Untersuchungen zur abgeschnittenen Hilbert-Transformation von BMO-Funktionen und VMO-Funktionen

Größe: px
Ab Seite anzeigen:

Download "Untersuchungen zur abgeschnittenen Hilbert-Transformation von BMO-Funktionen und VMO-Funktionen"

Transkript

1 Untersuchungen zur abgeschnittenen Hilbert-Transformation von BMO-Funktionen und VMO-Funktionen Holger Boche Abstract The behaviour of the truncated Hilbert transform for functions of bounded mean oscillation BMO and functions of vanishing mean oscillation VMO is investigated in the paper. t is shown that for VMOfunctions the truncated Hilbert transform is convergent in the BMO-norm to the Hilbert transform. A new characterization of VMO function is also given in the paper. Einleitung und Ergebnisse n der Arbeit wird das Verhalten der abgeschnittenen Hilbert-Transformation für BMO-Funktionen und VMO-Funktionen untersucht. Dazu werden als erstes einige Begriffe eingeführt. Mit L p [,π, p <, wird die Menge aller p-integrierbaren Lebesgue meßbaren Funktionen bezeichnet. Es sei C [,π die Menge aller unendlich oft differenzierbaren -periodischen Funktionen. Der Hardy-Littlewood-Maximaloperator ist durch Mft = sup µ µ fτ dτ Received by the editors December 997. Communicated by F. Bastin. 99 Mathematics Subject Classification : 30D50, 3A0. Key words and phrases : bounded mean oscillation, vanishing mean oscillation, Hilbert transform. Bull. Belg. Math. Soc ,

2 348 H. Boche definiert [], [], [5]. Das Supremum in wird über alle offenen ntervalle mit t gebildet. m weiteren bezeichnen wir mit µe das Lebesguesche Maß der Lebesgue meßbaren Menge E. Für den Hardy-Littlewood Maximaloperator gilt für alle Funktionen f L [,π] [], [], [6] die Abschätzung µ {t [,π Mft >λ} C π λ ft dt. Hierbei ist λ>0 beliebig und C eine von f und λ unabhängige Konstante. nsbesondere haben wir Mft < für fast alle t [,π. Das Poissonsche ntegral einer Funktion f L [,π ist für 0 r< durch ur, t= definiert [7]. Für das Poissonintegral 3 gilt π r fτ dτ 3 r cost τ+r lim ur, t =ft r fast überall in [,π [], [7]. Damit erhält man ebenfalls lim sup ur, t < r fast überall in [,π. Es sei f L [,π und ein festes ntervall. Wir führen die Zahl a f = ft dt 4 µ ein. Wir betrachten nun die Menge aller f L [,π, für welche die Beziehung sup µ µ ft a f dt < 5 gilt. Hierbei wird das Supremum in 5 über alle ntervalle [,π gebildet. Die Menge dieser Funktionen f bezeichnen wir mit BMO bounded mean oscillation [], [6], [5]. Für diese Menge führen wir die Norm f = π ft dt + sup µ µ ft a f dt 6 ein []. Der Raum BMO ist mit dieser Norm ein nicht separabler Banachraum []. Für δ>0betrachten wir weiterhin die Menge der Funktionen f BMO, für die mit M δ f = sup µ δ µ ft a f dt 7

3 Hilbert-Transformation von BMO-Funktionen und VMO-Funktionen 349 die Beziehung lim M δf =0 8 δ 0 gilt. Die Menge dieser Funktionen bezeichnen wir nach [], [4] mit VMOvanishing mean oscillation. Der Raum VMO ist ein abgeschlossener separabler Unterraum von BMO. Er ist der Abschluß der Menge C[,π] der stetigen -periodischen Funktionen in der BMO-Norm. Die BMO-Funktionen und VMO-Funktionen besitzen eine große Bedeutung für die Funktionentheorie [3]. n der Arbeit wird das Verhalten der konjugierten Funktion f untersucht. Diese Funktion wird auch häufig als Hilbert-Transformierte der Funktion f bezeichnet. Hierbei ist für eine Zahl 0 < π die abgeschnittene Hilbert-Transformation H durch H ft = ft + τ tan τ dτ τ π erklärt. Die Funktion f ist durch den fast überall existierenden Grenzwert ft = limh ft 0 definiert. Die Abbildung f = Hf ist ein stetiger linearer Operator vom Raum BMO in den Raum BMO und vom Raum VMO in den Raum VMO. Für eine Funktion f L [,π ist das konjugierte Potential v durch vr, t= π r sint τ fτ r cost τ+r dτ definiert. Das Verhalten des konjugierten Potentials von VMO- bzw. BMO-Funktionen steht in einem engen Zusammenhang dem Verhalten der Hilbert-Transformierten. Die Räume BMO und VMO haben eine ganze Reihe von interessanten Eigenschaften [] [3]. Es werden als nächstes einige wichtige Eigenschaften der BMO- und VMO-Funktionen aufgelistet. Diese Eigenschaften werden im weiteren benötigt. Für einen Beweis der Resultate sei auf [], [6] verwiesen. Für p< existiert eine Konstante A p mit sup µ µ ft a f p dt p A p f. 9 Die Funktion f BMO gehört damit zu jedem Raum L p [,π. Weiterhin gilt für alle f BMO und alle ntervalle die John-Nirenberg-Ungleichung [] λ µ {t : ft a f >λ} µ exp C. 0 f Hierbei ist C eine von f und λ unabhängige Konstante. Weiterhin lassen sich die Räume BMO und VMO durch das Poissonsche ntegral klassifizieren. Es existiert eine Konstante C 3,sodaßfür alle f BMO die Beziehung π sup fτ ur, t r 0 r< r cost τ+r dτ C 3 f

4 350 H. Boche gilt []. st umgekehrt die linke Seite von endlich, so gehört die Funktion f zum Raum BMO. Der Verfasser dankt den Gutachtern für die zahlreichen Hinweise und Verbesserungen. Hauptresultat Als nächstes wird ein Zusammenhang zwischen der abgeschnittenen Hilbert-Transformation H und dem Randverhalten des konjugierten Potentials v angegeben. Satz. Es existiert eine Konstante C 4 derart, daß für alle f BMO die Beziehung H ft v, t C 4 f gilt. Für alle f VMO ist lim 0 Beweis: Es sei f BMO beliebig. Wir haben Mit = ergibt sich max H ft v, t t [,π H ft v, t = + π ft + τ tan τ =0. 3 sinτ dτ cosτ + sinτ ft + τ dτ. 4 cosτ + tan τ sinτ tan τ = cosτ + = sin τ cos τ sin τ cos τ cosτ + = tan τ = q, τ. Für den ersten Ausdruck der rechten Seite von Gleichung 4 erhalten wir, t = = + + π π ft + τq, τ dτ cosτ + ft + τ u, t q, τ dτ.

5 Hilbert-Transformation von BMO-Funktionen und VMO-Funktionen 35 Hierbei haben wir die Tatsache genutzt, daß die Funktion q bezüglich τ ungerade ist. Weiterhin ist für τ <π Das ergibt, t = + C 5 f. tan τ tan + π + π π π Für den zweiten Ausdruck erhalten wir mit die Beziehung, t = = sin π. ft + τ u, t q, τ dτ ft + τ u, t cosτ + dτ ft + τ u, t cosτ + dτ fτ u, t cost τ+ dτ at, = ft + τ dτ sinτ ft + τ cosτ + dτ ft + τ at, sinτ cosτ + dτ.

6 35 H. Boche Es sei <p< und p + q =. Wir erhalten, t = ft + τ at, p p sinτ q q dτ cosτ + dτ ft + τ at, p p dτ sinτ q q cosτ + dτ 0 q sinτ q q cosτ + dτ 0 p A p f = A p f A, q q. Nun ist aber A, q = q q 0 q q q sin q τ cosτ + q dτ q sin 0 cosτ + q dτ < q q + q 0 dτ = q. Damit erhalten wir insgesamt H ft v, t, t +, t C 4 f, womit die erste Aussage des Satzes bewiesen ist. Die Beziehung 3 ist eine unmittelbare Konsequenz aus. Dazu sei δ>0 eine beliebige Zahl. Es existiert eine Funktion φ C [,π derart, daß gilt. Es wird die Funktion v φ r, t = π f φ < δ C 6 r sint τ φτ r cost τ+r dτ betrachtet. Man hat H ft v, t H f φt v, t v φ, t + + H φt v φ, t C 6 f φ + H φt v φ, t < δ + H φt v φ, t. 5

7 Hilbert-Transformation von BMO-Funktionen und VMO-Funktionen 353 Da φ C [,π gilt, hat man ebenfalls φ C [,π [7]. Folglich ist lim max φt H φt =0 0 t [,π und lim max φt v φ, t 0 t [,π Damit existiert eine Zahl 0 > 0 derart, daß =0. max t [,π H φt v φ, t < δ für alle 0 < 0 gilt. Somit hat man für alle 0 < 0 max H ft v, t <δ. t [,π Damit wurde ebenfalls die Beziehung 3 bewiesen. 3 Charakterisierung von VMO-Funktionen n diesem Abschnitt wird eine neue Charakterisierung von VMO-Funktionen angegeben. n der Literatur sind eine ganze Reihe äquivalenter Charakterisierungen bekannt [], [4]. n der Arbeit wurde unter anderem bereits die Tatsache genutzt, daß eine Funktion f genau dann zum Raum VMO gehört, wenn eine Folge stetiger -periodischer Funktionen existiert, welche bezüglich der BMO-Norm gegen die Funktion f konvergiert. Weiterhin gehört eine Funktion f genau dann zum Raum VMO,wennfür das Poissonsche ntegral u der Funktion f die Beziehung lim r f ur, = 0 6 gilt [], [4], [5]. Eine weitere Charakterisierung gibt der folgende Satz an. Satz. Eine Funktion f gehört genau dann zum Raum VMO,wenn gilt. lim 0 f H f = 0 7 Beweis: Es sei H f gegen die Hilbert-Transformierte f in der BMO-Norm konvergent. Für ein festes >0 ist die Funktion H f stetig. Da der Raum VMO die Abschließung der stetigen -periodischen Funktionen bezüglich der BMO-Norm ist, haben wir f VMO. Es ist aber f = f + C mit einer geeigneten Konstanten C. Folglich hat man f VMO. Nun sei f VMO beliebig. Damit haben wir f H f f v, + v, H f.

8 354 H. Boche Da die Funktion f zum Raum VMO gehört, haben wir lim 0 f v, =0. Es sei Mit dem Satz ist a, = µ v, t H ft dt. π v, H f = v, t H ft dt + + sup v, t H ft a, dt µ µ max ft v, t + t [,π + sup v, t H ft dt + µ µ + sup a, µ 3 max ft v, t. t [,π Dies ergibt lim v, H f =0, 8 0 womit der Satz bewiesen ist.

9 Hilbert-Transformation von BMO-Funktionen und VMO-Funktionen 355 Diskussion: Der Satz gibt Aufschluß über das Konvergenzverhalten der abgeschnittenen Hilbert-Transformation von stetigen Funktionen f. Die Hilbert-Transformierte f einer stetigen Funktion muß nicht unbedingt beschränkt sein, womit eine Ersetzung der VMO-Norm durch die Maximum-Norm im Satz nicht möglich ist. Für viele praktische Anwendungen ist es erforderlich, die Hilbert-Transformierte f von stetigen Funktionen f zu berechnen. Dazu können in der Regel nur numerische ntegrationsverfahren angewendet werden. Bei der Durchführung der numerischen ntegration treten jedoch häufig Probleme auf. Die Ursache dieser Probleme liegt darin begründet, daß die Hilbert-Transformation ein singuläres ntegral darstellt. Standardverfahren sind damit nur bedingt einsetzbar. Der Satz gibt in gewisser Hinsicht einen Ausweg aus dieser Situation an. Gemäß Satz kann die Hilbert-Transformierte f einer stetigen Funktion als erstes durch die abgeschnittene Hilbert-Transformation H f approximiert werden. Die abgeschnittene Hilbert-Transformation stellt nun ein reguläres ntegral dar, welches mit den Verfahren der numerischen ntegration ausgewertet werden kann. Für die praktische Anwendung ist es damit interessant, den Approximationsfehler f H f weiter zu untersuchen. Dazu sind weitere Forschungsarbeiten erforderlich.

10 356 H. Boche Literatur [] J.B. Garnett, Bounded Analytic Functions, Pure and applied Mathematics Bd. 96, Academic Press, New York, 98, [] J. Garcia-Cuerva, J. Rubio De Francia, Weighted norm nequalities and related topics, North-Holland Mathematics Studies, New York, 986 [3] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Grundlehren der mathematischen Wissenschaften Bd. 99, Springer Verlag, Berlin Heidelberg New York, 99, [4] D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 07, 975, p [5] E.M. Stein, Harmonic Analysis; Real-Variable Methods, Orthogonality, and Oscillatory ntegrals, Princeton Mathematical Series, 43, Princeton University Press, Princeton, New Jersey, 993 [6] A. Torchinsky, Real-variable methods in Harmonic Analysis, Pure and applied Mathematics Bd. 3, Academic Press, New York, 986, [7] A. Zygmund, Trigonometric Series,, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 990, Heinrich-Hertz-nstitut für Nachrichtentechnik Berlin GmbH, Broadband Mobile Communication Networks, Einsteinufer 37, D-0587 Berlin, Germany and Swiss Federal nstitut of Technology ETH Zurich, Communication Technology Laboratory, ETH-Zentrum, Sternwartstrasse 7, CH-809 Zurich, Switzerland

Universität Ulm Abgabe: Mittwoch,

Universität Ulm Abgabe: Mittwoch, Universität Ulm Abgabe: Mittwoch, 8.5.23 Prof. Dr. W. Arendt Jochen Glück Sommersemester 23 Punktzahl: 36+4* Lösungen Halbgruppen und Evolutionsgleichungen: Blatt 2. Sei X ein Banachraum und (T (t)) t

Mehr

Wie in der reellen Analysis üblich notiert man Folgen f in der Form

Wie in der reellen Analysis üblich notiert man Folgen f in der Form 2.1.3 Folgen und Konvergenz Viele aus der Analysisvorlesung bekannte Begriffe lassen sich in den Bereich der metrischen Räume verallgemeinern. Diese Verallgemeinerung hat sich als sehr nützliches mathematisches

Mehr

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit Vortrag zum Seminar zur Analysis, 10.05.2010 Michael Engeländer, Jonathan Fell Dieser Vortrag stellt als erstes einige Sätze zu Cauchy-Folgen auf allgemeinen metrischen Räumen vor. Speziell wird auch das

Mehr

Periodische Funktionen, Fourier Reihen

Periodische Funktionen, Fourier Reihen Kapitel 1: Periodische Funktionen, Fourier Reihen 1.1 Grundlegende Begriffe Periodische Funktionen Definition: Eine Funktion f : R R oder f : R C) heißt periodisch mit der Periode T, falls für alle t R

Mehr

Singuläre Integrale 1 Grundideen der harmonischen Analysis

Singuläre Integrale 1 Grundideen der harmonischen Analysis Singuläre Integrale Grundideen der harmonischen Analsis Jens Hinrichsen und Annina Saluz November 2007 Motivation Ein tpisches Beispiel für ein singuläres Integral ist die Hilbert-Transformation, welche

Mehr

Musterlösung der 1. Klausur zur Vorlesung

Musterlösung der 1. Klausur zur Vorlesung Prof. Dr. M. Röger Dipl.-Math. C. Zwilling Fakultät für Mathematik TU Dortmund Musterlösung der. Klausur zur Vorlesung Analysis II 6.7.6) Sommersemester 6 Aufgabe. i) Die Folge f n ) n N konvergiert genau

Mehr

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme Optimale Steuerung, Prof.Dr. L. Blank 1 II Linear-quadratische elliptische Steuerungsprobleme Zuerst: Zusammenstellung einiger Begriffe und Aussagen aus der Funktionalanalysis (FA), um dann etwas über

Mehr

L 2 -Theorie und Plancherel-Theorem

L 2 -Theorie und Plancherel-Theorem L -Theorie und Plancherel-Theorem Seminar Grundideen der Harmonischen Analysis bei Porf Dr Michael Struwe HS 007 Vortrag von Manuela Dübendorfer 1 Wiederholung aus der L 1 -Theorie Um die Fourier-Transformation

Mehr

4 Kurven im R n. Sei I R ein beliebiges Intervall (offen, halboffen, abgeschlossen, beschränkt oder unbeschränkt), das mindestens einen Punkt enthält.

4 Kurven im R n. Sei I R ein beliebiges Intervall (offen, halboffen, abgeschlossen, beschränkt oder unbeschränkt), das mindestens einen Punkt enthält. 4 Kurven im R n Sei I R ein beliebiges Intervall (offen, halboffen, abgeschlossen, beschränkt oder unbeschränkt), das mindestens einen Punkt enthält. Definition 4.1. (a) Unter einer Kurve im R n versteht

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Übungen zu Einführung in die Analysis

Übungen zu Einführung in die Analysis Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit Vortrag zum Proseminar zur Analysis, 17.05.2010 Min Ge, Niklas Fischer 1 Überdeckungskompaktheit Einleitung P T Q A R S U B (a) (b) Abbildung 1: Beispiele verschiedener Überdeckungen (1.1) Definition (Überdeckung)

Mehr

A. Die Laplace-Transformation

A. Die Laplace-Transformation A. Die Laplace-Transformation Die Laplace-Transformation ist eine im Wesentlichen eineindeutige Zuordnung von Funktionen der Zeit t zu Funktionen einer komplexen Variablen s. Im Rahmen der einseitigen)

Mehr

8.1. DER RAUM R N ALS BANACHRAUM 17

8.1. DER RAUM R N ALS BANACHRAUM 17 8.1. DER RAUM R N ALS BANACHRAUM 17 Beweis. Natürlich ist d 0 und d(x, y) = 0 genau dann, wenn x = y. Wegen (N2) ist x = x und damit d(x, y) = d(y, x). Die letzte Eigenschaft einer Metrik schließt man

Mehr

Floquet Theorie II. 1 Einführung

Floquet Theorie II. 1 Einführung Vortrag zum Seminar Gewöhnliche Differentialgleichungen, 18.10.2011 Sebastian Monschang 1 Einführung Auf den Ergebnissen des ersten Vortrags basierend werden wir in diesem Vortrag gewöhnliche lineare Differentialgleichungssysteme

Mehr

Serie 5 Lösungsvorschläge

Serie 5 Lösungsvorschläge D-Math Mass und Integral FS 214 Prof. Dr. D. A. Salamon Serie 5 Lösungsvorschläge 1. Finden Sie eine stetige Funktion f : [, ) R, so dass f nicht Lebesgue-integrierbar T ist, jedoch der Grenzwert lim f(t)

Mehr

Beispiel: Die Sägezahnfunktion.

Beispiel: Die Sägezahnfunktion. Beispiel: Die Sägezahnfunktion. Betrachte die Sägezahnfunktion : für t = oder t = π S(t) := 1 (π t) : für < t < π Die Sägezahnfunktion ist ungerade, also gilt (mit ω = 1) a k = und b k = π π und damit

Mehr

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie Tobias Ried. März 2 2 Aufgabe (Messbarkeit der Komposition zweier Abbildungen). Seien (X, A), (Y, B) und (Z, C) Messräume und f : (X,

Mehr

FESTSTELLUNGSPRÜFUNG in HM2

FESTSTELLUNGSPRÜFUNG in HM2 FESTSTELLUNGSPRÜFUNG in HM2 FDIBA - TU, WS 27/8 INFORMATIK Name: Immatrikulationsnummer: Aufgabe : Zu lösen sei, durch Anwendung der Transformation von Laplace, das Anfangswertproblem 9P. u () (t) u(t)

Mehr

Zusammenfassung Analysis 2

Zusammenfassung Analysis 2 Zusammenfassung Analysis 2 1.2 Metrische Räume Die Grundlage metrischer Räume bildet der Begriff des Abstandes (Metrik). Definition 1.1 Ein metrischer Raum ist ein Paar (X, d), bestehend aus einer Menge

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

Wahrscheinlichkeit & Statistik Musterlösung Serie 7

Wahrscheinlichkeit & Statistik Musterlösung Serie 7 ETH Zürich FS 4 D-MATH Koordinator Prof. Dr. J. Teichmann Mayra Bermúdez C. Wahrscheinlichkeit & Statistik Musterlösung Serie 7. a) P[t < T t + h T > t] λ(t) lim h h P[{t < T t + h} {T > t}] lim h P[T

Mehr

10 Der Satz von Radon-Nikodym

10 Der Satz von Radon-Nikodym uch im Sinne einer Vorabinformation vor der Stochastik-Vorlesung wollen wir abschließend kurz absolut stetige Maße und den Satz von Radon-Nikodym streifen. Definition 10.1. Seien (, M) ein messbarer Raum

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Prof. Dr. Guido Sweers WS 28/29 Jan Gerdung, M.Sc. Gewöhnliche Dierentialgleichungen Übungsblatt 6 Die Lösungen müssen in den Übungsbriefkasten Gewöhnliche Dierentialgleichungen Raum 3 im MI) geworfen

Mehr

Liste wichtiger Stammfunktionen

Liste wichtiger Stammfunktionen Liste wichtiger Stammfunktionen Funktion Stammfunktion x n, x ln(x) n R \ { } n + xn+ ln( x ) x ln(x) x a x, a > sin(x) cos(x) sin 2 (x) cos 2 (x) x 2 x 2 a x ln(a) cos(x) sin(x) (x sin(x) cos(x)) 2 (x

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Merkblatt zur Funktionalanalysis

Merkblatt zur Funktionalanalysis Merkblatt zur Funktionalanalysis Literatur: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen.

Mehr

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit Vortrag zum Proseminar zur Analysis, 17.05.2010 Min Ge, Niklas Fischer In diesem Vortrag werden die Eigenschaften von kompakten, metrischen Räumen vertieft. Unser Ziel ist es Techniken zu erlernen, um

Mehr

Exkurs: Method of multiple scales (Mehrskalen Methode)

Exkurs: Method of multiple scales (Mehrskalen Methode) Exkurs: Method of multiple scales (Mehrskalen Methode) dr. karin mora* Im folgenden betrachten wir nichtlineare dynamische Systeme (NDS) mit sogenannten kleinen nichtlinearen Termen. Viele mathematische

Mehr

10 Der Satz von Fubini

10 Der Satz von Fubini er Satz von Fubini ie Bezeichnungen seien wie in den Paragraphen 8 und 9. Satz. (Satz von Tonelli Es sei f : d [, + ] messbar. (Aus 8 folgt dann, dass f, f y messbar sind, wobei klar ist, dass f, f y sind.

Mehr

12.1 Kurven und Parametertransformationen. Wir untersuchen in diesem Abschnitt so genannte Kurven, die in der nachstehenden Definition

12.1 Kurven und Parametertransformationen. Wir untersuchen in diesem Abschnitt so genannte Kurven, die in der nachstehenden Definition Kapitel 1 Kurven im R n 1.1 Kurven und Parametertransformationen 1. Funktionen von beschränkter Schwankung 1.3 Die Bogenlänge von Kurven 1.4 Parametrisierung nach der Bogenlänge 1.1 Kurven und Parametertransformationen

Mehr

Aufgabensammlung zur Analysis 1

Aufgabensammlung zur Analysis 1 Analysis 1 18.12.2017 Prof. Dr. H. Koch Dr. F. Gmeineder Abgabe: Keine Abgabe. Aufgabensammlung zur Analysis 1 Anmerkungen: Das vorliegende Blatt enthält eine Auswahl von Aufgaben, die auf Klausuren zur

Mehr

Lösungen zu Übungsblatt 9

Lösungen zu Übungsblatt 9 Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da

Mehr

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C. Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines

Mehr

Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 27. Oktober Musterlösung 5

Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 27. Oktober Musterlösung 5 Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 27. Oktober 2009 Musterlösung 5 1. Sei f : C C eine holomorphe Funktion, so dass f(z) < z n für ein n N und alle hinreichend grossen z. Dann ist

Mehr

Analysis I. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching March 5, 07 Erinnerung (Euler Formel). e iϕ = cos ϕ + i sin ϕ. Die Polarform von z = x + iy C sei Euler Formel z

Mehr

Übungsblatt 5 zur Vorlesung Wahrscheinlichkeitstheorie

Übungsblatt 5 zur Vorlesung Wahrscheinlichkeitstheorie Dr. Christoph Luchsinger Übungsblatt 5 zur Vorlesung Wahrscheinlichkeitstheorie Allgemeine Masse Herausgabe des Übungsblattes: Woche 13, Abgabe der Lösungen: Woche 14 (bis Freitag, 16.15 Uhr), Besprechung:

Mehr

Lösungen zu Übungsblatt 1

Lösungen zu Übungsblatt 1 Vorlesung Geometrie für Lehramt Gymnasium, Wintersemester 4/5 Lösungen zu Übungsblatt Aufgabe. ( Punkte Beweisen Sie: Jeder reguläre Weg besitzt eine orientierungsumkehrende Parametrisierung nach der Bogenlänge.

Mehr

Symmetrische Ableitungen von Massen

Symmetrische Ableitungen von Massen Symmetrische Ableitungen von Massen Hyuksung Kwon 5. Juni 203 Inhaltsverzeichnis Einführung 2 Hardy-Littlewood Maximaloperator 2 3 Symmetrische Ableitung vom positiven Maß 7 Einführung Definition. (Borelmaß

Mehr

2.3 Eigenschaften linearer Operatoren

2.3 Eigenschaften linearer Operatoren 2.3. LINEARE OPERATOREN 47 2.3 Eigenschaften linearer Operatoren Es seien V, W normierte Räume. Die Elemente von L(V ; W ) werden oft als lineare Operatoren bezeichnet. Wir hatten gesehen, dass die Stetigkeit

Mehr

Von Skalarprodukten induzierte Normen

Von Skalarprodukten induzierte Normen Von Skalarprodukten induzierte Normen Niklas Angleitner 4. Dezember 2011 Sei ein Skalarproduktraum X,, gegeben, daher ein Vektorraum X über C bzw. R mit einer positiv definiten Sesquilinearform,. Wie aus

Mehr

3.3 Das Abtasttheorem

3.3 Das Abtasttheorem 17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann

Mehr

Von-Neumann-Algebren

Von-Neumann-Algebren Seminarvortrag Von-Neumann-Algebren Eine kurze Einführung Benedikt Plitt 2. Juli 2004 Es werden die wichtigsten Tatsachen über Von-Neumann-Algebren zusammengestellt und einige speziellere Ergebnisse präsentiert,

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

Analysis I. 1. Beispielklausur mit Lösungen

Analysis I. 1. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Das Bild einer Abbildung F: L M. (2) Eine Cauchy-Folge

Mehr

Analysis 3. Weihnachtsblatt Prof. Dr. H. Koch Dr. F. Gmeineder Besprechung: TBC, Januar Aufgabe 1: (Besonders prüfungsrelevant)

Analysis 3. Weihnachtsblatt Prof. Dr. H. Koch Dr. F. Gmeineder Besprechung: TBC, Januar Aufgabe 1: (Besonders prüfungsrelevant) Analysis 3 04.12.2018 Prof. Dr. H. och Dr. F. Gmeineder Besprechung: TBC, Januar 2019 Weihnachtsblatt Aufgabe 1: (Besonders prüfungsrelevant) Aufgabe 2: Sei Ω eine Menge und Σ eine σ-algebra auf Ω. Seien

Mehr

Zwischenprüfung, Gruppe A Analysis I/II. Bestimmen Sie bei jeder der folgenden Aussagen, ob sie wahr oder falsch ist. ist eine Nullfolge.

Zwischenprüfung, Gruppe A Analysis I/II. Bestimmen Sie bei jeder der folgenden Aussagen, ob sie wahr oder falsch ist. ist eine Nullfolge. Multiple Choice. Die folgenden acht Aufgaben sind Multiple Choice-Aufgaben. Bei jeder Aufgabe gibt es 4 Aussagen, die wahr oder falsch sind. Für 4 korrekte Antworten gibt es 4 Punkte, für 3 korrekte Antworten

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

Regulär variierende Funktionen

Regulär variierende Funktionen KAPITEL 4 Regulär variierende Funktionen Unser nächstes Ziel ist es, die Max-Anziehungsbereiche der Extremwertverteilungen zu beschreiben. Dies wird im nächsten Kapitel geschehen. Wir haben bereits gesehen,

Mehr

2.6 Der Satz von Fubini

2.6 Der Satz von Fubini 1 2.6 Der Satz von Fubini Unser Ziel ist der Beweis des folgenden Ergebnisses. 6.1. Satz von Fubini Sei f : R n+m R integrierbar. Dann gibt es eine Nullmenge N R m, so dass gilt: 1. Für alle y R m \ N

Mehr

Höhere Funktionalanalysis WS2016/17 Übungsblatt

Höhere Funktionalanalysis WS2016/17 Übungsblatt Höhere Funktionalanalysis WS2016/17 Übungsblatt 1 11.10.2016 Aufgabe 1. Berechne die Normen der Operatoren (a) f L [0, 1], M f : L 2 [0, 1] L 2 [0, 1], (M f g)(x) = f(x)g(x). (b) g C[0, 1], T g : C[0,

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Definition: Sei M R, alsom

Mehr

ϕ k (t)ψ j (s) 2 ds)dt < folgt ϕ k (t)ψ j (s) δ j1,j 2 und daher handelt es sich um ein Orthonormalsystem in L 2 (Ω 1 Ω 2 ).

ϕ k (t)ψ j (s) 2 ds)dt < folgt ϕ k (t)ψ j (s) δ j1,j 2 und daher handelt es sich um ein Orthonormalsystem in L 2 (Ω 1 Ω 2 ). 1) a) Wir wollen zeigen, dass {ϕ k (t)ψ j (s)} j,k N0 eine Orthonormalbasis ist. Beachte dabei zunächst, dass (t, s) ϕ k (t)ψ j (s) für alle j, k N 0 messbare Abbildungen auf Ω 1 Ω 2 sind und da Ω 1 ϕ

Mehr

i j m f(y )h i h j h m

i j m f(y )h i h j h m 10 HÖHERE ABLEITUNGEN UND ANWENDUNGEN 56 Speziell für k = 2 ist also f(x 0 + H) = f(x 0 ) + f(x 0 ), H + 1 2 i j f(x 0 )h i h j + R(X 0 ; H) mit R(X 0 ; H) = 1 6 i,j,m=1 i j m f(y )h i h j h m und passendem

Mehr

Übungen zu Analysis, SS 2015

Übungen zu Analysis, SS 2015 Übungen zu Analysis, SS 215 Ulisse Stefanelli 15. Juni 215 1 Wiederholung 1. Untersuchen Sie das Verhalten der folgenden Folgen a n = n 2 cosh(1/n), b n = ln(ln(n))/n, c n = (2 n n 2 )/n!, 2. Stellen Sie

Mehr

Partielle Differentialgleichungen Kapitel 7

Partielle Differentialgleichungen Kapitel 7 Partielle Differentialgleichungen Kapitel 7 Intermezzo zu Distributionen Die Physik hat der Mathematik die Dirac-δ-Funktion gebracht. Diese δ-funktion soll folgende Eigenschaften haben: n δ (x ϕ (x dx

Mehr

Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden.

Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am 20.6.2015 um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Prof. Dr. Wolfgang Arendt Manuel Bernhard Sommersemester 2015 Achten

Mehr

11 Fourier-Analysis Grundlegende Begriffe

11 Fourier-Analysis Grundlegende Begriffe 11 Fourier-Analysis 11.1 Grundlegende Begriffe Definition: Eine Funktion f : R R (oder f : R C) heißt periodisch mit der Periode T (oder T-periodisch), falls f(t + T) = f(t) für alle t R. Ziel: Entwicklung

Mehr

Schwartz Raum und gemässigte Distributionen

Schwartz Raum und gemässigte Distributionen 1 ETH Zürich (Pro)Seminar: Grundideen der Harmonischen Analysis Schwartz Raum und gemässigte Distributionen David Bernhardsgrütter und David Umbricht 18 Dezember 2007 Schwartz Raum und gemässigte Distributionen

Mehr

Beispiele. Grundlagen. Kompakte Operatoren. Regularisierungsoperatoren

Beispiele. Grundlagen. Kompakte Operatoren. Regularisierungsoperatoren Beispiele Grundlagen Kompakte Operatoren Regularisierungsoperatoren Transportgleichung Dierenzieren ( nx ) (f δ n ) (x) = f (x) + n cos, x [0, 1], δ Regularisierung!! Inverse Wärmeleitung Durc f (f δ n

Mehr

D-MATH Funktionalanalysis II FS 2014 Prof. M. Struwe. Lösung 2

D-MATH Funktionalanalysis II FS 2014 Prof. M. Struwe. Lösung 2 D-MATH Funktionalanalysis FS 214 Prof. M. Struwe Lösung 2 1. a) Wir unterscheiden zwei Fälle. Fall 1: 1 < p < : Seien u L p () und (u k ) W 1,p () eine beschränkte Folge, so dass u k u in L p () für k.

Mehr

53 Die Parsevalsche Gleichung

53 Die Parsevalsche Gleichung 53 Die Parsevalsche Gleichung 53 Die Parsevalsche Gleichung 5 53. Skalarprodukte auf Räumen quadratintegrierbarer Funktionen. a) Die Orthogonalitätsrelationen (5.5) legen die Interpretation des Ausdrucks

Mehr

tun, sondern nur mit der Reaktion auf verschiedene Anfangswerte.

tun, sondern nur mit der Reaktion auf verschiedene Anfangswerte. 2.3 Stabilität Eine wichtige Rolle spielt das Stabilitätsverhalten dynamischer Systeme. Wie üblich sei Φ die Fundamentalmatrix des linearen Systems ẋ = A(t)x + u. Im weiteren sei t fixiert, später wird

Mehr

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen

Mehr

Seminar: Integralgleichungen (WS 06/07)

Seminar: Integralgleichungen (WS 06/07) Seminar: Integralgleichungen (WS 06/07) Numerische Behandlung der Fredholmschen Integralgleichung - Teil 1 Melanie Seifried Erik Ivar Fredholm (1866-1927) Schwedischer Mathematiker, der große Beiträge

Mehr

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2.

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2. 1. Aufgabe 8 Punkte Geben Sie die Bereiche, auf denen die Funktion f : R R mit f (x) = (x + 1) e x monoton wachsend oder fallend ist, an, und untersuchen Sie die Funktion auf lokale und globale Extrema.

Mehr

Lösungsvorschlag zur Klausur

Lösungsvorschlag zur Klausur FAKULTÄT FÜ MATHEMATIK Prof. Dr. Patrizio Neff Frank Osterbrink Johannes Lankeit 27.7.23 Lösungsvorschlag zur Klausur Hinweise zur Bearbeitung: - Die Bearbeitungszeit für die Klausur beträgt 8 Minuten.

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010 Bericht zur Mathematischen Zulassungsprüfung im Mai 2 Heinz-Willi Goelden, Wolfgang Lauf, Martin Pohl Am 5. Mai 2 fand die Mathematische Zulassungsprüfung statt. Die Prüfung bestand aus einer 9-minütigen

Mehr

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1.

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1. Lösungen Klausur Aufgabe (3 Punkte) Zeigen Sie, dass n k k (n + ) n k für alle n N. IA: Für n ist k kk 2 2. IV: Es gilt n k kk (n + ) n für ein n N. IS: Wir haben n+ k k k n k k + (n + ) n+ k IV (n + )

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und en Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 2008/2009 Übung 6 Einleitung Eventuell auftretende Fragen zum Übungsblatt sollen beantwortet werden. Dazu ist es erforderlich,

Mehr

D-ITET Analysis II FS 13 Prof. Horst Knörrer. Musterlösung 1. 3xy 2 = 2 x 2. y y. 3 y y. 3 x v x + v = 2 3 v v.

D-ITET Analysis II FS 13 Prof. Horst Knörrer. Musterlösung 1. 3xy 2 = 2 x 2. y y. 3 y y. 3 x v x + v = 2 3 v v. D-ITET Analysis II FS 3 Prof. Horst Knörrer Musterlösung. a) Es gilt: dy d 3 + y 3 3y 3 y + y 3. Dies ist eine homogene Differentialgleichung, das heisst y hängt nur von y ab. Setze v : y y() v() y v +

Mehr

Begleitmaterial zur Vorlesung Numerik II

Begleitmaterial zur Vorlesung Numerik II Begleitmaterial zur Vorlesung Numerik II Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik II 1 / 35 Inhalte der Numerik

Mehr

Lösung zur Serie 8. x + 2x 2 sin(1/x), falls x 0, f(x) := 0, falls x = 0. = lim

Lösung zur Serie 8. x + 2x 2 sin(1/x), falls x 0, f(x) := 0, falls x = 0. = lim Lösung zur Serie 8 Aufgabe 40 Wir zeigen in dieser Aufgabe, dass die Voraussetzung dass die Funktion in einer kleinen Umgebung injektiv sein muss, beim Satz über die Umkehrfunktion notwendig ist. Hierzu

Mehr

Das Petersson-Skalarprodukt. David Rueda

Das Petersson-Skalarprodukt. David Rueda Das Petersson-Skalarprodukt David Rueda 29. November 2007 Einleitung Im ersten Teil dieses Vortrags werden wir das hyperbolische Flächenelement kennenlernen, welches ein Γ-invariantes Flächenelement ist.

Mehr

4 Messbare Funktionen

4 Messbare Funktionen 4 Messbare Funktionen 4.1 Definitionen und Eigenschaften Definition 4.1. Seien X eine beliebige nichtleere Menge, M P(X) eine σ-algebra in X und µ ein Maß auf M. Das Paar (X, M) heißt messbarer Raum und

Mehr

10. Periodische Funktionen, Fourier Reihen

10. Periodische Funktionen, Fourier Reihen H.J. Oberle Analysis II SoSe 212 1. Periodische Funktionen, Fourier Reihen Jean Baptiste Joseph Fourier: Joseph Fourier wurde am 21.3.1768 bei Auxerre (Burgund) geboren und starb am 16.5.183 in Paris.

Mehr

d(x, z) = z x = y x + z y y x + z y = d(x, y) + d(y, z). d(x, y) = 0, falls x = y.

d(x, z) = z x = y x + z y y x + z y = d(x, y) + d(y, z). d(x, y) = 0, falls x = y. Metrische Räume K bezeichnet entweder den Körper R oder den Körper C. Genauer bedeutet dies: K wird in denjenigen Situationen verwendet, in denen die Ersetzung von K sowohl durch R als auch durch C einen

Mehr

12 Aufgaben zu linearen Funktionalen

12 Aufgaben zu linearen Funktionalen 266 12. Aufgaben zu linearen Funktionalen A B C 12 Aufgaben zu linearen Funktionalen 12.1 Stetige Funktionale (siehe auch 11.6.E, 12.2, 13.4.A) Sei E ein topologischer Vektorraum und ϕ: E K (ϕ ) linear.

Mehr

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20 Gleichmäßige Konvergenz für Folgen und Reihen von Funktionen 20.1 Folgen und Reihen von Funktionen 20.3 Die Supremumsnorm 20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20.7 Das Cauchy-Kriterium

Mehr

Der metrische Raum (X, d) ist gegeben. Zeigen Sie, dass auch

Der metrische Raum (X, d) ist gegeben. Zeigen Sie, dass auch TECHNISCHE UNIVERSITÄT BERLIN SS 07 Institut für Mathematik Stand: 3. Juli 007 Ferus / Garcke Lösungsskizzen zur Klausur vom 6.07.07 Analysis II. Aufgabe (5 Punkte Der metrische Raum (X, d ist gegeben.

Mehr

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Dr. Gerhard Mülich Christian Maaß 6.Mai 8 Im letzten Vortrag haben wir gesehen, dass das

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89 9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89 Beweis. Der Beweis erfolgt durch vollständige Induktion. Angenommen wir hätten den Satz für k 1 gezeigt. Dann ist wegen auch Damit ist f(g(y), y) = 0 0 = D y

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

4 Kompakte Operatoren

4 Kompakte Operatoren 4.1 Kompakte Op. auf dem Hilbertraum 57 4 Kompakte Operatoren 4.1 Kompakte Operatoren auf dem Hilbertraum 4.1.1 Folg. (id H kompakt H endlichdim.) Die identische Abbildung eines Prähilbertraumes X ist

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 30.11.2016 5. Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,..., x n ) : x i R} = } R. {{.. R }. n mal Für x R ist x der Abstand zum

Mehr

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1).

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1). Kapitel 4 Stetige lineare Funktionale 4.1 Der Satz von Hahn - Banach Definition 4.1. Sei X ein linearer normierter Raum über dem Körper K (R oder C). Ein linearer Operator f : X K heißt (reelles oder komplexes)

Mehr

Inverse Fourier Transformation

Inverse Fourier Transformation ETH Zürich HS 27 Departement Mathematik Seminararbeit Inverse Fourier Transformation Patricia Hinder Sandra König Oktober 27 Prof. M. Struwe Im Vortrag der letzten Woche haben wir gesehen, dass die Faltung

Mehr

Technische Universität Berlin. Klausur Analysis I

Technische Universität Berlin. Klausur Analysis I SS 2008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Klausur Analysis I 4.07.2008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2014): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 204): Differential und Integralrechnung 6 6. (Herbst 200, Thema 2, Aufgabe 4) Suchen Sie für alle c R einen Punkt auf der Parabel P := { (x,y) : y

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

2. Fourier-Transformation

2. Fourier-Transformation 2. Fourier-Transformation Die Fourier-Transformation ist ein wichtiges Hilfsmittel für die dynamische Analyse linearer Systeme: Die Fourier-Transformierte der Antwort ist gleich dem Produkt der Fourier-Transformierten

Mehr

Zulassungsprüfung in Mathematik

Zulassungsprüfung in Mathematik der Deutschen Aktuarvereinigung e V Hinweise: Als Hilfsmittel sind ein Taschenrechner, eine mathematische Formelsammlung sowie entsprechende Literatur zugelassen Die Gesamtpunktzahl beträgt 9 Punkte Die

Mehr

Zusammenfassung der Lebesgue-Integrationstheorie

Zusammenfassung der Lebesgue-Integrationstheorie Zusammenfassung der Lebesgue-Integrationstheorie Das Lebesguesche Integral verallgemeinert das Riemannsche Integral. Seine Vorteile liegen für unsere Anwendungen vor allem bei den wichtigen Konvergenzsätzen,

Mehr

72 Orthonormalbasen und Konvergenz im quadratischen Mittel

72 Orthonormalbasen und Konvergenz im quadratischen Mittel 72 Orthonormalbasen und Konvergenz im quadratischen Mittel 30 72 Orthonormalbasen und Konvergenz im quadratischen Mittel Wir untersuchen nun die Konvergenz von Fourier-Reihen im quadratischen Mittel in

Mehr