Wenn es sich um ein faires Spiel handeln soll, muss der Einsatz 1 betragen (2) Weniger als 3 mal Wappen ( ) 32 (3) Mindestens 1 mal Wappen ( )

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Wenn es sich um ein faires Spiel handeln soll, muss der Einsatz 1 betragen (2) Weniger als 3 mal Wappen ( ) 32 (3) Mindestens 1 mal Wappen ( )"

Transkript

1 R. Brinkmann Seite Lösungen Stochastik vermischt II Ergebnisse: E E E E4 E E6 Ergebnis Wenn es sich um ein faires Spiel handeln soll, muss der Einsatz betragen. Ergebnisse a) k P( X = k) b) () Höchstens mal Wappen ( ) 6 P X = = 0,8 () Weniger als mal Wappen ( ) 6 P X < = = 0, () Mindestens mal Wappen ( ) P X = = 0,9687 (4) Mehr als einmal Wappen ( ) 6 P X > = = 0,8 Ergebnis Die Wahrscheinlichkeit für die Anzahl der Erfolge im Intervall [ 0 ; 80 ] beträgt etwa 8,8%. Ergebnis Die Wahrscheinlichkeit für die Anzahl der Erfolge im Intervall [ 80 ; 6 ] beträgt etwa 90%. Ergebnisse a) Die Wahrscheinlichkeit für weniger als 6 Erfolge ist etwa,4%. b) Die Wahrscheinlichkeit für mehr als 80 Erfolge ist etwa 47,%. Ergebnis Die Wahrscheinlichkeit der Erfolge im Intervall [89 ; 04] ist etwa 7,6%. Die Tabelle der Wahrscheinlichkeiten für Sigma- Umgebungen normalverteilter Zufallsvariablen befindet sich an Ende dieses Dokuments. Erstellt von R. Brinkmann p9_stoch_08_e.doc : Seite von 9

2 R. Brinkmann Seite en: A A Eine Urne enthält eine rote, eine schwarze und eine grüne Kugel. Es wird solange ohne Zurücklegen eine Kugel gezogen, bis eine grüne Kugel erscheint. Wird die grüne Kugel im. Zug gezogen, so ist die Ausspielung. Wird die grüne Kugel im. Zug gezogen, so ist die Ausspielung. Wird die grüne Kugel im. Zug gezogen, so ist die Ausspielung 0. Wie hoch muss der Einsatz sein, damit es sich um ein faires Spiel handelt? Mit Hilfe des dreistufigen Baumdiagramms und der Pfadregel errechnet man die Wahrscheinlichkeiten dafür eine grüne Kugel zu ziehen. Ausspielung / Zug Ergebnisse P X / / / / / / ( g) ( sg );( rg) + = 6 6 ( srg );( rsg) + = Zug. Zug. Zug E( X) = = Der Erwartungswert der Ausspielung ist E(X) =. Wenn es sich um ein faires Spiel handeln soll, muss der Einsatz betragen. Erstellt von R. Brinkmann p9_stoch_08_e.doc : Seite von 9

3 R. Brinkmann Seite A Eine Münze wird mal geworfen und p sei 0,. a) Bestimmen Sie die Wahrscheinlichkeitsverteilung der Zufallsvariablen X: Anzahl der Wappen. b) Mit welcher Wahrscheinlichkeit wirft man () Höchstens mal Wappen? () Weniger als mal Wappen? () Mindestens mal Wappen? (4) Mehr als einmal Wappen? A en a) Das Problem kann als stufiger Bernoulli Versuch betrachtet werden mit n = und p = 0,. Gesucht ist P(X = k) für k = 0,,,, 4, k P X = k ( ) ,0 0 = = = = 4 0,6 = = = = = 4 0 = 0 0 0, = = = = , = = = = = = = 4 0,6 = = = 0 4 0,0 = = = = = 4 A b) () Höchstens mal Wappen bedeutet: P( X ) = = = 0,8 () Weniger als mal Wappen bedeutet: 0 6 P( X < ) = + + = = 0, () Mindestens mal Wappen bedeutet: 0 0 P( X ) = = = 0,9687 (4) Mehr als mal Wappen bedeutet: P( X > ) = = = 0,8 Erstellt von R. Brinkmann p9_stoch_08_e.doc : Seite von 9

4 R. Brinkmann Seite A Gegeben ist ein n- stufiger Bernoulli- Versuch mit n = 00 und p = 0,. Zu bestimmen ist die Wahrscheinlichkeit für die Anzahl der Erfolge im Intervall [ 0 ; 80]. Es soll mit einer Genauigkeit von drei Stellen hinter dem Komma gerechnet werden. A A n = 00 μ = n p = 00 0, = 6 p = 0, σ= n p p = 6 0,67 = 0, 0,4 > ( ) { } ( ) = ( ) *) Intervall ist symmetrisch zum Erwartungswert P0 X 80 P49, X 80, Radius um den Erwartungswert: r = μ 49, = 6 49, =, r, = z =,474 r = z σ,474 σ σ 0, P 0 X 80 = P μ z σ X μ+ z σ = P μ,474 σ X μ+,474 σ z =,474 Tabellenwert: 0,88 P 0 X 80 0,88 8,8% ( ) ( ) ( ) ( ) ( ) Die Wahrscheinlichkeit für die Anzahl der Erfolge im Intervall [ 0 ; 80 ] beträgt etwa 8,8%. ( ) P0 X 80 0,8 8,% Erstellt von R. Brinkmann p9_stoch_08_e.doc : Seite 4 von 9

5 R. Brinkmann Seite A4 Bestimmen Sie die 90%- Umgebung vom Erwartungswert für n = 0 und p = 0,6. A4 n = 0 μ= n p = 0 0,6 = 98 p = 0,6 σ= n p ( p) = 98 0,64 = 6,7,7 > P( μ z σ X μ+ z σ ) = 0,90 Der dazugehörige z- Wert wird aus der Tabelle abgelesen für P = 0,90 z =,64 Umgebungsradius: r = z σ,64 6,7 8,46 μ z σ= 98 8,46 = 79,4 80 μ+ z σ= ,46 = 6,46 6 Das Intervall soll symmetrisch zum Erwartungswert μ= 98 liegen. Wir wählen: P( 80 X 6) Es ist zu prüfen, ob das Intervall { } der Forderung (90%) entspricht. P( 80 X 6) = P( 79, X 6,) r 8, r = 8, = r,64 σ z,64 σ,7 P( 80 X 6) 0,899 Die Wahrscheinlichkeit für die Anzahl der Erfolge im Intervall [ 80 ; 6 ] beträgt etwa 90%. A4 90% 79, , Erstellt von R. Brinkmann p9_stoch_08_e.doc : Seite von 9

6 R. Brinkmann Seite A A Gegeben ist ein n- stufiger Bernoulli- Versuch. Gesucht ist die Wahrscheinlichkeit für die Ergebnisse außerhalb von Umgebungen um den Erwartungswert. n = 00 p = 0,6 bestimmen Sie P X < 6 a) ( ) b) n = 40 p = / bestimmen Sie P( X > 80) a) n = 00 μ= n p = 00 0,6 = 68 p = 0,6 σ= n p ( p) = 68 0, 44 = 7,9 8,98 > Zu bestimmen ist die Wahrscheinlichkeit für das Intervall [0 ; 6]. Aus der Tabelle kann nur die Wahrscheinlichkeit für ein um den Erwartungswert symmetrisches Intervall abgelesen werden, dieses enthält die Werte [ ]. Daran anschließend folgt das Intervall [ ], welches aus Symmetriegründen die gleiche Größe wie [0 ; 6] hat. Es gilt folgender Ansatz: [ { } { } { }] P( X < 6) = P( X 6) = P( 6, X 74,) r 6, Radius : r = 68 6, = 6, = z = 0,76 r 0,76 σ σ 7,9 mit z 0,76 wird P( 6, X 74,) = P( μ z σ X μ+ z σ) 0, und damit wird P( X < 6) [ 0,] = 0,447 = 0, Die Wahrscheinlichkeit für weniger als 6 Erfolge ist etwa,4%. A a) P( X < 6) 0,4 =, 4% 6 Erstellt von R. Brinkmann p9_stoch_08_e.doc : Seite 6 von 9

7 R. Brinkmann Seite A A b) b) n = 40 μ= np = 40 = 80 p = 60 σ= np ( p) = 80 = 7,0> { }{ 79, , }{ } P( X > 80) = P( 79, X 80,) r 0, Radius : r = 80 79, = 0, = z = 0,068 r 0,07 σ σ 60 mit z 0,07 wird P79, ( X 80, ) = P( μ z σ X μ+ z σ) 0,06 und damit wird P ( X > 80) 0, ( 0,06) = 0, 0,944 0, 47 Die Wahrscheinlichkeit für mehr als 80 Erfolge ist etwa 47,%. P( X > 80) 0, 47 = 47,% 8 Erstellt von R. Brinkmann p9_stoch_08_e.doc : Seite 7 von 9

8 R. Brinkmann Seite A6 Bestimmen Sie die Wahrscheinlichkeit einer nicht symmetrischen Umgebung vom Erwartungswert. n = 80, p = 0,, Intervall: [ ]. A6 A6 n = 80 μ = np = 800, = 99 p = 0, σ= n p p = 99 0,4 = 44, 6,67 > ( ) ( ) { }{ }{ } ( ) = P89 ( X ) + P( 94 X 04) bestimmen Sie P 89 X 04 Ansatz: P 89 X 04 9 P89 ( X 9) = P89 ( X 09) P94 ( X 04) P89 ( X 04) = P 8 9 X 09 P 94 X 04 + P94 X 04 = P ( 89 X 09 ) P ( 94 X 04 ) + P( 89 X 09) = P( 88, X 09,) r 0, r = 0, = z =,7 r,7 σ σ 6,67 P89 ( X 09) 0,884 P94 ( X 04) = P9, ( X 04,) r, r =, = z = 0,8 r 0,8 σ σ 6,67 P94 ( X 04) 0,88 P( 89 X 04) = [ 0, ,88] = 0,76 Die Wahrscheinlichkeit der Erfolge im Intervall [89 ; 04] ist etwa 7,6%. ( ) ( ) ( ) P( 89 X 04) 0,76 = 7,6% Erstellt von R. Brinkmann p9_stoch_08_e.doc : Seite 8 von 9

9 R. Brinkmann Seite Wahrscheinlichkeiten für σ Umgebungen normalverteilter Zufallsvariablen P = P μ z σ X μ+ z σ falls σ > Laplace- Bedingung ( ) z P z P z P z P z P z P 0,0 0,008 0, 0,90,0 0,688, 0,869,0 0,96, 0,988 0,0 0,06 0, 0,97,0 0,69, 0,87,0 0,97, 0,988 0,0 0,04 0, 0,404,0 0,697, 0,874,0 0,98, 0,989 0,04 0,0 0,4 0,4,04 0,70,4 0,876,04 0,99,4 0,989 0,0 0,040 0, 0,48,0 0,706, 0,879,0 0,960, 0,989 0,06 0,048 0,6 0,4,06 0,7,6 0,88,06 0,96,6 0,990 0,07 0,06 0,7 0,4,07 0,7,7 0,884,07 0,96,7 0,990 0,08 0,064 0,8 0,48,08 0,70,8 0,886,08 0,96,8 0,990 0,09 0,07 0,9 0,44,09 0,74,9 0,888,09 0,96,9 0,990 0,0 0,080 0,60 0,4,0 0,79,60 0,890,0 0,964,60 0,99 0, 0,088 0,6 0,48, 0,7,6 0,89, 0,96,6 0,99 0, 0,096 0,6 0,46, 0,77,6 0,89, 0,966,6 0,99 0, 0,0 0,6 0,47, 0,74,6 0,897, 0,967,6 0,99 0,4 0, 0,64 0,478,4 0,746,64 0,899,4 0,968,64 0,99 0, 0,9 0,6 0,484, 0,70,6 0,90, 0,968,6 0,99 0,6 0,7 0,66 0,49,6 0,74,66 0,90,6 0,969,66 0,99 0,7 0, 0,67 0,497,7 0,78,67 0,90,7 0,970,67 0,99 0,8 0,4 0,68 0,0,8 0,76,68 0,907,8 0,97,68 0,99 0,9 0, 0,69 0,0,9 0,766,69 0,909,9 0,97,69 0,99 0,0 0,9 0,70 0,6,0 0,770,70 0,9,0 0,97,70 0,99 0, 0,66 0,7 0,, 0,774,7 0,9, 0,97,7 0,99 0, 0,74 0,7 0,8, 0,778,7 0,9, 0,974,7 0,99 0, 0,8 0,7 0,, 0,78,7 0,96, 0,974,7 0,994 0,4 0,90 0,74 0,4,4 0,78,74 0,98,4 0,97,74 0,994 0, 0,97 0,7 0,47, 0,789,7 0,90, 0,976,7 0,994 0,6 0,0 0,76 0,,6 0,79,76 0,9,6 0,976,76 0,994 0,7 0, 0,77 0,9,7 0,796,77 0,9,7 0,977,77 0,994 0,8 0, 0,78 0,6,8 0,799,78 0,9,8 0,977,78 0,99 0,9 0,8 0,79 0,70,9 0,80,79 0,97,9 0,978,79 0,99 0,0 0,6 0,80 0,76,0 0,806,80 0,98,0 0,979,80 0,99 0, 0,4 0,8 0,8, 0,80,8 0,90, 0,979,8 0,99 0, 0, 0,8 0,88, 0,8,8 0,9, 0,980,8 0,99 0, 0,9 0,8 0,9, 0,86,8 0,9, 0,980,8 0,99 0,4 0,66 0,84 0,99,4 0,80,84 0,94,4 0,98,84 0,99 0, 0,74 0,8 0,60, 0,8,8 0,96, 0,98,8 0,996 0,6 0,8 0,86 0,60,6 0,86,86 0,97,6 0,98,86 0,996 0,7 0,89 0,87 0,66,7 0,89,87 0,99,7 0,98,87 0,996 0,8 0,96 0,88 0,6,8 0,8,88 0,940,8 0,98,88 0,996 0,9 0,0 0,89 0,67,9 0,8,89 0,94,9 0,98,89 0,996 0,40 0, 0,90 0,6,40 0,88,90 0,94,40 0,984,90 0,996 0,4 0,8 0,9 0,67,4 0,84,9 0,944,4 0,984,9 0,996 0,4 0,6 0,9 0,64,4 0,844,9 0,94,4 0,984,9 0,996 0,4 0, 0,9 0,648,4 0,847,9 0,946,4 0,98,9 0,997 0,44 0,40 0,94 0,6,44 0,80,94 0,948,44 0,98,94 0,997 0,4 0,47 0,9 0,68,4 0,8,9 0,949,4 0,986,9 0,997 0,46 0,4 0,96 0,66,46 0,86,96 0,90,46 0,986,96 0,997 0,47 0,6 0,97 0,668,47 0,88,97 0,9,47 0,986,97 0,997 0,48 0,69 0,98 0,67,48 0,86,98 0,9,48 0,987,98 0,997 0,49 0,76 0,99 0,678,49 0,864,99 0,9,49 0,987,99 0,997 0,0 0,8,00 0,68,0 0,866,00 0,94,0 0,988,00 0,997 Erstellt von R. Brinkmann p9_stoch_08_e.doc : Seite 9 von 9

Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung

Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung R. Brinkmann http://brinkmann-du.de Seite 5.05.0 Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung Erwartungswert binomialverteilter Zufallsgrößen Wird ein Bernoulli- Versuch, bei

Mehr

Wahrscheinlichkeit3 Binomialverteilung/Bernoulli-Formel

Wahrscheinlichkeit3 Binomialverteilung/Bernoulli-Formel Wahrscheinlichkeit3 Binomialverteilung/Bernoulli-Formel Aufgaben Lösen Sie A1 und A sowohl mit der Bernoulli-Formel als auch mit dem TR(BV), die anderen Aufgaben lösen sie mit dem TR(BV). A1 Eine Familie

Mehr

S tandardabweichung : σ= n p 1 p = 200 0,24 0,76 6,04

S tandardabweichung : σ= n p 1 p = 200 0,24 0,76 6,04 R. Brinkmann http://brinkmann-du.de Seite 1 19.01.2008 Wahrscheinlichkeiten von Umgebungen Bei einer Binomialverteilung ist der Erwartungswert der mit der größten Wahrscheinlichkeit. In der Umgebung des

Mehr

Approximation der Binomialverteilung durch die Normalverteilung

Approximation der Binomialverteilung durch die Normalverteilung R. Brinkmann http://brinkmann-du.de Seite 4.0.007 Approimation der Binomialverteilung durch die Normalverteilung Histogramme von Binomialverteilungen sind für nicht zu kleine n glockenförmig. Mit größer

Mehr

S tandardabweichung : σ= n p 1 p = 200 0,24 0,76 6,04

S tandardabweichung : σ= n p 1 p = 200 0,24 0,76 6,04 R. Brinkmann http://brinkmann-du.de Seite 1 14.10.2007 Wahrscheinlichkeiten von Umgebungen Bei einer Binomialverteilung ist der Erwartungswert der mit der größten Wahrscheinlichkeit. In der Umgebung des

Mehr

Trainingsaufgabe WS_02 Mathematik Cusanus-Gymnasium Wittlich Leistungskurse M1/M2 ZIM/LAN

Trainingsaufgabe WS_02 Mathematik Cusanus-Gymnasium Wittlich Leistungskurse M1/M2 ZIM/LAN Mathematik Cusanus-Gymnasium Wittlich Leistungskurse M/M2 ZIM/LA Aufgabe Stochastik Die Glückskreisel I und II werden gedreht. Sie bleiben dabei jeweils auf einer Kante liegen. Die dort notierte Zahl gilt

Mehr

Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt, dann erwarten wir im Mittel 8 Treffer.

Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt, dann erwarten wir im Mittel 8 Treffer. R. Brinkmann http://brinkmann-du.de Seite 1 06.1008 Erwartungswert binomialverteilter Zufallsgrößen. Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt,

Mehr

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 016

Mehr

0, t 0,5

0, t 0,5 XIII. Die Normalverteilung ==================================================================. Der lokale Grenzwertsatz --------------------------------------------------------------------------------------------------------------

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

( ) ( ) ( ) Mehrstufige Zufallsversuche

( ) ( ) ( ) Mehrstufige Zufallsversuche R. Brinkmann http://brinkmann-du.de Seite 1 19.11.2009 Mehrstufige Zufallsversuche Häufig müssen Zufallsversuche untersucht werden, die aus mehr als einem einzigen Experiment bestehen. Diese Versuche setzen

Mehr

Abiturvorbereitung Alkoholsünder, bedingte Wahrscheinlichkeit, Hypothesentest Aufgabenblatt

Abiturvorbereitung Alkoholsünder, bedingte Wahrscheinlichkeit, Hypothesentest Aufgabenblatt R. Brinkmann http://brinkmann-du.de Seite 2.05.2009 Abiturvorbereitung Alkoholsünder, bedingte Wahrscheinlichkeit, Hypothesentest Aufgabenblatt Aufgabe 0 0. In einer bestimmten Stadt an einer bestimmten

Mehr

Sigma-Umgebung. Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5. n = 20 p = 0,75

Sigma-Umgebung. Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5. n = 20 p = 0,75 Sigma-Umgebung Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5 0,2 (z.b. 30-maliges Werfen einer Münze, X Anzahl von Zahl ) 5 10 15 20 n = 20 p = 0,75 0,2 5 10 15 20 Der Erwartungswert

Mehr

Basistext - Wahrscheinlichkeitsrechnung

Basistext - Wahrscheinlichkeitsrechnung Basistext - Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung beschäftigt sich mit Vorgängen, die in ihrem Ausgang unbestimmt sind. Sie versucht mögliche Ergebnisse der Vorgänge zu quantifizieren.

Mehr

Casio fx-cg20 Binomialverteilung, Intervallwahrscheinlichkeit, Normalverteilung und Grenzen

Casio fx-cg20 Binomialverteilung, Intervallwahrscheinlichkeit, Normalverteilung und Grenzen R. Brinkmann http://brinkmann-du.de Seite.0.04 Casio fx-cg0 Binomialverteilung, Intervallwahrscheinlichkeit, Normalverteilung und Grenzen Intervallwahrscheinlichkeit Ein n-stufiger Bernoulli-Versuch mit

Mehr

M13 Übungsaufgaben / pl

M13 Übungsaufgaben / pl Die Histogramme von Binomialverteilungen werden bei wachsendem Stichprobenumfang n immer flacher und breiter. Dem Maximum einer solchen Verteilung kommt daher keine allzu große Wahrscheinlichkeit zu. Vielmehr

Mehr

Stochastik: Erwartungswert Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 10 Alexander Schwarz

Stochastik: Erwartungswert Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 10 Alexander Schwarz Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 0 Alexander Schwarz www.mathe-aufgaben.com November 20 Aufgabe : Ein Glücksrad besteht aus Feldern, die folgendermaßen beschriftet sind:.feld:

Mehr

Lernkarten. Stochastik. 4 Seiten

Lernkarten. Stochastik. 4 Seiten Lernkarten Stochastik 4 Seiten Zum Ausdrucken muss man jeweils eine Vorderseite drucken, dann das Blatt wenden, nochmals einlegen und die Rückseite drucken. Am besten druckt man die Karten auf festem Papier

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinmann http://brinmann-du.de Seite 9.. Bernoulli Versuche und die Binomialverteilung Viele Zufallsexperimente önnen als xperimente mit zwei rgebnissen interpretiert werden, wie z.b. ünzwurf mit den

Mehr

Übungsblatt 9 (25. bis 29. Juni)

Übungsblatt 9 (25. bis 29. Juni) Statistik 2 Dr. Andrea Beccarini Dipl.-Vw. Dipl.-Kffr. Heike Bornewasser-Hermes Sommersemester 2012 Übungsblatt 9 (25. bis 29. Juni) Stetiges Verteilungsmodell und Gemeinsame Verteilung Stetiges Verteilungsmodell

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Hypothesentest, ein einfacher Zugang mit Würfeln

Hypothesentest, ein einfacher Zugang mit Würfeln R. Brinkmann http://brinkmann-du.de Seite 4..4 ypothesentest, ein einfacher Zugang mit Würfeln Von einem Laplace- Würfel ist bekannt, dass bei einmaligem Wurf jede einzelne der Zahlen mit der Wahrscheinlichkeit

Mehr

Grundlagen der Stochastik

Grundlagen der Stochastik Grundlagen der Stochastik Johannes Recker / Sep. 2015, überarbeitet Nov. 2015 Fehlermeldungen oder Kommentare an recker@sbshh.de Inhalt 1. Grundlegende Begriffe der Wahrscheinlichkeitsrechnung... 2 1.1.

Mehr

Aufgaben zur Stochastik

Aufgaben zur Stochastik Aufgaben zur Stochastik Wahrscheinlichkeiten über Baumdiagramme und bei Binomialverteilung bestimmen 1) Laura und Xenia gehen auf ein Fest. a) An einem Losestand gibt es 2 Gefäße mit Losen. Im ersten Gefäß

Mehr

Musterlösung. Abitur Mathematik Bayern G Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Stochastik II

Musterlösung. Abitur Mathematik Bayern G Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Stochastik II Abitur Mathematik: Bayern 2012 Aufgabe 1 a) VIERFELDERTAFEL P(R ) = 88 % und P(V) = 18 % stehen in der Aufgabenstellung. 60 % in der Angabe stehen für die bedingte Wahrscheinlichkeit P R (V). P(R V) =

Mehr

5. KLASSENARBEIT MATHEMATIK G9A

5. KLASSENARBEIT MATHEMATIK G9A 5. KLASSENARBEIT MATHEMATIK G9A 11.04.2014 Aufgabe 1 2 3 4 5 6 Punkte (max) 2 4 4 8 4 2 Punkte (1) Eine Münze wird dreimal geworfen. Gib zu jedem der folgenden Ereignisse das Gegenereignis an! (a) Man

Mehr

Übungen zu Wahrscheinlichkeitstheorie Judith Kloas, Wolfgang Woess, Jonas Ziefle SS 2016

Übungen zu Wahrscheinlichkeitstheorie Judith Kloas, Wolfgang Woess, Jonas Ziefle SS 2016 Übungen zu Wahrscheinlichkeitstheorie Judith Kloas, Wolfgang Woess, Jonas Ziefle SS 2016 43) [3 Punkte] Sei φ(t) die charakteristische Funktion der Verteilungsfunktion F (x). Zeigen Sie, dass für jedes

Mehr

Aufgabe A1 Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors

Aufgabe A1 Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors Level Grundlagen Blatt Dokument mit Aufgaben Aufgabe A Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors gilt.

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜBUNG 7.2 - LÖSUNGEN POISSONVERTEILUNG. Fahrzeuge, die eine Brücke passieren Zufallsexperiment: Zeitpunkt des

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge der Elementarereignisse

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg 2 R. 06-206 (Persike) R. 06-214 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 7.9. Lösungen zum Hypothesentest II Ausführliche Lösungen: A A Aufgabe Die Firma Schlemmerland behauptet, dass ihre Konkurrenzfirma Billigfood die Gewichtsangabe,

Mehr

Name: 3. MATHEMATIKKLAUSUR

Name: 3. MATHEMATIKKLAUSUR Name: 3. MTHEMTIKKLUSUR 03.04.2003 M3 Mathe 12 K () Bearbeitungszeit: 135 min Seite 1 ufgabe 1: rundlagen der Wahrscheinlichkeitsrechnung a) Seine und B zwei Ereignisse mit den Wahrscheinlichkeiten P()

Mehr

4. Schularbeit/7C/2-stündig Schularbeit. 7C am

4. Schularbeit/7C/2-stündig Schularbeit. 7C am 4. Schularbeit 7C am 24.5.2017 Name: Note: Beispiel-Nr. 1 2 3 4 5 6 7 8 9 10 11 12 AP Teil 1: Teil 2: Punkte Teil 1 (inkl. AP) Punkte Teil 2 Gesamtpunkte Notenschlüssel: 0 7 P von Teil 1 (inkl. Anrechnungspunkte

Mehr

Level 1 Grundlagen Blatt 2

Level 1 Grundlagen Blatt 2 Level 1 Grundlagen Blatt 2 Dokument mit 1 Aufgaben Aufgabe A9 Ein Glücksrad besteht aus 3 Feldern, die folgendermaßen beschriftet sind: 1.Feld: 2,00 2. Feld: 5,00 3. Feld: 0,00 Das 1. Feld hat einen Mittelpunktswinkel

Mehr

alte Maturaufgaben zu Stochastik

alte Maturaufgaben zu Stochastik Stochastik 01.02.13 alte Maturaufgaben 1 alte Maturaufgaben zu Stochastik 1 07/08 1. (8 P.) In einer Urne liegen 5 rote, 8 gelbe und 7 blaue Kugeln. Es werden nacheinander drei Kugeln gezogen, wobei die

Mehr

Vorlesung 4b. Die Varianz

Vorlesung 4b. Die Varianz Vorlesung 4b Die Varianz 1 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ Die Varianz von X ist definiert als Var[X] := E[(X µ) 2 ], die erwartete quadratische Abweichung der Zufallsvariablen

Mehr

Würfel-Aufgabe Bayern LK 2006

Würfel-Aufgabe Bayern LK 2006 Würfel-Aufgabe Bayern LK 2006 Die Firma VEGAS hat ein neues Gesellschaftsspiel entwickelt, bei dem neben Laplace-Würfeln auch spezielle Vegas-Würfel verwendet werden, die sich äußerlich von den Laplace-Würfeln

Mehr

Grundwissen zur Stochastik

Grundwissen zur Stochastik Grundwissen zur Stochastik Inhalt: ABHÄNGIGE EREIGNISSE...2 ABHÄNGIGKEIT UND UNABHÄNGIGKEIT VON ERGEBNISSEN...2 ABHÄNGIGKEIT UND UNABHÄNGIGKEIT VON MERKMALEN IN VIERFELDERTAFELN...2 ABSOLUTE HÄUFIGKEIT...2

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Alexander Schwarz www.mathe-aufgaben.com Oktober 205 Aufgabe : In einer Urne befinden sich drei gelbe, eine rote und

Mehr

1 Stochastische Konvergenz 2

1 Stochastische Konvergenz 2 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

Institut für Stochastik, SoSe K L A U S U R , 8:00-11:00. Aufgabe Punkte erreichte Punkte Korrektur

Institut für Stochastik, SoSe K L A U S U R , 8:00-11:00. Aufgabe Punkte erreichte Punkte Korrektur Institut für Stochastik, SoSe 2014 Mathematische Statistik Paravicini/Heusel 2. K L A U S U R 29.9.2014, 8:00-11:00 Name: Geburtsdatum: Vorname: Matrikelnummer: Übungsgruppe bei: Studiengang & angestrebter

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Marcel Thoms Mathematik Online Herbst 211 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge

Mehr

5 Binomial- und Poissonverteilung

5 Binomial- und Poissonverteilung 45 5 Binomial- und Poissonverteilung In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen d.h. Verteilungen von diskreten Zufallsvariablen): die Binomial- und die Poissonverteilung. 5.1

Mehr

Die Zufallsvariable X zählt die Anzahl der Erfolge bei der Versuchskette. X=0. 0 Versuche Diese Zahlen ( ) (lies "n über k")

Die Zufallsvariable X zählt die Anzahl der Erfolge bei der Versuchskette. X=0. 0 Versuche Diese Zahlen ( ) (lies n über k) LS-57- a) Zeichnen Sie den vollständigen Baum für eine Bernoulli-Kette mit der Länge n. Bestimmen Sie daran die Binomialkoeffizienten ( für r 0,,,,. r ) n Die Zufallsvariable X zählt die Anzahl der Erfolge

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 11 Diskrete Zufallsvariablen 11.1. Wahrscheinlichkeits- und diskret Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsfunktion von X Nimmt abzählbare Anzahl von Ausprägungen an (z.b. Zählvariablen)

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen Vorlesung 3a Der Erwartungswert von diskreten reellwertigen Zufallsvariablen X sei eine Zufallsvariable, deren Zielbereich R (die Menge der reellen Zahlen) (oder eine Teilmenge davon) ist. Es existiere

Mehr

b) P( Schüler/in ist in Sek I) c) P( Schüler/in ist in Sek II und ein Mädchen)

b) P( Schüler/in ist in Sek I) c) P( Schüler/in ist in Sek II und ein Mädchen) R. Brinkmann http://brinkmann-du.de Seite 1 17.09.2012 Lösungen Relative Häufigkeit, Wahrscheinlichkeit II en: A1 A1 Über die Zusammensetzung der Schülerschaft eines Gymnasiums ist bekannt: In der Sek.

Mehr

Gruber, Erfolg im ABI, Pflichtteil. matheskript B STOCHASTIK WAHRSCHEINLICHKEITSRECHNUNG STATISTIK PFLICHTTEIL ÜBUNGEN Klasse.

Gruber, Erfolg im ABI, Pflichtteil. matheskript B STOCHASTIK WAHRSCHEINLICHKEITSRECHNUNG STATISTIK PFLICHTTEIL ÜBUNGEN Klasse. matheskript B STOCHASTIK WAHRSCHEINLICHKEITSRECHNUNG STATISTIK PFLICHTTEIL ÜBUNGEN 12. 13. Klasse Jens Möller INHALTE Baumdiagramme Ziehen mit und ohne Zurücklegen Binomialverteilungen Erwartungswerte

Mehr

9 Erwartungswert, Varianz und Standardabweichung einer Zufallsgröÿe

9 Erwartungswert, Varianz und Standardabweichung einer Zufallsgröÿe Übungsmaterial 9 Erwartungswert, Varianz und Standardabweichung einer Zufallsgröÿe 9. Erwartungswert Fragt man nach dem mittleren Wert einer Zufallsgröÿe X pro Versuch, so berechnet man den Erwartungswert

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 10/1 13.03.2013 Klausur: Diskrete Strukturen I Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede Aufgabe ein neues Blatt an. Beschreiben Sie

Mehr

Hypergeometrische Verteilung

Hypergeometrische Verteilung Hypergeometrische Verteilung Aufgaben Aufgabe 1 Eine Firma produziert insgesamt 30 elektronische Bauteile des gleichen Typs. Aus langjähriger Erfahrung weiß man das davon jedes 70te defekt ist. Um die

Mehr

Kapitel VII. Punkt- und Intervallschätzung bei Bernoulli-Versuchen

Kapitel VII. Punkt- und Intervallschätzung bei Bernoulli-Versuchen Kapitel VII Punkt- und Intervallschätzung bei Bernoulli-Versuchen Einführungsbeispiel: Jemand wirft einen korrekten Würfel 60 mal. Wie oft etwa wird er die 6 würfeln? Klar: etwa 10 mal, es kann aber auch

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments,

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments, . Binomialverteilung ==================================================================.1 Bernoulli-Experimente und Bernoullikette -----------------------------------------------------------------------------------------------------------------

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Beispiel 7.5.1: Es werden drei ideale Münzen geworfen, und der Gewinn sei X := Anzahl von W. In Beispiel 7.4.1 hatten wir dazu eine Wahrscheinlichkeitverteilung ermittelt: X

Mehr

{ } { } Casio fx-cg20 Kombinatorik und Zufallszahlen. x-fakultät (x!) [MENU] 1 [OPTN] [F6] {PROB} Zahl {x!} [EXE] Berechne 7!

{ } { } Casio fx-cg20 Kombinatorik und Zufallszahlen. x-fakultät (x!) [MENU] 1 [OPTN] [F6] {PROB} Zahl {x!} [EXE] Berechne 7! R. Brinkmann http://brinkmann-du.de Seite 1 21.02.2014 Casio fx-cg20 Kombinatorik und Zufallszahlen x-fakultät (x!) {PROB} Zahl {x!} [] Berechne 7! {PROB} 7 {x!} [] (5040) Berechne 49!/(49-6)! 49 x! (

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. R. Brinkmann http://brinkmann-du.de Seite 08..2009 Von der relativen Häufigkeit zur Wahrscheinlichkeit Es werden 20 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 20 Schülern

Mehr

Probearbeit 13.1 Schuljahr 2010/11 Kernfach Mathematik

Probearbeit 13.1 Schuljahr 2010/11 Kernfach Mathematik Aufgabe 3: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein. Machen Sie auch Angaben über die Verteilung der jeweiligen Zufallsvariablen. a) Das unten stehende

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Stochastik. Inhaltsverzeichnis

Stochastik. Inhaltsverzeichnis Stochastik Inhaltsverzeichnis 1. Allgemeine Definition... 2 2. Laplace-Wahrscheinlichkeit... 2 3. Gegenereignis (häufig bei mindestens -Aufgaben)... 3 4. Vereinigung von 2 Ereignissen ( oder -Formulierungen)...

Mehr

11. Approximation der Binomialverteilung durch die Normalverteilung

11. Approximation der Binomialverteilung durch die Normalverteilung 7. Approximation der Binomialverteilung durch die Normalverteilung Die Berechnung der Binomialverteilung ist wegen der Binomialkoeffizienten nicht unproblematisch. Man kann sie deshalb in gewissen Fällen

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 3. Vorlesung - 21.10.2016 Bedingte Wahrscheinlichkeit In einer Urne sind 2 grüne und 3 blaue Kugeln. 2 Kugeln werden ohne Zürücklegen gezogen. Welches ist die Wahrscheinlichkeit, dass : a) man eine grüne

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 20/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt 4 Lösungshinweise (ohne Ganantie auf Fehlerfreiheit. Wenn man beim Roulette auf Rot oder Schwarz setzt, erhält

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Kapitel VII. Einige spezielle stetige Verteilungen

Kapitel VII. Einige spezielle stetige Verteilungen Kapitel VII Einige spezielle stetige Verteilungen D. 7.. (Normalverteilung) Eine stetige Zufallsgröße X sei als normalverteilt bezeichnet, wenn sie folgende Wahrscheinlichkeitsdichte besitzt: µ f ( ; µ,

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber 173 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird die Anordnung von unterschiedlichen Objekten eines Experiments untersucht, so handelt es sich um eine. Möchte man die Anzahl der möglichen

Mehr

Teil A hilfsmittelfreier Teil

Teil A hilfsmittelfreier Teil Klassenarbeit GYM Klasse 0 Seite Datum: Thema: Name: Zeit: Erreichte Punkte: Note: Hilfsmittel: keine Teil A hilfsmittelfreier Teil Aufgabe : (4 Punkte) Entscheide, ob das Zufallsexperiment eine Bernoulli-Kette

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 12.02.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2016

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2016 Prof. Dr. Christoph Karg 5.7.2016 Hochschule Aalen Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik Sommersemester 2016 Name: Unterschrift: Klausurergebnis Aufgabe 1 (15 Punkte) Aufgabe 3

Mehr

Station 1 Das Galtonbrett, Realmodelle

Station 1 Das Galtonbrett, Realmodelle Station 1 Das Galtonbrett, Realmodelle Zeit zur Bearbeitung: 10 Minuten 1.1 Versuch:. Münzwurf mit dem Galtonbrett Betrachtet wird folgendes Zufallsexperiment: Fünf identische Münzen werden zehn-mal geworfen.

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Bühlmann ETH Zürich Winter 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete

Mehr

FF Düsseldorf WS 2007/08 Prof. Dr. Horst Peters. Vorlesung Quantitative Methoden 1B im Studiengang Business Administration (Bachelor) Seite 1 von 6

FF Düsseldorf WS 2007/08 Prof. Dr. Horst Peters. Vorlesung Quantitative Methoden 1B im Studiengang Business Administration (Bachelor) Seite 1 von 6 Vorlesung Quantitative Methoden 1B im Studiengang Business Administration (Bachelor) Seite 1 von 6 (Wahrscheinlichkeitsrechnung, Verteilungen) 1. Eine Illustrierte veranstaltet wöchentlich ein Ratespiel,

Mehr

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung Bernoulli-Kette, und hypergeometrische Verteilung: F. 2. 32 Spielgeräte: Von Wahrscheinlichkeiten bis Die folgende Stationenarbeit dient dazu, die Begriffe der Oberstufenstochastik (Wahrscheinlichkeit;

Mehr

10. Theoretische Verteilungen

10. Theoretische Verteilungen 0. Theoretische Verteilungen 0.. Diskrete theoretische Verteilungen In der deskriptiven Statistik wurden die einfachen Häufigkeiten und die Summenhäufigkeiten von Merkmalsausprägungen ermittelt um ein

Mehr

1 1. Übung. Einleitung. 1.1 Urnenmodelle. 1.2 Beispiele. 1.3 Aufgaben

1 1. Übung. Einleitung. 1.1 Urnenmodelle. 1.2 Beispiele. 1.3 Aufgaben Einleitung Dieses sind die kompletten Präsenzaufgaben, die bei der Übung zur Vorlesung Einführung in die Stochastik im Sommersemester 2007 gerechnet wurden. Bei Rückfragen und Anmerkungen bitte an brune(at)upb.de

Mehr

Zufallsgröße: X : Ω R mit X : ω Anzahl der geworfenen K`s

Zufallsgröße: X : Ω R mit X : ω Anzahl der geworfenen K`s 4. Zufallsgrößen =============================================================== 4.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 23. Dezember 2011 1 Stetige Zufallsvariable, Normalverteilungen Der zentrale Grenzwertsatz und die 3-Sigma Regel

Mehr

Stochastik (Laplace-Formel)

Stochastik (Laplace-Formel) Stochastik (Laplace-Formel) Übungen Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel

Mehr

3. Anwendungen aus der Kombinatorik

3. Anwendungen aus der Kombinatorik 3. Anwendungen aus der Kombinatorik 3.1. Ziehen mit Zurücklegen 1) Würfeln Wie gross ist die Wahrscheinlichkeit für genau 2 Sechser in 7 Würfen? 2) Glücksrad Ein Glücksrad zeigt "1" mit Wahrscheinlichkeit

Mehr

STETIGE VERTEILUNGEN

STETIGE VERTEILUNGEN STETIGE VERTEILUNGEN. Die Näherungsformel von Moivre Laplace Betrachtet man die Binomialverteilungen Bnp für wachsendes n bei konstantem p, so werden die Histogramme einer binomialverteilten Zufallsvariablen

Mehr

BSZ für Bau- und Oberflächentechnik des Landkreises Zwickau Außenstelle Limbach-Oberfrohna STOCHASTIK

BSZ für Bau- und Oberflächentechnik des Landkreises Zwickau Außenstelle Limbach-Oberfrohna STOCHASTIK . Ordnen Sie die in den folgenden Bildern dargestellten Wahrscheinlichkeitsfunktionen nach den Erwartungswerten ihrer Zufallsgröße X mit x, 2,, 4, 5 größten Erwartungswert. i. Beginnen Sie mit dem Bild

Mehr

Die Voraussetzungen aus Klasse 8-10

Die Voraussetzungen aus Klasse 8-10 Die Voraussetzungen aus Klasse 8-10 I. Grundlagen der Wahrscheinlichkeitsrechnung Zusammenstellung der Voraussetzungen: Pfadregel Ereignisse Additionssatz Ge gener eignis A B A B P(A B) = P(A) + P(B) P(A

Mehr

mathphys-online Abiturprüfung Berufliche Oberschule 2014 Mathematik 13 Technik - B II - Lösung

mathphys-online Abiturprüfung Berufliche Oberschule 2014 Mathematik 13 Technik - B II - Lösung Abiturprüfung Berufliche Oberschule 20 Mathematik Technik - B II - Lösung Aufgabe An einer Beruflichen Oberschule besuchen acht Schülerinnen und zehn Schüler die. Jahrgangsstufe in der Ausbildungsrichtung

Mehr

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X.

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X. Fragenkatalog zur Übung Methoden der empirischen Sozialforschung WS 2014/15 Hier finden Sie die denkbaren Fragen zum ersten Teil der Übung. Das bedeutet, dass Sie zu diesem Teil keine anderen Fragen im

Mehr

Stochastik Übungsaufgaben (Taschenrechner erlaubt) Binomialverteilung Oberstufe

Stochastik Übungsaufgaben (Taschenrechner erlaubt) Binomialverteilung Oberstufe Stochastik Übungsaufgaben (Taschenrechner erlaubt) Binomialverteilung Oberstufe Alexander Schwarz www.mathe-aufgaben.com November 2015 1 Aufgabe 1: Ist der Zufallsversuch eine Bernoulli-Kette? Wenn ja,

Mehr