Güteanalyse. Nochmal zur Erinnerung: Hypothesentest. Binominalverteilung für n=20 und p=0,5. Münzwurf-Beispiel genauer

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Güteanalyse. Nochmal zur Erinnerung: Hypothesentest. Binominalverteilung für n=20 und p=0,5. Münzwurf-Beispiel genauer"

Transkript

1 Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Güteanalyse Prof. Walter F. Tichy Fakultät für Informatik 1 Fakultät für Informatik 2 Nochmal zur Erinnerung: Hypothesentest Am Beispiel Münzwurf. Wir wollen prüfen, ob eine Münze fair ist, durch eine endliche Anzahl von Würfen, sagen wir 20. Die Nullhypothese ist, dass die Münze fair ist, d.h. die Wahrscheinlichkeit für Kopf oder Zahl ist jeweils 0,5. Die Wahrscheinlichkeitsverteilung unter lässt sich angeben: Binomialverteilung. (Das ist die sog. Stichprobenfunktion, oder Statistik.) Binominalverteilung für n=20 und p=0,5 x <- 1:20 y <- dbinom(x, size=length(x), prob=0.5) plot(x,y,type="b") Anzahl der Würfe Erfolgswahrscheinlichkeit pro Wurf Münzwurf-Beispiel genauer Die Alternativhypothese ist, dass die Wahrscheinlichkeit für Kopf >0,5 ist, oder die Wahrscheinlichkeit für Zahl >0,5 ist. Ferner legen wir vor dem Versuch ein Signifikanzniveau fest, z.b. =0,05. Das bedeutet: Wenn bei unserem Versuch ein Ergebnis herauskommt, dessen Wahrscheinlichkeit kleiner gleich ist, dann sind wir bereit, die Nullhypothese zugunsten der Alternativhypothese zu verwerfen, weil dann das, was man beobachtet hat, unwahrscheinlich ist (<= ). Trotzdem könnte es sein, dass die Münze fair ist. Die Irrtumswahrscheinlichkeit, oder die Wahrscheinlichkeit für einen Fehler erster Art ist. Das bedeutet: wenn wir das Experiment mit 20 Würfen einer fairen Münze sehr oft durchführen würden, käme in 5% der Experimente ein Ergebnis heraus, dass so unwahrscheinlich ist, dass wir die Nullhypothese fälschlicherweise ablehnen würden. Fakultät für Informatik 3 Fakultät für Informatik 4

2 Münzwurf-Beispiel Münzwurf-Beispiel Nun führen wir 20 Würfe aus und stellen fest, dass 15 Mal Kopf erscheint. Wir rechnen aus, wie wahrscheinlich es ist, dass bei 20 Würfen 15 mal oder häufiger Kopf erscheint; ferner die Wahrscheinlichkeit, dass 15 mal oder häufiger Zahl erschienen wäre. Wir addieren diese beiden Wahrscheinlichkeiten, weil wir aufgrund der Alternativhypothese beide Fälle berücksichtigen müssen (zweiseitiger Test). Das Ergebnis ist der sog. p-wert. Fakultät für Informatik 5 Der p-wert ist nicht nur die Wahrscheinlichkeit eines einzelnen Ergebnisses (15 Mal Kopf), sondern die Summe der Wahrscheinlichkeiten aller Ergebnisse, die mindestens so extrem sind (also Mal Kopf), da die zusätzlichen Ergebnisse noch ungünstiger für die Nullhypothese sind. Das Gleiche für Mal Zahl, oder äquivalent 1-5 Mal Kopf. Wenn wir von vorne herein wissen, dass eine Münze nur in einer Richtung unfair sein könnte (z.b. q>0,5), dann genügt der einseitige Test. Fakultät für Informatik 6 Hypothesen-Test zu Münzwurf binom.test(15,20,0.5) Zweiseitiger Test, mit 95 % Konfidenzintervall (Voreinstellung). Argumente: Anzahl Kopf, Anzahl der Würfe, angenommene Wahrscheinlichkeit für Kopf Exact binomial test data: 15 and 20 number of successes = 15, number of trials = 20, p-value = alternative hypothesis: true probability of success is not equal to percent confidence interval: sample estimates: probability of success 0.75 Übung Angenommen, es erscheint nur 14 Mal Kopf. Nehmen wir dann die Alternativhypothese an? (berechne den p-wert mit R oder Taschenrechner). Was passiert, wenn wir 100 Mal werfen, und es kommt 60 Mal Kopf? 61 Mal? 55 Mal? Man bezeichnet als Fehler erster Art, wenn man die Nullhypothese verwirft, obwohl sie richtig ist. Der p-wert wird auch als Irrtumswahrscheinlichkeit bezeichnet. Warum? P-Wert=0,041 <, also verwerfen wir die Nullhypothese. Fakultät für Informatik 7 Fakultät für Informatik 8

3 Ein- und zweiseitige Tests Verwerfungsbereich μ 1 > Der Bereich, in dem die Hypothese abgelehnt wird, heisst Verwerfungsbereich Der Bereich, in dem die Hypothese nicht abgelehnt wird, heißt Annahmebereich Je nach Art der Hypothese werden zwei Arten von Tests unterschieden: Annahmebereich Verwerfungsbereich Einseitige Tests: μ 1 > oder μ 1 < zweiseitige Tests: μ 1 Der kritische Wert c trennt Annahme- und Verwerfungsbereich. Für c gilt: P( X > c) μ = μ = 0 c Fakultät für Informatik 9 Fakultät für Informatik 10 Verwerfungsbereich μ 1 < Verwerfungsbereich μ 1 Verwerfungsbereich Annahmebereich Verwerfungsbereich Verwerfungsbereich Annahmebereich c P( X c) 0 < μ = μ = c 1 c 2 P( X < c ) = μ + P( X > c ) 0 2 μ= 0 1 μ μ = Fakultät für Informatik 11 Fakultät für Informatik 12

4 Fehlerarten beim Testen Fehler 1. Art Die Hypothese wird verworfen, obwohl sie richtig ist. Fehlerarten Dichte bei Dichte bei Fehler 2. Art Die Hypothese wird angenommen, obwohl sie falsch ist. nicht verwerfen. verwerfen. Fakultät für Informatik 13 Wenn H0 falsch, gilt die Verteilung von H1! 14 Andreas Höfer Walter F. Tichy Testergebnis und Wirklichkeit Wahrscheinlichkeit für Fehler 1. Art Testergebnis annehmen ablehnen Unbekannte Wirklichkeit richtig Richtige Entscheidung p=1- Fehler 1.Art p= falsch Fehler 2.Art p= Richtige Entscheidung p=1- ist das Signifikanzniveau des Tests μ 1 > : μ 1 < : μ 1 : P P ( X > c) u= u 0 ( X < c) u= u 0 = = P( X < c ) = μ + P( X > c ) 0 2 μ = μ0 1 μ = Fakultät für Informatik 15 Fakultät für Informatik 16

5 μ 1 > : μ 1 < : μ 1 : Wahrscheinlichkeit für Fehler 2. Art P( X c) P( X c) μ = μ 1 = μ = μ 1 = P( X c ) = μ + P( X c ) 1 2 μ = μ1 1 μ = Güte (engl. Power) eines Test Güte := 1- interpretiert als die Wahrscheinlichkeit, die Alternative anzunehmen, wenn sie stimmt. Wenn die Güte gering ist, dann ist die Wahrscheinlichkeit, die Alternative anzunehmen, gering. Man spricht dann von einer verpassten Chance. Fakultät für Informatik 17 Fakultät für Informatik 18 Zusammenhang von und Güte Zusammenhang von - μ 1 und Güte Vergrößerung von Verschiebt den krit. Wert c nach links. Erhöht Güte. Aber: ist die Wahrscheinlichkeit für den Fehler 1.Art! Großer Abstand zw. and μ 1 Bedeutet großen Unterschied in den Mittelwerten (Effektgröße) Reduziert die Überlappungen der Verteilungen. Erhöht Güte. Umgekehrt bedeutet geringer Abstand geringe Güte. 19 Andreas Höfer Walter F. Tichy 20 Andreas Höfer Walter F. Tichy

6 Zusammenhang Stichprobengröße und Güte Bei größerer Stichprobe ändert sich die Verteilung der Statistik: die Varianz wird kleiner Daher engerer Annahmebereich und größere Güte bei gleicher Alternative Bei großen Stichprobenumfängen ist das Risiko einer verpassten Chance geringer. 21 Andreas Höfer Walter F. Tichy Fazit Güteberechnung Güte 1- hängt von der Wahl von, Stichprobengröße n und Effektgröße ab. je kleiner, desto kleiner die Güte, und desto größer die Wahrscheinlichkeit des Fehlers 2.Art ( verpasste Chance ). größere Güte bei größerem Stichprobenumfang n und größerem Effekt. Fakultät für Informatik 22 Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Güte und Stichprobengröße Effektgröße engl. effect size Effektgröße ES beschreibt den Grad, zu dem ein Phänomen existiert ES mißt den Abstand der Mittelwerte von zwei Populationen X und Y und führt eine Normierung relativ zur Streuung σ ein Fakultät für Informatik 23 ES = μ X μ Y σ Fakultät für Informatik 24

7 Effektgröße Cohens Konvention: klein: ES = 0.2 Unterschied in Körpergröße zw. 15 und 16 jährigen Mädchen. mittel: ES = 0.5 Unterschied in Körpergröße zw. 14 und 18 jährigen Mädchen. groß: ES = 0.8 Unterschied in Körpergröße zw. 13 und 18 jährigen Mädchen.. Güte vs. Effektgröße Je kleiner der Effekt ES ist, desto geringer ist die Güte Die Alternative μ 1 liegt dann nahe bei der Hypothese Bei kleinem ES wird großes n gebraucht, um eine bestimmte Güte zu erreichen ( fest) 25 Andreas Höfer Walter F. Tichy Fakultät für Informatik 26 Warum Güteanalyse? Beim Entwurf eines Experimentes müssen folgende Fragen beantwortet werden: 1. Welches Signifikanzniveau wähle ich? 2. Welche Güte soll mein Test haben? 3. Wie groß ist der Unterschied, den ich erkennen möchte? 4. Wieviele Teilnehmer brauche ich? Güteanalyse Die Güteanalyse ist ein geschlossenes System der folgenden vier Parameter: Signifikanz Güte 1- Stichprobengröße n Effektgröße ES (engl. effect size) Jeder der vier Parameter kann durch die anderen drei berechnet werden Fakultät für Informatik 27 Fakultät für Informatik 28

8 Arten der Güteanalyse (1) n in Abhängigkeit von (,, ES) Durchgeführt vor dem Experiment Mit wie vielen Stichproben erreiche ich eine vorgegebene Güte? Dazu muss man aber ES schätzen. Das macht man mit einem Vortest (gleicher Aufbau wie das endgültige Experiment, aber kleineres n), oder aus vergleichbaren Experimenten. Dieses Vorgehen sollte die Grundlage aller Experimente bilden, die einen Hypothesentest nach sich ziehen! Arten der Güteanalyse (2) Güte in Abhängigkeit von (, ES, n) Welche Güte hat der Test bei gegebenem Aufbau? Wird vor der Studie berechnet, um rechtzeitig Korrekturen am Experimentaufbau vornehmen zu können. Oder nach der Studie, um nachträglich die Güte zu bestimmen. Fakultät für Informatik 29 Fakultät für Informatik 30 Arten der Güteanalyse (3) ES in Abhängigkeit von (,, n) Welche Effekte kann ich mit gegebenem Aufbau finden? Wird weniger häufig angewendet als die beiden anderen Fälle Kann als Maß für den Vergleich der Tests von mehreren Studien dienen Arten der Güteanalyse (4) in Abhängigkeit von (, ES, n) Welches Signifikanzniveau hat mein Test bei gegebener Güte? Ungewöhnliche Fragestellung, da kleines angestrebt und vorgegeben wird Fakultät für Informatik 31 Fakultät für Informatik 32

9 Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Statistische Planung und Auswertung von Experimenten Vorgehen bei der Planung Ermittle Effektgröße ES anhand anderer Studien Vortest Lege Signifikanzniveau und zu erreichende Güte fest Standardwerte: = 0,05; Güte = 0,8 (=0,2) Berechne erforderliche Stichprobengröße Fakultät für Informatik 33 Fakultät für Informatik 34 Vortest sollte dieselbe Aufgaben beinhalten wie das Experiment. sollte mit Vertretern der Gruppe durchgeführt werden, die das Experiment durchläuft, aber mit weniger Teilnehmern. Umgebung und Aufbau von Vortest und Experiment sollten übereinstimmen. Effektgröße klein mittel groß Stichprobengröße bei = 0,05; Güte = 0,8, einseitiger t-test ES 0,20 0,50 0,80 t-test, eine Stichprobe t-test, zwei Stichproben Übung: mit R den zweiseitigen Fall ausrechnen! Benutze power.t.test Fakultät für Informatik 35 Fakultät für Informatik 36

10 Vorgehen bei der Auswertung Hypothese abgelehnt: keine Betrachtung der Güte Hypothese nicht abgelehnt: mögliche Ursachen untersuchen Effekt nicht vorhanden oder zu klein, um mit diesem Aufbau erkennbar zu sein Güte war zu gering Bei geringer Güte sollte konservativ ein zu kleiner Effekt angenommen werden Beobachtete Effektgröße Signifikante Tests haben tendenziell eine hinreichend große beobachtete Güte Nicht-signifikante Tests haben meist auch eine kleine beobachtete Güte Fakultät für Informatik 37 Fakultät für Informatik 38 Over/Under-Powered Overpowered Studie sammelt mehr Datenpunkte als nötig Auch sehr kleine Effekte, die nicht interessieren, haben Einfluss auf den Test Underpowered Studie sammelt zu wenig Datenpunkte Effekt lässt sich nur mit kleiner Wahrscheinlichkeit zeigen Güte für t-test in R > power.t.test(power = 0.8, delta = 0.5, sd = 1, + sig.level = 0.05) Two-sample t test power calculation n = delta = 0.5 sd = 1 sig.level = 0.05 power = 0.8 alternative = two.sided NOTE: n is number in *each* group power = Güte, delta = Unterschied der Mittelwerte, sd = Standardabweichung, sig.level = Signifkanz Fakultät für Informatik Andreas Höfer Walter F. Tichy

11 Güte für den Wilcoxon-Test (1) ist nicht-parametrischer Test, bei dem es keine Verteilung für die Alternative gibt Es gibt asymptotische Abschätzungen, die eine untere Schranke für die Güte relativ zum t-test angeben Asymptotische Relative Effizienz (ARE) des Wilcoxon-Tests ist nie schlechter als 0,864 relativ zum t-test Güte für den Wilcoxon-Test (2) Berechne zunächst die Güte mit Hilfe des t-tests Der Wilcoxon-Test hat im schlechtesten Fall eine um 14% geringere Güte Zur Bestimmung der Stichprobengröße: addiere auf den Wert des t-tests noch einmal 14% und runde auf Fakultät für Informatik 41 Fakultät für Informatik 42 Zusammenfassung Güteanalyse ist Bestandteil der Experimentplanung Erlaubt Bestimmung des benötigten Stichprobenumfangs Ende Fakultät für Informatik 43 Fakultät für Informatik 44

Empirische Softwaretechnik. Einführung in das Statistikpaket R?! Entwickler von R. nicht vergleichbar mit den üblichen Statistikprogrammen

Empirische Softwaretechnik. Einführung in das Statistikpaket R?! Entwickler von R. nicht vergleichbar mit den üblichen Statistikprogrammen Empirische Softwaretechnik Einführung in das Statistikpaket Prof. Dr. Walter F. Tichy Dr. Frank Padberg Sommersemester 2007 1 2 R?! nicht vergleichbar mit den üblichen Statistikprogrammen wie SAS oder

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test 1/29 Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) Matthias Birkner http://www.staff.uni-mainz.de/birkner/biostatistik1516/ 11.12.2015 2/29 Inhalt 1 t-test

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler DAS THEMA: INFERENZSTATISTIK II INFERENZSTATISTISCHE AUSSAGEN Standardfehler Konfidenzintervalle Signifikanztests Standardfehler der Standardfehler Interpretation Verwendung 1 ZUR WIEDERHOLUNG... Ausgangspunkt:

Mehr

Statistische Auswertung der Daten von Blatt 13

Statistische Auswertung der Daten von Blatt 13 Statistische Auswertung der Daten von Blatt 13 Problemstellung 1 Graphische Darstellung der Daten 1 Diskussion der Normalverteilung 3 Mittelwerte und deren Konfidenzbereiche 3 Signifikanz der Behandlung

Mehr

Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen

Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen Universität Karlsruhe (TH) Forschungsuniversität gegründet 825 Wilcoxon-Rangsummentest oder Mann-Whitney U-Test Motivation In Experimenten ist die Datenmenge oft klein Daten sind nicht normalverteilt Dann

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

9. StatistischeTests. 9.1 Konzeption

9. StatistischeTests. 9.1 Konzeption 9. StatistischeTests 9.1 Konzeption Statistische Tests dienen zur Überprüfung von Hypothesen über einen Parameter der Grundgesamtheit (bei einem Ein-Stichproben-Test) oder über die Verteilung einer Zufallsvariablen

Mehr

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero?

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Manche sagen: Ja, manche sagen: Nein Wie soll man das objektiv feststellen? Kann man Geschmack objektiv messen? - Geschmack ist subjektiv

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und β-fehler? Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

12.1 Wie funktioniert ein Signifikanztest?

12.1 Wie funktioniert ein Signifikanztest? Sedlmeier & Renkewitz Kapitel 12 Signifikanztests 12.1 Wie funktioniert ein Signifikanztest? Zentrales Ergebnis eine Signifikanztests: Wie wahrscheinlich war es unter der Bedingung dass H0 gilt, diesen

Mehr

Univariate/ multivariate Ansätze. Klaus D. Kubinger. Test- und Beratungsstelle. Effektgrößen

Univariate/ multivariate Ansätze. Klaus D. Kubinger. Test- und Beratungsstelle. Effektgrößen Univariate/ multivariate Ansätze Klaus D. Kubinger Effektgrößen Rasch, D. & Kubinger, K.D. (2006). Statistik für das Psychologiestudium Mit Softwareunter-stützung zur Planung und Auswertung von Untersuchungen

Mehr

Prüfen von Mittelwertsunterschieden: t-test

Prüfen von Mittelwertsunterschieden: t-test Prüfen von Mittelwertsunterschieden: t-test Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) t-test

Mehr

Empirische Softwaretechnik Datenanalyse mit R

Empirische Softwaretechnik Datenanalyse mit R Empirische Softwaretechnik Dr. Victor Pankratius Andreas Höfer Wintersemester 2009/2010 IPD Tichy, Fakultät für Informatik KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe

Mehr

Klausur Statistik Lösungshinweise

Klausur Statistik Lösungshinweise Klausur Statistik Lösungshinweise Prüfungsdatum: 1. Juli 2015 Prüfer: Etschberger, Heiden, Jansen Studiengang: IM und BW Aufgabe 1 14 Punkte Ein Freund von Ihnen hat über einen Teil seiner Daten, die er

Mehr

STATISTIK 1 - BEGLEITVERANSTALTUNG

STATISTIK 1 - BEGLEITVERANSTALTUNG STATISTIK 1 - BEGLEITVERANSTALTUNG VORLESUNG 4 ALPHA / BETA-FEHLER 12.12.2014 1 12.12.2014 1 Mona Ulrich, Psychologie (M.Sc.) AGENDA 01 STATISTISCHE HYPOTHESEN 02 POPULATION / STICHPROBE 03 ALPHA/ BETA-FEHLER

Mehr

Einführung in die Statistik mit Beispielen aus der Biologie

Einführung in die Statistik mit Beispielen aus der Biologie Einführung in die Statistik mit Beispielen aus der Biologie Thomas Fabbro The aim of computing is insight, not numbers. Zu meiner Person Ausbildung Momentan Studium der Biologie (Uni Basel) Masterarbeit

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test. und der Wilcoxon-Test

Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test. und der Wilcoxon-Test Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) und der Wilcoxon-Test Dirk Metzler 22. Mai 2015 Inhaltsverzeichnis 1 Wiederholung:

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Letzte Worte zur Inferenzstatistik, v. a. zu Signifikanztests Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg : Gliederung 1 Einführung 2 Deskriptive Statistik

Mehr

8. Methoden der klassischen multivariaten Statistik

8. Methoden der klassischen multivariaten Statistik 8. Methoden der klassischen multivariaten Statistik 8.1. Darstellung von Daten Voraussetzungen auch in diesem Kapitel: Grundgesamtheit (Datenraum) Ω von Objekten (Fällen, Instanzen), denen J-Tupel von

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Klausur: Einführung in die Statistik

Klausur: Einführung in die Statistik 1 Lösungen immer unter die jeweiligen Aufgaben schreiben. Bei Platzmangel auf die Rückseite schreiben (dann Nummer der bearbeiteten Aufgabe mit anmerken!!!). Lösungen, die nicht auf den Aufgabenblättern

Mehr

Lösung zu Kapitel 11: Beispiel 1

Lösung zu Kapitel 11: Beispiel 1 Lösung zu Kapitel 11: Beispiel 1 Eine Untersuchung bei 253 Personen zur Kundenzufriedenheit mit einer Einzelhandelskette im Südosten der USA enthält Variablen mit sozialstatistischen Daten der befragten

Mehr

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.) ue biostatistik: nichtparametrische testverfahren / ergänzung 1/6 h. Lettner / physik Statistische Testverfahren Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Mehr

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Klausur Nr. 1 2014-02-06 Wahrscheinlichkeitsrechnung Pflichtteil Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche Darstellung,

Mehr

Versuchsplanung. Teil 1 Einführung und Grundlagen. Dr. Tobias Kiesling <kiesling@stat.uni-muenchen.de> Einführung in die Versuchsplanung

Versuchsplanung. Teil 1 Einführung und Grundlagen. Dr. Tobias Kiesling <kiesling@stat.uni-muenchen.de> Einführung in die Versuchsplanung Versuchsplanung Teil 1 Einführung und Grundlagen Dr. Tobias Kiesling Inhalt Einführung in die Versuchsplanung Hintergründe Grundlegende Prinzipien und Begriffe Vorgehensweise

Mehr

Aufgabe 1 10 ECTS. y i x j gering mittel hoch n i Hausrat 200 25 0 225 KFZ 0 10 75 85 Unfall 20 35 90 145 Reiserücktritt 40 5 0 45 n j 260 75 165 500

Aufgabe 1 10 ECTS. y i x j gering mittel hoch n i Hausrat 200 25 0 225 KFZ 0 10 75 85 Unfall 20 35 90 145 Reiserücktritt 40 5 0 45 n j 260 75 165 500 Aufgabe 1 Für die Securance-Versicherung liegen Ihnen die gemeinsamen absoluten Häugkeiten der Merkmale X: Schadenshöhe und Y : Versicherungsart für die letzten 500 gemeldeten Schäden vor. 1. Interpretieren

Mehr

Statistische Datenauswertung. Andreas Stoll Kantonsschule Olten

Statistische Datenauswertung. Andreas Stoll Kantonsschule Olten Statistische Datenauswertung Andreas Stoll Beschreibende vs. schliessende Statistik Wir unterscheiden grundsätzlich zwischen beschreibender (deskriptiver) und schliessender (induktiver) Statistik. Bei

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Analytische Statistik I Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Testen Anpassungstests (goodness of fit) Weicht eine gegebene Verteilung signifikant von einer bekannten

Mehr

Studiendesign/ Evaluierungsdesign

Studiendesign/ Evaluierungsdesign Jennifer Ziegert Studiendesign/ Evaluierungsdesign Praxisprojekt: Nutzerorientierte Evaluierung von Visualisierungen in Daffodil mittels Eyetracker Warum Studien /Evaluierungsdesign Das Design einer Untersuchung

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Beurteilung der biometrischen Verhältnisse in einem Bestand. Dr. Richard Herrmann, Köln

Beurteilung der biometrischen Verhältnisse in einem Bestand. Dr. Richard Herrmann, Köln Beurteilung der biometrischen Verhältnisse in einem Bestand Dr. Richard Herrmann, Köln Beurteilung der biometrischen Verhältnisse in einem Bestand 1 Fragestellung Methoden.1 Vergleich der Anzahlen. Vergleich

Mehr

R-WORKSHOP II. Inferenzstatistik. Johannes Pfeffer

R-WORKSHOP II. Inferenzstatistik. Johannes Pfeffer R-WORKSHOP II Inferenzstatistik Johannes Pfeffer Dresden, 25.1.2011 01 Outline Lösung der Übungsaufgabe Selbstdefinierte Funktionen Inferenzstatistik t-test Kruskal-Wallis Test Übungsaufgabe TU Dresden,

Mehr

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 8. Februar 2007 Hinweise:

Mehr

Commercial Banking Übung 1 Kreditscoring

Commercial Banking Übung 1 Kreditscoring Commercial Banking Übung Kreditscoring Dr. Peter Raupach raupach@wiwi.uni-frankfurt.de Sprechzeit Dienstag 6-7:00 Uhr Raum 603 B Kreditscoring Gliederung Grundanliegen Das Sample Modellspezifikation Diskriminanzanalyse

Mehr

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Klausur, Multivariate Verfahren, SS 2006, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 08.08.2006 Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Gesamtpunkte: 39 Aufgabe

Mehr

Stichprobenauslegung. für stetige und binäre Datentypen

Stichprobenauslegung. für stetige und binäre Datentypen Stichprobenauslegung für stetige und binäre Datentypen Roadmap zu Stichproben Hypothese über das interessierende Merkmal aufstellen Stichprobe entnehmen Beobachtete Messwerte abbilden Schluss von der Beobachtung

Mehr

Statistik Musterlösungen

Statistik Musterlösungen Statistik Musterlösungen Regina Tüchler & Achim Zeileis Institut für Statistik & Mathematik Wirtschaftsuniversität Wien 1 Grundbegriffe (1.23) Skript Reaktionen auf Videofilm. Aussagen M, E, P, S h(m)

Mehr

Academic Skills - Befragung und Auswertung

Academic Skills - Befragung und Auswertung Otto-von-Guericke University Magdeburg Allgemein Befragung Eine Befragung ist eine wissenschaftliche Maßnahme zur Erforschung von Verhalten, Einstellung oder Wissen Des Weiteren können auch demographische

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

Einfache Varianzanalyse für abhängige

Einfache Varianzanalyse für abhängige Einfache Varianzanalyse für abhängige Stichproben Wie beim t-test gibt es auch bei der VA eine Alternative für abhängige Stichproben. Anmerkung: Was man unter abhängigen Stichproben versteht und wie diese

Mehr

Gestaltungsempfehlungen

Gestaltungsempfehlungen Gestaltungsempfehlungen Prof. Dr. Günter Daniel Rey 1 Überblick Auswahl der Empfehlungen Gestaltungseffekte Empirische Überprüfung Variablenarten Versuchspläne Beispiel eines Experimentes Statistische

Mehr

Einführung in statistische Testmethoden

Einführung in statistische Testmethoden Einführung in statistische Testmethoden und die Bearbeitung von Messdaten mit Excel 1. Beispielhafte Einführung in den Gebrauch von Testmethoden 2. Typen von Messwerten, Verteilungen 3. Mittelwert, Varianz,

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Vergleich zweier Stichproben, nichtparametrische Tests Prof. Dr. Achim Klenke http://www.aklenke.de 11. Vorlesung: 27.01.2012 1/86 Inhalt 1 Tests t-test 2 Vergleich zweier

Mehr

Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest

Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest Universität Wien Institut für Mathematik Wintersemester 2009/2010 Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest Seminar Angewandte Mathematik Ao. Univ. Prof. Dr. Peter Schmitt von Nadja Reiterer

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Fragestellungen der Schließenden Statistik

Fragestellungen der Schließenden Statistik Fragestellungen der Schließenden Statistik Bisher: Teil I: Beschreibende Statistik Zusammenfassung von an GesamtheitM N {e,,e N } erhobenem Datensatz x,,x N durch Häufigkeitsverteilung und Kennzahlen für

Mehr

27. Statistische Tests für Parameter. Was ist ein statistischer Test?

27. Statistische Tests für Parameter. Was ist ein statistischer Test? 27. Statistische Tests für Parameter Wenn du eine weise Antwort verlangst, musst du vernünftig fragen Was ist ein statistischer Test? Ein statistischen Test ist ein Verfahren, welches ausgehend von Stichproben

Mehr

Florian Frötscher und Demet Özçetin

Florian Frötscher und Demet Özçetin Statistische Tests in der Mehrsprachigkeitsforschung Aufgaben, Anforderungen, Probleme. Florian Frötscher und Demet Özçetin florian.froetscher@uni-hamburg.de SFB 538 Mehrsprachigkeit Max-Brauer-Allee 60

Mehr

Fortgeschrittene Statistik Logistische Regression

Fortgeschrittene Statistik Logistische Regression Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E

Mehr

Grundlagen von Versuchsmethodik und Datenanalyse

Grundlagen von Versuchsmethodik und Datenanalyse Grundlagen von Versuchsmethodik und Datenanalyse Der Anfang: Hypothesen über Ursache-Wirkungs-Zusammenhänge Ursache Wirkung Koffein verbessert Kurzzeitgedächtnis Gewaltfilme führen zu aggressivem Verhalten

Mehr

Wilcoxon-Rangsummen-Test

Wilcoxon-Rangsummen-Test Wilcoxon-Rangsummen-Test Theorie: Wilcoxon-Rangsummen-Test Der Wilcoxon-Rangsummen-Test prüft, ob sich die Verteilungen der Grundgesamtheiten zweier Stichproben bezüglich ihrer Lage unterscheiden. Ein

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

1 Statistische Grundlagen

1 Statistische Grundlagen Konzepte in Empirische Ökonomie 1 (Winter) Hier findest Du ein paar Tipps zu den Konzepten in Empirische 1. Wenn Du aber noch etwas Unterstützung kurz vor der Klausur brauchst, schreib uns eine kurze Email.

Mehr

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...

Mehr

Studiendesign und Statistik: Interpretation publizierter klinischer Daten

Studiendesign und Statistik: Interpretation publizierter klinischer Daten Studiendesign und Statistik: Interpretation publizierter klinischer Daten Dr. Antje Jahn Institut für Medizinische Biometrie, Epidemiologie und Informatik Universitätsmedizin Mainz Hämatologie im Wandel,

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2008/2009. Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2008/2009. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2008/2009 Aufgabe 1 Im Rahmen

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

DAXsignal.de Der Börsenbrief zum DAX. 10 Tipps für erfolgreiches Trading. Das kostenlose E-Book für den charttechnisch orientierten Anleger.

DAXsignal.de Der Börsenbrief zum DAX. 10 Tipps für erfolgreiches Trading. Das kostenlose E-Book für den charttechnisch orientierten Anleger. Das kostenlose E-Book für den charttechnisch orientierten Anleger. Wie Sie mit einer Trefferquote um 50% beachtliche Gewinne erzielen Tipp 1 1. Sie müssen wissen, dass Sie nichts wissen Extrem hohe Verluste

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr

Varianzanalyse (ANOVA: analysis of variance)

Varianzanalyse (ANOVA: analysis of variance) Varianzanalyse (AOVA: analysis of variance) Einfaktorielle VA Auf der Basis von zwei Stichproben wird bezüglich der Gleichheit der Mittelwerte getestet. Variablen müssen Variablen nur nominalskaliert sein.

Mehr

Tutorial: Homogenitätstest

Tutorial: Homogenitätstest Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite

Mehr

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis:

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis: Inhaltsverzeichnis: Übungsaufgaben zu Kapitel 5... 1 Aufgabe 101... 1 Aufgabe 102... 2 Aufgabe 103... 2 Aufgabe 104... 2 Aufgabe 105... 3 Aufgabe 106... 3 Aufgabe 107... 3 Aufgabe 108... 4 Aufgabe 109...

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Mathematik IV: Statistik. für D-UWIS, D-ERDW, D-USYS und D-HEST SS14

Mathematik IV: Statistik. für D-UWIS, D-ERDW, D-USYS und D-HEST SS14 Mathematik IV: Statistik für D-UWIS, D-ERDW, D-USYS und D-HEST SS14 Hygienische Reiniger Wissenschaftliche Studie: 10 000 Reinigungsversuche, 6 Fälle mit mehr als 1 Bakterien Stimmt s jetzt oder was? Binomialtest:

Mehr

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen Ergebnisse 77 5 Ergebnisse Das folgende Kapitel widmet sich der statistischen Auswertung der Daten zur Ü- berprüfung der Hypothesen. Die hier verwendeten Daten wurden mit den in 4.3 beschriebenen Instrumenten

Mehr

Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 1

Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 1 Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 1 Aufgabe 1: Betrachtet wird folgendes Modell zur Erklärung des Managergehalts salary durch den Umsatz sales, die Eigenkapitalrendite roe und die

Mehr

Stochastik Abitur 2009 Stochastik

Stochastik Abitur 2009 Stochastik Abitur 2009 Stochastik Beilage ea (erhöhtes Anforderungsniveau) ga (grundlegendes Anforderungsniveau) ISBN 978-3-8120-0108-3 und ISBN 978-3-8120-0223-3 1 Aufgabe 2 (ea) Rauchen ist das größte vermeidbare

Mehr

Evaluation. Caroline Sporleder. Computational Linguistics Universität des Saarlandes. Sommersemester 2011 26.05.2011

Evaluation. Caroline Sporleder. Computational Linguistics Universität des Saarlandes. Sommersemester 2011 26.05.2011 Evaluation Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 26.05.2011 Caroline Sporleder Evaluation (1) Datensets Caroline Sporleder Evaluation (2) Warum evaluieren?

Mehr

Varianzanalyse * (1) Varianzanalyse (2)

Varianzanalyse * (1) Varianzanalyse (2) Varianzanalyse * (1) Einfaktorielle Varianzanalyse (I) Die Varianzanalyse (ANOVA = ANalysis Of VAriance) wird benutzt, um Unterschiede zwischen Mittelwerten von drei oder mehr Stichproben auf Signifikanz

Mehr

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr. E-Mail. Studiengang.

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr. E-Mail. Studiengang. Lehrstuhl für Statistik und empirische Wirtschaftsforschung Fach: Prüfer: Bachelorprüfung Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname Matrikelnr. E-Mail Studiengang

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

2.1 Die Normalverteilung

2.1 Die Normalverteilung . INFERENZSTATISTIK Inferenzstatistik bedeutet übersetzt schließende Statistik. Damit ist der Schluss von den erhobenen Daten einer Stichprobe auf Werte in der Population gemeint..1 Die Normalverteilung

Mehr

Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen

Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen Warum überhaupt Gedanken machen? Was fehlt, ist doch weg, oder? Allgegenwärtiges Problem in psychologischer Forschung Bringt Fehlerquellen

Mehr

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007 Wirtschaftswissenschaftliches Prüfungsamt DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 006/07 8.0.007 Lösung Prof. Dr. R Friedmann / Dr. R. Hauser Hinweise für die Klausurteilnehmer

Mehr

3. Der t-test. Der t-test

3. Der t-test. Der t-test Der t-test 3 3. Der t-test Dieses Kapitel beschäftigt sich mit einem grundlegenden statistischen Verfahren zur Auswertung erhobener Daten: dem t-test. Der t-test untersucht, ob sich zwei empirisch gefundene

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

Klausur Wirtschaftsmathematik Lösungshinweise

Klausur Wirtschaftsmathematik Lösungshinweise Klausur Wirtschaftsmathematik Lösungshinweise Prüfungsdatum: 27. Juni 2015 Prüfer: Etschberger Studiengang: Wirtschaftsingenieurwesen Aufgabe 1 16 Punkte Anton Arglos hat von seiner Großmutter 30 000 geschenkt

Mehr

Messung von Veränderungen. Dr. Julia Kneer Universität des Saarlandes

Messung von Veränderungen. Dr. Julia Kneer Universität des Saarlandes von Veränderungen Dr. Julia Kneer Universität des Saarlandes Veränderungsmessung Veränderungsmessung kennzeichnet ein Teilgebiet der Methodenlehre, das direkt mit grundlegenden Fragestellungen der Psychologie

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 2014 1. Auflage Übungsaufgaben zu Kapitel

Mehr

3. Der t-test. Der t-test

3. Der t-test. Der t-test 3 3. Der t-test Dieses Kapitel beschäftigt sich mit einem grundlegenden statistischen Verfahren zur Auswertung erhobener Daten: dem t-test. Der t-test untersucht, ob sich zwei empirisch gefundene Mittelwerte

Mehr

Performance Messungen

Performance Messungen Performance Messungen 1 Einordnung titativ iv Quan Qualitat Kontrollierte Eperimente mit Probanden Fragebög en 3 Think Aloud Protokolle Mensch Computer Technisch h h Interview Fallstudien Zeitreihen analysen

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

Marktforschung I. Marktforschung I 2

Marktforschung I. Marktforschung I 2 Marktforschung I Marktforschung I Einführung in die Testtheorie (Toporowski) Mathematische Grundlagen (Toporowski) Varianzanalyse (Toporowski) Regressionsanalyse (Boztuğ) Diskriminanzanalyse (Hammerschmidt)

Mehr

Gestaltungsempfehlungen

Gestaltungsempfehlungen Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Lehren und Lernen mit Medien I Gestaltungsempfehlungen Überblick Auswahl der Empfehlungen Gestaltungseffekte Empirische

Mehr

Modellierung von Korrelationen zwischen Kreditausfallraten für Kreditportfolios. Bernd Rosenow, 3. Kölner Workshop Quantitative Finanzmarktforschung

Modellierung von Korrelationen zwischen Kreditausfallraten für Kreditportfolios. Bernd Rosenow, 3. Kölner Workshop Quantitative Finanzmarktforschung Modellierung von Korrelationen zwischen Kreditausfallraten für Kreditportfolios Bernd Rosenow Rafael Weißhaupt Frank Altrock Universität zu Köln West LB AG, Düsseldorf Gliederung Beschreibung des Datensatzes

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Konfidenzintervalle so einfach wie möglich erklärt

Konfidenzintervalle so einfach wie möglich erklärt Konfidenzintervalle so einfach wie möglich erklärt Wolfgang Ludwig-Mayerhofer, Universität Siegen, Philosophische Fakultät, Seminar für Sozialwissenschaften Vorbemerkung: Es handelt sich um die Anfang

Mehr

Interne und externe Modellvalidität

Interne und externe Modellvalidität Interne und externe Modellvalidität Interne Modellvalidität ist gegeben, o wenn statistische Inferenz bzgl. der untersuchten Grundgesamtheit zulässig ist o KQ-Schätzer der Modellparameter u. Varianzschätzer

Mehr

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik Ludwig Fahrmeir, Nora Fenske Institut für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik 29. März 21 Hinweise:

Mehr

Abitur 2011 Mathematik GK Stochastik Aufgabe C1

Abitur 2011 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2011 Mathematik GK Stochastik Aufgabe C1 Bei der TOTO-13er-Wette (vgl. abgebildeten Ausschnitt aus einem Spielschein) wird auf den Spielausgang von 13 Fußballspielen

Mehr