stochastik Sj. 16/17 Mathe K2 Stochastik Sj. 16/17 Bernoulli-Kette 1 Galtonbrett 1 Wir lassen eine Kugel auf ein Nagelbrett fallen: Galtonbrett\Galton.exe Zufallsexperiment: Eine Kugel fallen lassen und den Weg notieren. Ein

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 0.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Wir wollen ein Programm schreiben, das die Ziehung der Lottozahlen vornimmt und zu den

Wir wollen ein Programm schreiben, das die Ziehung der Lottozahlen vornimmt und zu den 0 Aufgabe 1: Ziehung der Lottozahlen Wir wollen ein Programm schreiben, das die Ziehung der Lottozahlen vornimmt und zu den Tippscheinen den jeweiligen Gewinnrang bestimmt. Das Problem lat sich untergliedern

Mehr

LOTTO Systemspiel. ab Mai Online-Broschüre. Nur wer mitspielt kann gewinnen. lottohessen

LOTTO Systemspiel. ab Mai Online-Broschüre. Nur wer mitspielt kann gewinnen.  lottohessen LOTTO Systemspiel Online-Broschüre ab Mai 2013 Nur wer mitspielt kann gewinnen. www.lotto-hessen.de lottohessen Inhalt Inhalt LOTTO 6aus49 Normaltipp 2 Die Spielquittung 3 Die LOTTO-Ziehung 4 Die Gewinnauswertung

Mehr

Aufgaben zur Stochastik

Aufgaben zur Stochastik Aufgaben zur Stochastik Wahrscheinlichkeiten über Baumdiagramme und bei Binomialverteilung bestimmen 1) Laura und Xenia gehen auf ein Fest. a) An einem Losestand gibt es 2 Gefäße mit Losen. Im ersten Gefäß

Mehr

Kapitel VII. Punkt- und Intervallschätzung bei Bernoulli-Versuchen

Kapitel VII. Punkt- und Intervallschätzung bei Bernoulli-Versuchen Kapitel VII Punkt- und Intervallschätzung bei Bernoulli-Versuchen Einführungsbeispiel: Jemand wirft einen korrekten Würfel 60 mal. Wie oft etwa wird er die 6 würfeln? Klar: etwa 10 mal, es kann aber auch

Mehr

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus,

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus, V. Stochastik ================================================================== 5.1 Zählprinzip Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein

Mehr

LOTTO. System-Chance. Online-Broschüre. Nur wer mitspielt kann gewinnen. lottohessen

LOTTO. System-Chance. Online-Broschüre. Nur wer mitspielt kann gewinnen.  lottohessen LOTTO System-Chance Online-Broschüre Nur wer mitspielt kann gewinnen. www.lotto-hessen.de lottohessen Inhalt LOTTO System-Chance Unser Produktangebot... 2 LOTTO System-Chance 84... 2 LOTTO System-Chance

Mehr

LOTTO Systemspiel. ab Mai Online-Broschüre. Nur wer mitspielt kann gewinnen. lottohessen

LOTTO Systemspiel. ab Mai Online-Broschüre. Nur wer mitspielt kann gewinnen.  lottohessen LOTTO Systemspiel Online-Broschüre ab Mai 2013 Nur wer mitspielt kann gewinnen. www.lotto-hessen.de lottohessen Inhalt Inhalt LOTTO 6aus49 Normaltipp 2 Die Spielquittung 3 Die LOTTO-Ziehung 4 Die Gewinnauswertung

Mehr

Allgemeine Lottoregeln

Allgemeine Lottoregeln Allgemeine Lottoregeln Spielprinzip 6 aus 49 Ziel des Spiels ist es, 6 Zahlen, die aus einer Zahlenreihe von 1 bis 49 gezogen werden, richtig vorherzusagen. Zu diesem Zweck gibt der Spielteilnehmer Tipps

Mehr

Lösungsskizzen zur Präsenzübung 05

Lösungsskizzen zur Präsenzübung 05 Lösungsskizzen zur Präsenzübung 0 Hilfestellung zur Vorlesung Anwendungen der Mathematik im Wintersemester 201/2016 Fakultät für Mathematik Universität Bielefeld Veröffentlicht am 01. Dezember 201 von:

Mehr

Elemente der Stochastik (SoSe 2016) 7. Übungsblatt

Elemente der Stochastik (SoSe 2016) 7. Übungsblatt Dr. M. Weimar 23.05.2016 Elemente der Stochastik (SoSe 2016 7. Übungsblatt Aufgabe 1 (1+1+13 Punkte Maria, Joseph und Hannes gehen zusammen mit drei weiteren Personen zur Nikolausparty ihres Tischtennisclubs.

Mehr