1 Natürliche Zahlen und vollständige Indution Beispiel : Für jede Zahl x 6 1gilt die geometrische Summenformel 1+x + x + :::+ x n 1 xn+1 1 x : (I) Für

Größe: px
Ab Seite anzeigen:

Download "1 Natürliche Zahlen und vollständige Indution Beispiel : Für jede Zahl x 6 1gilt die geometrische Summenformel 1+x + x + :::+ x n 1 xn+1 1 x : (I) Für"

Transkript

1 1 Natürliche Zahlen und vollständige Indution Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwer. (L. Kronecer) Wir setzen das System N der natürlichen Zahlen 1; ; 3;::: als beannt voraus. Zu seinen Struturmermalen gehört das Prinzip der vollständigen Indution. Im Kern besagt dieses, daß man die Folge aller natürlichen Zahlen ohne Wiederehr durchläuft, wenn man beginnend bei 1 stets von einer natürlichen Zahl zur nächsten weiterschreitet. 1.1 Vollständige Indution Zu jeder natürlichen Zahl n sei eine Aussage A(n) gegeben. Eine Strategie zu deren Beweis ist das Beweisprinzip der vollständigen Indution: Alle Aussagen A(n) sind richtig, wenn man (I) und (II) beweisen ann: (I) (II) A(1) ist richtig (Indutionsanfang). Für jedes n, für welches A(n) richtig ist, ist auch A(n +1) richtig (Indutionsschluß). Beispiel 1: Für jede natürliche Zahl n gilt: A(n):1++3+:::+ n 1 n(n +1): (I) (II) Für n 1stimmt diese Formel offensichtlich. Schluß von A(n) auf A(n +1): Unter der Voraussetzung, daß die Formel A(n) gilt, gilt auch die Formel A(n +1); mittels A(n) folgt nämlich 1++3+:::+n+(n+1) 1 n(n+1)+(n+1) 1 (n+1)(n+): Die Summenformel A(n) läßt sich auch eleganter beweisen. So löste Gauß ( )als Kind die Aufgabe, alle Zahlen von 1 bis 100 zu addieren, durch Bildung der 50 gleichen Summen 1+100; +99; 3+98;:::;

2 1 Natürliche Zahlen und vollständige Indution Beispiel : Für jede Zahl x 6 1gilt die geometrische Summenformel 1+x + x + :::+ x n 1 xn+1 1 x : (I) Für n 1stimmt dieseformel offensichtlich. (II) Schluß von n auf n +1: 1+x + x + :::+ x n + x n+1 1 xn+1 1 x + x n+1 1 xn+ 1 x : Manchmal ist zu jeder ganzen Zahl n n 1 eine Aussage A(n) gegeben. Vollständige Indution ann sinngemäß auch in dieser Situation angewendet werden. Als Indutionsanfang hat man A(n 1 ) zu beweisen und der Indutionsschluß A(n)! A(n +1)ist für die n n 1 zu erbringen. Ebenso wichtig wie der Beweis durchvollständige Indution ist die Konstrution durch vollständige Indution, auch reursive Definition genannt. Es soll jeder natürlichen Zahl n ein Element f(n) einer Menge X zugeordnet werden durch (I) (II) die Angabe von f(1) und eine Vorschrift F, die für jedes n N das Element f(n +1)aus den Elementen f(1);:::;f(n) zu berechnen gestattet: f(n +1)F f(1);:::;f(n) : Beispielsweise erlärt man die Potenzen einer Zahl x durch (I) x 1 : x und (II) die Reursionsformel x n+1 : x n x für jedes n N. Daß ein solches Verfahren sinnvoll ist, besagt der sog. Reursionssatz. Für den Reursionssatz wie überhaupt für die Begründung der natürlichen Zahlen mittels der Peanoschen Axiome verweisen wir den Leser auf den Band Zahlen der Reihe Grundwissen bei Springer [4]. 1. Faultät und Binomialoeffizienten Für jede natürliche Zahl n definiert man n!, sprich n-faultät, durch n! :1 3 n: Für n! gibt es eine ähnlich einfache Formel wie für 1 + +::: + n. Man sieht leicht, daß n! mit n ungeheuer rasch anwächst; zum Beispiel ist 10! und 1000! > (siehe die Stirlingsche Formel in Kapitel 11.10).

3 1. Faultät und Binomialoeffizienten 3 Die Faultät spielt eine große Rolle in der Kombinatori. Es gilt: Satz 1: Die Anzahl aller Anordnungen n verschiedener Elemente ist n!. Beweis: Wir bezeichnen die Elemente mit 1; ;:::; n.für 1; gibt es die zwei Anordnungen 1 und 1,für1; ; 3 die sechs Anordnungen 13; 13; 31; 13; 31; 31: Für n und n 3ist die Behauptung damit bewiesen. Schluß von n auf n +1: Die Klasse derjenigen Anordnungen der Elemente 1;:::;n+1,diedasElement auf Platz eins haben bei beliebiger Anordnung der übrigen n Elemente, enthält nach Indutionsannahme n! Anordnungen. Es gibt n +1derartige Klassen. Die Anzahl aller Anordnungen der Elemente 1;:::;n + 1 ist also (n + 1)n! (n + 1)!. Unter einer Permutation einer Menge M versteht man eine eineindeutige Abbildung der Menge auf sich. Ist M f1;:::;ng, so bewirt jede Permutation P eine Anordnung der Zahlen 1;:::;n, nämlich P (1);:::;P(n); umgeehrt wird jede Anordnung 1 ;:::; n dieser Zahlen durch eine Permutation von M bewirt. Eine mit Satz 1 gleichwertige Aussage ist also Satz 1 0 : Die Anzahl der Permutationen n verschiedener Elemente ist n!. Es ist zwecmäßig, die Definition der Faultät auf 0auszudehnen. Dazu fordert man, daß die Reursionsformel (F) (n +1)!(n +1) n! auch fürn 0weiter gelte: 1! 1 0!. Daher definiert man 0! : 1: In Kapitel 17 wird die Faultät unter sinngemäßer Beibehaltung der Formel (F) sogar auf alle reellen Zahlen 6 1; ; 3;::: ausgedehnt. Binomialoeffizienten Satz und Definition: Die Anzahl der -elementigen Teilmengen einer nicht leeren Menge mit n Elementen istimfall 0 <» n n(n 1) (n +1) (1) und im Fall 0! 1: 0 : :

4 4 1 Natürliche Zahlen und vollständige Indution Beweis: Es sei zunächst 6 0. Zur Bildung -elementiger Teilmengen stehen für ein erstes Element einer Teilmenge alle n Elemente der gegebenen Menge zur Auswahl; für ein zweites Element bleiben dann noch n 1 Elemente zur Auswahl usw. Insgesamt hat man n(n 1) (n +1) Möglicheiten, -elementige Teilmengen herzustellen. Dabei ergeben solche Möglicheiten dieselbe -elementige Teilmenge, die sich nur in der Reihenfolge der ausgewählten Elemente unterscheiden. Nach Satz 1 ist also die vorhin errechnete Anzahl durch! zu dividieren. Für die gesuchte Anzahl erhält man damit obigen Ausdruc. Der Fall 0: Die leere Menge ist die einzige 0-elementige Teilmenge. Die gesuchte Zahl ist also 1. Beispiel: 6 aus 49. Eine Menge mit 49 Elementen enthält elementige Teilmengen. Die Wahrscheinlicheit, beim Lotto 6 aus 49 die richtigen sechs Zahlen zu erraten, ist also ungefähr 1:14Millionen. Die Zahlen heißen wegen ihres Auftretens in der Binomialentwiclung Binomialoeffizienten. Satz 3 (Binomialentwiclung): Für jeden Exponenten n N gilt (1 + x) n 1+ 1 n n x + x + :::+ x n n 1 + x n : 1 Beweis: Es gibt Möglicheiten, Klammern aus den n Klammern (1 + x) der linen Seite auszuwählen und daraus dann x als Fator zu nehmen. Beim Ausmultiplizieren des lins stehenden Produtes entsteht also nach Satz -mal die Potenz x. Die Binomialoeffizienten besitzen nach (1) auch die Darstellung n n! n!(n )! n : Ferner gilt die Reursionsformel: n +1 n n + : +1 +1

5 1.3 Aufgaben 5 Für 0ist diese Formel offensichtlich richtig; für > 0 gilt: n n n(n 1) (n +1) n(n 1) (n ) !!( +1) n(n 1) (n + 1)( +1+n ) ( + 1)! (n +1)n (n +1 ) ( + 1)! n +1 : +1 Mit Hilfe der Reursionsformel und der Randwerte 1önnen 0 alle Binomialoeffizienten suzessive berechnet werden. Besonders übersichtlich gestaltet sich die Rechnung im Pascalschen Dreiec: n 0 1 n n 1 1 n n n n n n Die Ränder des Pascalschen Dreiecs bestehen aus lauter Einsen, und jede weitere Zahl ist die Summe der beiden schräg darüber stehenden. Historisches. Das nach Blaise Pascal ( )benannte Dreiec findet sich bereits 157 in einem Lehrbuch der Arithmeti. Pascal (Philosoph und Mathematier, eine der großen Gestalten des 17. Jahrhunderts, Verfasser der Pensées) hat Beziehungen dieses triangle arithmétique zur Kombinatori und Wahrscheinlicheitstheorie hergestellt. 1.3 Aufgaben 1. Man beweise: a) :::+ n 1 n(n +1)(n +1); 6 b) :::+ n 3 1 n(n +1) ; c) (1 + x)(1 + x )(1 + x 4 ) (1 + x n ) 1 n+1 x (x 6 1). 1 x

6 6 1 Natürliche Zahlen und vollständige Indution. Für die Potenzsummen S p n : 1p + p +3 p + :::+ n p beweise man die von Pascal stammende Identität (p +1)Sn p p +1 p +1 + S p 1 n + S p 3 n + :::+ Sn 0 (n +1)p+1 1: Man berechne damit S 4 n; siehe auch 14.3 (17). 3. Man beweise und deute im Pascalschen Dreiec :::+ n n : 4. Eine Menge mit n Elementen besitzt genau n Teilmengen. 5. Grundaufgabe der lassischen Statisti: Auf n Zellen sollen unterscheidbare Teilchen so verteilt werden, daß in der Zelle i genau i Teilchen liegen, ::: + n. Eine Anordnung innerhalb jeder Zelle werde nicht berücsichtigt.! Man zeige: Es gibt genau verschiedene Verteilungen. 1!! n! 6. Grundaufgabe der Fermi-Statisti: Auf n Zellen sollen nicht unterscheidbare Teilchen so verteilt werden, daß jede Zelle höchstens ein Teilchen enthält. Man zeige: Es gibt genau verschiedene Verteilungen. 7. Grundaufgabe der Bose-Einstein-Statisti: Auf n Zellen sollen nicht unterscheidbare Teilchen verteilt werden, wobei jede Zelle beliebig viele Teilchen aufnehmen ann. + 1 Man zeige: Es gibt genau verschiedene Verteilungen. Hinweis: Bezeichnet man die Teilchen mit ffl und die Trennwände mit j, so entspricht jeder Verteilung ein Muster fflj ffl ffljj ::: ffljffl; zum Beispiel im Fall n 6, 7 der Verteilung jfflffljfflfflj j jfflfflfflj jdas Muster fflffljfflffljjjfflfflfflj. 8. Das Schubfachprinzip: Für n N sei N n : f1;:::;ng. Man zeige, daß es für jede Abbildung f : N n! N m mit n>mzwei verschiedene Zahlen n 1 ;n N n gibt so, daß f(n 1 )f(n ). 9. Es sei a 1 ;:::;a n irgendeine Anordnung der Zahlen 1; ;:::;nund n sei ungerade. Mit Hilfe des Schubfachprinzips zeige man, daß das Produt (a 1 1)(a ) (a n n) gerade ist.

7

2 Vollständige Induktion

2 Vollständige Induktion Vollständige Indution Wir unterbrechen jetzt die Disussion der Axiome der reellen Zahlen, um das Beweisverfahren der vollständigen Indution ennenzulernen. Wir setzen voraus, dass die natürlichen Zahlen

Mehr

Die Zahlbereiche N, Z, Q

Die Zahlbereiche N, Z, Q Die Zahlbereiche N, Z, Q Ausgangspunt: N = {1,, 3...} Menge der natürlichen Zahlen schrittweise Konstrution 1 := { }, := {, { }}, 3 := {, { }, {, { }}}... (also: n + 1 := n {n} J.v. Neumann 193 N wird

Mehr

Binomialkoeffizient. Für n, k N 0 mit n k definiert man den Binomialkoeffizienten. ( ) n n! n(n 1)(n 2) (n k + 1) Binomialkoeffizient 1-1

Binomialkoeffizient. Für n, k N 0 mit n k definiert man den Binomialkoeffizienten. ( ) n n! n(n 1)(n 2) (n k + 1) Binomialkoeffizient 1-1 Binomialoeffizient Für n, N 0 mit n definiert man den Binomialoeffizienten n! n(n 1)(n 2) (n + 1) = =. (n )!! 1 ( 2)( 1) Binomialoeffizient 1-1 Binomialoeffizient Für n, N 0 mit n definiert man den Binomialoeffizienten

Mehr

Natürliche und ganze Zahlen, vollständige Induktion und Kombinatorik

Natürliche und ganze Zahlen, vollständige Induktion und Kombinatorik Kapitel 2 Natürliche und ganze Zahlen, vollständige Indution und Kombinatori 2.1 N, Z (Gruppe; Ordnungsrelation Jeder hat eine intuitive Vorstellung von der Menge der natürlichen Zahlen N : {1, 2, 3...

Mehr

Wie viele Möglichkeiten gibt es, n Kinder in einer Reihe zu platzieren, z.b. für n = 5? Für n = 2 gibt es 2 Möglichkeiten.

Wie viele Möglichkeiten gibt es, n Kinder in einer Reihe zu platzieren, z.b. für n = 5? Für n = 2 gibt es 2 Möglichkeiten. n-faultät Wie viele Möglicheiten gibt es, n Kinder in einer Reihe zu platzieren, z.b. für n? Für n gibt es Möglicheiten. Für n 3 hat das 3. Kind 3 Möglicheiten, die beiden restlichen Plätze önnen jeweils

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Disrete Struturen und Logi WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Disrete Struturen und Logi Gesamtübersicht Organisatorisches Einführung Logi & Mengenlehre Beweisverfahren

Mehr

Kombinatorik. ÖMO-Fortgeschrittenen-Kurs an der TU Graz. Jan Pöschko. 6. März Grundlegendes 2. 2 Zählen mit Binomialkoeffizienten 3

Kombinatorik. ÖMO-Fortgeschrittenen-Kurs an der TU Graz. Jan Pöschko. 6. März Grundlegendes 2. 2 Zählen mit Binomialkoeffizienten 3 Kombinatori ÖMO-Fortgeschrittenen-Kurs an der TU Graz Jan Pöscho 6. März 009 Inhaltsverzeichnis Grundlegendes Zählen mit Binomialoeffizienten 3 3 Inlusions-Exlusions-Prinzip 4 4 Schubfachschluss 6 Zählen

Mehr

Abzählende Kombinatorik

Abzählende Kombinatorik Kapitel Abzählende Kombinatori Die in diesem Kapitel behandelte abzählende Kombinatori untersucht endliche Struturen und beschäftigt sich mit den Möglicheiten Objete anzuordnen oder auszuwählen Die abzählende

Mehr

$Id: reell.tex,v /11/15 13:12:24 hk Exp $

$Id: reell.tex,v /11/15 13:12:24 hk Exp $ $Id: reell.tex,v.8 200//5 3:2:24 h Exp $ 4 Die reellen Zahlen 4.3 Das Vollständigeitsaxiom Wir hatten das Supremum einer Menge M R als die leinste obere Schrane von M definiert, sofern eine solche überhaupt

Mehr

Über die so definierten Potenzen beweisen wir nun einige einfache Aussagen. = a m+n a Def.

Über die so definierten Potenzen beweisen wir nun einige einfache Aussagen. = a m+n a Def. 4 NATÜRLICHE ZAHLEN UND VOLLSTÄNDIGE INDUKTION 15 der Eigenschaften von N streng begründen, was hier aber nicht geschehen soll. (Statt Zahlen önnen die a n auch Elemente irgendwelcher Mengen sein.) Über

Mehr

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg Universität Freiburg 26.10.2011 Vollständige Induktion Wir unterbrechen jetzt die Diskussion der Axiome der reellen Zahlen, um das Beweisverfahren der vollständigen Induktion kennenzulernen. Wir setzen

Mehr

Elemente der Stochastik (SoSe 2016) 5. Übungsblatt

Elemente der Stochastik (SoSe 2016) 5. Übungsblatt Dr. M. Weimar 02.05.2016 Elemente der Stochasti (SoSe 2016) 5. Übungsblatt Aufgabe 1 (4 Punte) Beweisen sie, dass die Potenzmenge P(A) einer beliebigen endlichen Menge A genau P(A) 2 A Elemente enthält!

Mehr

Vorkurs Mathematik. Vorlesung 5. Verknüpfungen

Vorkurs Mathematik. Vorlesung 5. Verknüpfungen Prof. Dr. H. Brenner Osnabrüc WS 2009/2010 Vorurs Mathemati Vorlesung 5 Vernüpfungen Die Addition und die Multipliation auf den natürlichen Zahlen und die Hintereinanderschaltung von Abbildungen auf einer

Mehr

Teil 1. Mathematische Grundlagen

Teil 1. Mathematische Grundlagen Teil 1 Mathematische Grundlagen 5 6 1.1 Aussagenlogi Aussage und Axiom Aussage: sprachlicher Ausdruc mit eindeutigem Wahrheitswert w ( wahr ) bzw. f ( falsch ) A : Beschreibung Axiom: grundlegende nicht

Mehr

2n n + 2. n + (1 + j) 1. 2n + 2 = 1. 2n + 2. (n + 1) + j + 2 1

2n n + 2. n + (1 + j) 1. 2n + 2 = 1. 2n + 2. (n + 1) + j + 2 1 Aufgabe Die strenge Monotonie zeigen wir mittels vollständiger Indution. Indutionsanfang: Trivialerweise ist f streng monoton wachsend. Indutionsschritt: Wir nehmen an, es sei gezeigt, dass für ein gewisses

Mehr

Einschub: Summen, Produkte und Potenzen.

Einschub: Summen, Produkte und Potenzen. Einschub: Summen, Produte und Potenzen. Allgemeine Summen und Produte. n b := b m +b m+1 + +b n (fallsm n) =m n =m b := 0 (fallsm > n, leere Summe) n =m b := b m b m+1... b n (fallsm n) n =m b := 1 (fallsm

Mehr

Grundlagen der Kombinatorik

Grundlagen der Kombinatorik 60 Kapitel 4 Grundlagen der Kombinatori Einer der Schwerpunte der Kombinatori ist das Abzählen von endlichen Mengen. Wir stellen zunächst einige Grundregeln des Abzählens vor, die wir gelegentlich auch

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrüc SS 2015 Elemente der Algebra Vorlesung 2 Ringe Die wichtigsten mathematischen Struturen wie Z, Q, R besitzen nicht nur eine, sondern zwei Vernüpfungen. Definition 2.1. Ein

Mehr

$Id: reell.tex,v /11/11 12:32:08 hk Exp $

$Id: reell.tex,v /11/11 12:32:08 hk Exp $ Mathemati für Physier I, WS 203/204 Montag. $Id: reell.tex,v.23 203// 2:32:08 h Exp $ Die reellen Zahlen.5 Potenzen mit rationalen Exponenten Wir behandeln gerade die Bernoulli-Ungleichung +x) n +nx gültig

Mehr

Kombinatorik. LSGM Leipziger Schülergesellschaft für Mathematik. Toscho Mathecamp 12. Juli 21. Juli 2008 Klasse 11/12. Inhaltsverzeichnis

Kombinatorik. LSGM Leipziger Schülergesellschaft für Mathematik. Toscho Mathecamp 12. Juli 21. Juli 2008 Klasse 11/12. Inhaltsverzeichnis LSGM Leipziger Schülergesellschaft für Mathemati Kombinatori Toscho Mathecamp 1. Juli 1. Juli 008 Klasse 11/1 Inhaltsverzeichnis 1 Grundlagen Aufgaben 3 3 Politi in der Mathemati 3 4 Olympiadeaufgaben

Mehr

KAPITEL 2. Kombinatorik

KAPITEL 2. Kombinatorik KAPITEL 2 Kombinatori In der Kombinatori geht es um das Abzählen von Kombinationen 21 Geburtstagsproblem Beispiel 211 (Geburtstagsproblem In einem Raum befinden sich 200 Studenten Wie groß ist die Wahrscheinlicheit,

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 018/019 5.10.018 Höhere Mathemati für die Fachrichtung Physi Lösungsvorschläge zum. Übungsblatt

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 015/01 0.11.015 Höhere Mathemati für die Fachrichtung Physi Lösungsvorschläge zum. Übungsblatt

Mehr

2.1 Klassische kombinatorische Probleme

2.1 Klassische kombinatorische Probleme 2 Kombinatori Aufgabenstellung: Anzahl der verschiedenen Zusammenstellungen von Objeten. Je nach Art der zusätzlichen Forderungen, ist zu unterscheiden, welche Zusammenstellungen als gleich, und welche

Mehr

Mathematik 1 nach der Vorlesung Mathematik für Physiker 1 Wiebe. Sebastian Ritz

Mathematik 1 nach der Vorlesung Mathematik für Physiker 1 Wiebe. Sebastian Ritz Mathemati 1 nach der Vorlesung Mathemati für Physier 1 Wiebe Sebastian Ritz 2 Inhaltsverzeichnis 1 Einleitung 5 2 Mengen 7 2.1 Liste der Zahlenbereiche....................... 8 2.2 Rechenregeln für Mengen......................

Mehr

Vorkurs Mathematik. Arbeitsblatt 5. Verknüpfungen

Vorkurs Mathematik. Arbeitsblatt 5. Verknüpfungen Prof Dr H Brenner Osnabrüc WS 2009/2010 Vorurs Mathemati Arbeitsblatt 5 Vernüpfungen Aufgabe 51 Betrachte die ganzen Zahlen Z mit der Differenz als Vernüpfung, also die Abbildung Z Z Z, (a, b) a b Besitzt

Mehr

4. Die elementaren Zählfunktionen. Definition 165 (Binomialkoeffizienten) 4.1 Untermengen. align

4. Die elementaren Zählfunktionen. Definition 165 (Binomialkoeffizienten) 4.1 Untermengen. align 4. Die elementaren Zählfuntionen 4.1 Untermengen Definition 165 (Binomialoeffizienten) align ( ) n := 1 n N 0 0 ( ) n := 0 n

Mehr

2 Zahlen. 2.1 Natürliche Zahlen Menge der natürlichen Zahlen. Der Ausgangspunkt für den Aufbau der Zahlenbereiche ist die Menge

2 Zahlen. 2.1 Natürliche Zahlen Menge der natürlichen Zahlen. Der Ausgangspunkt für den Aufbau der Zahlenbereiche ist die Menge 2.1 Natürliche Zahlen 2.1.1 Menge der natürlichen Zahlen Der Ausgangspunt für den Aufbau der Zahlenbereiche ist die Menge N = {0,1,2,3,...} der natürlichen Zahlen 0, 1, 2, 3, 4,... 2.1.2 Indutionsprinzip

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: J. Hörner B. Kabil B. Krinn. Gruppenübung zur Vorlesung Höhere Mathemati Wintersemester 0/0 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshinweise zu den Hausaufgaben: Hausübungen Teil, empfohlener Bearbeitungszeitraum:

Mehr

«a n k b k. (4) (a + b) n = Der allgemeine binomische Lehrsatz

«a n k b k. (4) (a + b) n = Der allgemeine binomische Lehrsatz 2.2.3 Der allgemeine binomische Lehrsatz Mit Hilfe dieser neuen Begriffe und Symbole önnen wir eine allgemeingültige Formel für den Ausdruc (a + b) n angeben. Es gilt: Lemma 2. [Binomischer Lehrsatz] Sind

Mehr

1 Die natürlichen Zahlen und vollständige Induktion

1 Die natürlichen Zahlen und vollständige Induktion 1 Die natürlichen Zahlen und vollständige Indution 1.1 Einführung Mit Æ bezeichnen wir die Menge der natürlichen Zahlen Æ = {1,2,3,...}. Manche Autoren lassen die natürlichen Zahlen auch mit der Null beginnen,

Mehr

Nützlich bei Diskretisierungen von Problemen sind Gaussklammern, die reellen Werten ganzzahlige zuordnen:

Nützlich bei Diskretisierungen von Problemen sind Gaussklammern, die reellen Werten ganzzahlige zuordnen: Nützlich bei Disretisierungen von Problemen sind Gausslammern, die reellen Werten ganzzahlige zuordnen: Definition 57 (floor, ceiling.. r R : floor(r := r := max{z Z z r} 2. r R : ceiling(r := r := min{z

Mehr

Vorlesung. 1 Zahlentheorie in Z. Leitfaden. 1.1 Teilbarkeit. Angela Holtmann. Algebra und Zahlentheorie. (natürliche Zahlen ohne die Null)

Vorlesung. 1 Zahlentheorie in Z. Leitfaden. 1.1 Teilbarkeit. Angela Holtmann. Algebra und Zahlentheorie. (natürliche Zahlen ohne die Null) Vorlesung Algebra und Zahlentheorie Leitfaden 1 Zahlentheorie in Z Bezeichnungen: Z := {..., 3, 2, 1, 0, 1, 2, 3,...} (ganze Zahlen) und N := {1, 2, 3,...} (natürliche Zahlen ohne die Null) 1.1 Teilbareit

Mehr

Stetige Funktionen, Binomischer Lehrsatz

Stetige Funktionen, Binomischer Lehrsatz Vorlesung 13 Stetige Funktionen, Binomischer Lehrsatz 13.1 Funktionenfolgen Wir verbinden nun den Grenzwertbegriff mit dem Funktionsbegriff. Es seien (a n ) n N eine reelle Folge und f : R R eine Funktion.

Mehr

Analyse von Hashfunktionen

Analyse von Hashfunktionen Analyse von Hashfuntionen Borys Gendler 5. Februar 2007 In dieser Arbeit wird die Anzahl der Kollisionen beim Einfügen eines Elements in einer Hashtabelle untersucht. Wir beantworten die Frage, wie sich

Mehr

Kombinationen und Permutationen

Kombinationen und Permutationen 10 Kombinationen und Permutationen In den nächsten beiden Kapiteln wird die Abzählungstheorie der lassischen Abbildungstypen mit Nebenbedingungen entwicelt. Sie beschäftigt sich onret mit der Frage, auf

Mehr

Bernoullipolynome und Bernoullizahlen

Bernoullipolynome und Bernoullizahlen Bernoullipolynome und Bernoullizahlen Artjom Zern Ausarbeitung zum Vortrag im Proseminar Analysis (Sommersemester 9, Leitung Prof. Dr. Eberhard Freitag) Zusammenfassung: Wie aus dem Titel ersichtlich ist

Mehr

Zusammenfassung. n k+1 j k! j ( k + 1 j )! 2 + k

Zusammenfassung. n k+1 j k! j ( k + 1 j )! 2 + k Aussagenlogi Tobias Krähling email: Homepage: 7.. Version. Zusammenfassung Im vorliegenden Doument soll die Potenzsummenformel i= i = n+ n + + n + j= a

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrüc SS 2009 Einführung in die Algebra Vorlesung 12 Ringe Wir beginnen einen neuen Abschnitt dieser Vorlesung, in dem es um Ringe geht. Definition 12.1. Ein Ring R ist eine Menge

Mehr

Algebra - Neutrales und Nullelement. Definition 35. Gibt es in einer Algebra (S, ) mit binärer Operation

Algebra - Neutrales und Nullelement. Definition 35. Gibt es in einer Algebra (S, ) mit binärer Operation Algebra - Neutrales und Nullelement Definition 35. Gibt es in einer Algebra (S, ) mit binärer Operation 1. ein r S mit x S : x r = x, nennt man r rechtneutrales Element 2. ein l S mit x S : l x = x, nennt

Mehr

Rekursive Folgen im Pascalschen Dreieck

Rekursive Folgen im Pascalschen Dreieck Reursive Folgen im Pascalschen Dreiec Holger Stephan, Tag der Mathemati,. Juni Zusammenfassung Viele Probleme aus den unterschiedlichsten Teilgebieten der Mathemati (z.b. Analysis, Kombinatori, Zahlen-,

Mehr

Rekursive Folgen im Pascalschen Dreieck

Rekursive Folgen im Pascalschen Dreieck Reursive Folgen im Pascalschen Dreiec Inhaltsverzeichnis Holger Stephan, Tag der Mathemati,. Juni Vortrag. Einleitung........................................ Zahlenfolgen.......................................

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heio Hoffmann WS 2013/14 Höhere Mathemati I für die Fachrichtung Informati Lösungsvorschläge zum 2. Übungsblatt Aufgabe

Mehr

n n!

n n! Frage: Auf wieviele Arten lässt sich das Wort Binomialoeffizient lesen? Binomialoe inomialoef nomialoeff omialoeffi ialoeffizi aloeffizie loeffizien oeffizient Das ist ein Sript! Dennoch ann man hier sehen,

Mehr

Vorlesung. Vollständige Induktion 1

Vorlesung. Vollständige Induktion 1 WS 015/16 Vorlesung Vollständige Induktion 1 1 Einführung Bei der vollständigen Induktion handelt es sich um ein wichtiges mathematisches Beweisverfahren, mit dem man Aussagen, die für alle natürlichen

Mehr

7. Übungsblatt - Lösungsskizzen

7. Übungsblatt - Lösungsskizzen Einführung in die Wahrscheinlicheitstheorie und Statisti Prof. Dr. Jan Johannes Sandra Schluttenhofer Wintersemester 08/9 7. Übungsblatt - Lösungssien Aufgabe 5 Faltung und Ausdünnung einer Poisson-Verteilung,

Mehr

Kombinatorik. Kombinatorik

Kombinatorik. Kombinatorik Kombinatori Kombinatori Ziel: Bestimmen der Mächtigeiten bestimmter endlicher Mengen, die durch Anordnung oder Auswahl von Elementen einer Menge gebildet werden. Wir wissen bereits, dass für die Potenzmenge

Mehr

Der Binomische Lehrsatz, die Binomialkoeffizienten und das PASCALsche Dreieck

Der Binomische Lehrsatz, die Binomialkoeffizienten und das PASCALsche Dreieck 1 Der Binomische Lehrsatz, die Binomialkoeffizienten und das PASCALsche Dreieck Wir kennen die beiden binomischen Formeln: Sie sind ein Sonderfall des Binomischen Lehrsatzes: Wir sehen, dass die Potenzen

Mehr

15.2 Kombinatorische Abzählformeln

15.2 Kombinatorische Abzählformeln 15.2 Kombinatorische Abzählformeln 1. Permutationen In wie vielen verschiedenen Reihenfolgen ann man n verschiedene Dinge anordnen? Wie viele Reihenfolgen gibt es, wenn die Dinge nicht alle verschieden

Mehr

Thema 1 Die natürlichen Zahlen

Thema 1 Die natürlichen Zahlen Thema 1 Die natürlichen Zahlen Wir bezeichnen mit N die Menge der natürlichen Zahlen dh N {1,,, } Falls wir das Nullelement 0 dazu nehmen, dann bezeichnen wir die resultierende Menge mit N 0 also N 0 {0,

Mehr

Das neue Fließband der Auto AG 1

Das neue Fließband der Auto AG 1 MaMaEuSch Management Mathematics for European Schools http://www.mathemati.unil.de/~mamaeusch/ Das neue Fließband der Auto AG 1 Lösungen der Übungsaufgaben Silvia Schwarze 2 Boris Klees 3 Diese Veröffentlichung

Mehr

WS 2015/16 Diskrete Strukturen Kapitel 3: Kombinatorik (3)

WS 2015/16 Diskrete Strukturen Kapitel 3: Kombinatorik (3) WS 2015/16 Diskrete Strukturen Kapitel 3: Kombinatorik (3) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Analysis I Mathematik für InformatikerInnen II SoSe 12 Musterlösungen zur Prüfungsklausur vom 18. Juli 2012

Analysis I Mathematik für InformatikerInnen II SoSe 12 Musterlösungen zur Prüfungsklausur vom 18. Juli 2012 Humboldt-Universität zu Berlin Mathematisch-Naturwissenschaftliche Faultät II Institut für Mathemati Unter den Linden 6, D-0099 Berlin Prof. Andreas Griewan Ph.D. Dr. Thomas M. Surowiec Dr. Fares Maalouf

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Folgen und Reihen. 1. Folgen

Folgen und Reihen. 1. Folgen 1. Folgen Aufgabe 1.1. Sie kennen alle die Intelligenztests, bei welchen man zu einer gegebenen Folge von Zahlen die nächsten herausfinden soll. Wie lauten die nächsten drei Zahlen bei den folgenden Beispielen?

Mehr

solche Permutationen. Für n von 1 bis 8 ergeben sich folgende Zahlen: [ ]

solche Permutationen. Für n von 1 bis 8 ergeben sich folgende Zahlen: [ ] 5A Permutationen Symmetrien geometrischer Figuren beschreibt man mathematisch durch Vertauschungen einer gewissen Anzahl von Punten, welche die Gesamtfigur unverändert lassen Beispiel : Drehungen und Spiegelungen

Mehr

Bevor wir mit Analysis anfangen, legen wir erst einige mathematische Symbole fest.

Bevor wir mit Analysis anfangen, legen wir erst einige mathematische Symbole fest. Analysis, Woche Zahlen A. Elementares Bevor wir mit Analysis anfangen, legen wir erst einige mathematische Symbole fest... Logische Symbole Seien A und B Aussagen. So eine Aussage ist zum Beispiel: Gras

Mehr

3. Musterlösung zu Mathematik für Informatiker II, SS 2004

3. Musterlösung zu Mathematik für Informatiker II, SS 2004 . Musterlösung zu Mathemati für Informatier II, SS 004 PETER SCHEIBLECHNER &MICHAEL NÜSKEN Aufgabe. (Differenzen). Bestimme die Differenz f für f : Z! R mit (4 Punte) (i) f (n) n(n ) n. ( f )(n) (n +)n

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrüc WS 2011/2012 Mathemati für Anwender I Vorlesung 3 Bernoullische Ungleichung Die Bernoulli sche Ungleichung für n = 3. Die folgende Aussage heißt Bernoulli Ungleichung. Satz

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie Prof. Dr. H. Brenner Osnabrüc SS 2008 Zahlentheorie Vorlesung 5 In diesem Abschnitt beschäftigen wir uns mit der Einheitengruppe der Restlassenringe Z/(n), also mit (Z/(n)). Ihre Anzahl wird durch die

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt VIII vom

Übungsaufgaben zu Analysis 1 Lösungen von Blatt VIII vom Prof. Dr. Moritz Kaßmann Faultät für Mathemati Wintersemester 04/05 Universität Bielefeld Übungsaufgaben zu Analysis Lösungen von Blatt VIII vom 04..4 Aufgabe VIII. (8 Punte) a) Untersuchen Sie die folgenden

Mehr

: das Bild von ) unter der Funktion ist gegeben durch

: das Bild von ) unter der Funktion ist gegeben durch % 1.3 Funktionen Seien und Mengen nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. Bezeichnungen: : Definitionsbereich : Bildbereich (Zielmenge) von Der Graph einer Funktion: graph!

Mehr

1 Häufungswerte von Folgen

1 Häufungswerte von Folgen KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heio Hoffmann WS 0/..0 Höhere Mathemati I für die Fachrichtung Informati. Saalübung (..0) Häufungswerte von Folgen Oft

Mehr

3 Ein wenig Kombinatorik

3 Ein wenig Kombinatorik 3 Ein wenig Kombinatori Definition i) Zu jedem n N definiere 1 2 3 n Saubere Definition ist indutiv 1! 1 (Konvention: 0! 1) (n +1)!(n +1) ii) Für n N und (N {0}) mit0 n setze!(n )! 1 2 n (n +1) (n +2)

Mehr

Beweis des Binomischen Satzes

Beweis des Binomischen Satzes Beweis des Binomischen Satzes Ein Beispiel für mathematische Beweisführung Oliver Müller 21. Februar 25 1 Vorwort Dieser Text soll hilfreich beim Erlernen der mathematischen Beweisführung über vollständige

Mehr

1. Die reellen Zahlen

1. Die reellen Zahlen 3 1. Die reellen Zahlen 1.1. Undefinierte Begriffe. Wir verwenden eine Reihe von Begriffen ohne mathematisch genaue Definition: Eine Aussage nennen wir etwas, von dem wir sagen önnen, ob es wahr ist oder

Mehr

2. Symmetrische Gruppen

2. Symmetrische Gruppen 14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen

Mehr

Binomischer Satz. 1-E Vorkurs, Mathematik

Binomischer Satz. 1-E Vorkurs, Mathematik Binomischer Satz 1-E Vorkurs, Mathematik Terme Einer der zentralen Begriffe der Algebra ist der Term. Definition: Eine sinnvoll verknüpfte mathematische Zeichenreihe bezeichnet man als Term. Auch eine

Mehr

Kombinatorik kompakt. Stochastik WS 2016/17 1

Kombinatorik kompakt. Stochastik WS 2016/17 1 Kombinatorik kompakt Stochastik WS 2016/17 1 Übersicht Auswahl/Kombinationen von N aus m Elementen Statistische unterscheidbare ununterscheidbare Physik Objekte (gleiche) Objekte ( ohne m N m+n 1 ) N mit

Mehr

Ferienkurs Analysis 1. Tag 2 - Lösungen zu Komplexe Zahlen, Vollständige Induktion, Stetigkeit

Ferienkurs Analysis 1. Tag 2 - Lösungen zu Komplexe Zahlen, Vollständige Induktion, Stetigkeit Ferienurs Analysis Tag - Lösungen zu Komplee Zahlen, Vollständige Indution, Stetigeit Pan Kessel 4.. 009 Inhaltsverzeichnis Komplee Zahlen. Darstellung einer ompleen Zahl.....................................

Mehr

Folgen. Definition. Sei M eine beliebige Menge. Eine Abbildung a : N M oder a : N 0 M heißt eine Folge.

Folgen. Definition. Sei M eine beliebige Menge. Eine Abbildung a : N M oder a : N 0 M heißt eine Folge. Folgen Eine Folge stellt man sich am einfachsten als eine Aneinanderreihung von Zahlen (oder Elementen irgendeiner anderen Menge) vor, die immer weiter geht Etwa,,,,,, oder,,, 8,,,, oder 0,,,,,,,, In vielen

Mehr

Mathematik I. Vorlesung 5

Mathematik I. Vorlesung 5 Prof. Dr. H. Brenner Osnabrüc WS 2009/2010 Mathemati I Vorlesung 5 Für zwei natürliche Zahlen n, m gilt n m genau dann, wenn man n = m+ mit einem N schreiben ann (siehe Aufgabe 4.12). In diesem Fall ist

Mehr

Analysis I MATH, PHYS, CHAB. 2 k (2 k ) s = 2 k(1 s) = k=0. (2n 1) n=1. n=1. n n 2. n=1. n=1. = ζ(2) 1 4 ζ(2) = 3 4 ζ(2)

Analysis I MATH, PHYS, CHAB. 2 k (2 k ) s = 2 k(1 s) = k=0. (2n 1) n=1. n=1. n n 2. n=1. n=1. = ζ(2) 1 4 ζ(2) = 3 4 ζ(2) Prof. D. Salamon Analysis I MATH, PHYS, CHAB HS 204 Musterlösung Serie 7. Der Vollständigeit wegen, zeigen wir zunächst die Konvergenz der Reihendarstellung der ζ-funtion für s >. ζs : n n s 2 + n s 0

Mehr

Bei Permutationen ohne Wiederholung geht es um das Anordnen von n Dingen, die mit den Zahlen 1,2,,n nummeriert sind.

Bei Permutationen ohne Wiederholung geht es um das Anordnen von n Dingen, die mit den Zahlen 1,2,,n nummeriert sind. 6 Kombinatori PermutationenOhneWiederholung@n_IntegerD := Permutations@Range@nDD PermutationenMitWiederholung@n_ListD := Permutations@Flatten@Table@Table@i, 8n@@iDD

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Kapitel 7 Wahrscheinlicheitsrechnung 7.1 Kombinatori Def. 7.1.1:a) Für eine beliebige natürliche Zahl m bezeichnet man das Produt aus den Zahlen von 1 bis m mit m Faultät: m! : 1 2 3 m, 0! : 1. Beispiele:

Mehr

Univ.-Prof. Dr. Goulnara ARZHANTSEVA

Univ.-Prof. Dr. Goulnara ARZHANTSEVA Diskrete Mathematik Univ.-Prof. Dr. Goulnara ARZHANTSEVA SS 2018 c Univ.-Prof. Dr. Goulnara Arzhantseva Kapitel 02: Funktionen, Multimengen, Kompositionen 1 / 18 Funktionen zwischen endlichen Mengen [n]

Mehr

Berühmte Familien von Zahlen und ihre Zusammenhänge. Nina Elisabeth Isele

Berühmte Familien von Zahlen und ihre Zusammenhänge. Nina Elisabeth Isele Berühmte Familien von Zahlen und ihre Zusammenhänge Nina Elisabeth Isele 20.01.2015 Inhaltsverzeichnis 1 Einleitung 2 2 Berühmte Familien von Zahlen und ihre Zusammenhänge 3 2.1 Die Zahlen von Bell und

Mehr

Summen von Potenzen. 8. April 2012

Summen von Potenzen. 8. April 2012 Summen von Potenzen 8. April 01 Inhaltsverzeichnis 1 Eine Übungsaufgabe zum Grenzwertbegriff 1.1 Herleitung nach dem Prinzip der Teleskopsumme.................... 1. Herleitung mit Hilfe der Differenzenfolge........................

Mehr

Natürliche, ganze und rationale Zahlen

Natürliche, ganze und rationale Zahlen Natürliche, ganze und rationale Zahlen Zunächst haben die zum Zählen verwendeten natürlichen Zahlen 0, 1, 2, 3,... nichts mit dem reellen Zahlen zu tun. Durch die ausgezeichnete reelle Zahl 1 (Maßeinheit!)

Mehr

Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau

Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau 2 Die natürlichen Zahlen und vollständige Induktion Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau 2.1 Einführung sind die natürlichen Zahlen. Æ =

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 12. November 2015 Satz 3.16 (Binomischer Lehrsatz) Seien a, b R. Dann gilt für alle

Mehr

Skriptum zum Brückenkurs. Mathematik

Skriptum zum Brückenkurs. Mathematik Sriptum zum Brücenurs Mathemati gehalten in den Wintersemestern 008/09, 009/10, 010/11, 011/1, 01/13, 013/14 und in den Sommersemestern 011, 01, 013, 014 von Sven Kosub 11. April 014 Version v6. Inhaltsverzeichnis

Mehr

Zahlen 25 = = 0.08

Zahlen 25 = = 0.08 2. Zahlen Uns bisher bekannte Zahlenbereiche: N Z Q R ( C). }{{} später Schreibweisen von rationalen/reellen Zahlen als unendliche Dezimalbrüche = Dezimalentwicklungen. Beispiel (Rationale Zahlen) 1 10

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.2. Primzahlen Definition: Eine natürliche Zahl m N heißt Teiler von n N, falls ein N existiert mit n = m Man schreibt dann auch m n. Jede Zahl besitzt offensichtlich die beiden

Mehr

aus A folgt B ). Sie ist falsch, wenn die Aussage A wahr ist und die Aussage B falsch. Ansonsten ist sie wahr. Wichtig ist auch die Aussage A B (

aus A folgt B ). Sie ist falsch, wenn die Aussage A wahr ist und die Aussage B falsch. Ansonsten ist sie wahr. Wichtig ist auch die Aussage A B ( 3 1. Die reellen Zahlen Die reellen Zahlen sind die Zahlen, mit denen wir gewöhnlich rechnen. Sie enthalten Elemente wie e, π oder 5 3. In diesem Kapitel geht es darum, ihren axiomatischen Aufbau und die

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlicheitstheorie Musterlösung zur Probelausur zur Angewandten Disreten Mathemati Prof Dr Helmut Maier, Hans- Peter Rec Gesamtpuntzahl: 130 Punte,

Mehr

Lösung zu Serie 20. Die Menge der Polynome vom Grad 4 ohne Nullstelle ist gegeben durch

Lösung zu Serie 20. Die Menge der Polynome vom Grad 4 ohne Nullstelle ist gegeben durch Lineare Algebra D-MATH, HS 2014 Prof. Richard Pin Lösung zu Serie 20 1. (a) Bestimme alle irreduziblen Polynome vom Grad 4 in F 2 [X]. (b) Bestimme die Fatorisierung von X 6 + 1 und X 10 + 1 und X 20 +

Mehr

Kommentare und Lösungen zur Aufgabe 2 in Serie 1

Kommentare und Lösungen zur Aufgabe 2 in Serie 1 Analysis 1 Herbstsemester 2018 Prof. Peter Jossen 9. Otober 2018 Kommentare und Lösungen zur Aufgabe 2 in Serie 1 Ich habe zwei Lösungsversuche zur Aufgabe 2 in Serie 1 erhalten. Die erste führt nicht

Mehr

9. Polynom- und Potenzreihenringe

9. Polynom- und Potenzreihenringe 64 Andreas Gathmann 9. Polynom- und Potenzreihenringe Bevor wir mit der allgemeinen Untersuchung von Ringen fortfahren, wollen wir in diesem Kapitel kurz zwei sehr wichtige weitere Beispiele von Ringen

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrüc SS 2009 Einführung in die Algebra Vorlesung 15 Der Hauptsatz der elementaren Zahlentheorie Wir beweisen nun, dass sich jede natürliche Zahl in eindeutiger Weise als Produt

Mehr

1 Goldener Schnitt Pascalsches Dreieck Der Binomische Lehrsatz ( ) ß mit a multipliziert. ( a+ b) 4 = a 3 +3a 2 b+3ab 2 + b 3

1 Goldener Schnitt Pascalsches Dreieck Der Binomische Lehrsatz ( ) ß mit a multipliziert. ( a+ b) 4 = a 3 +3a 2 b+3ab 2 + b 3 1 Goldener Schnitt Pascalsches Dreieck 17 1.3 Pascalsches Dreieck 1.3.1 Der Binomische Lehrsatz Aus der Schule ist Ihnen mit Sicherheit die Binomische Regel bekannt: ( ) 2 = a 2 +2ab+ b 2 a+ b Diese Regel

Mehr

Funktionen. Aufgabe 1. Welche der folgenden Abbildungen sind injektiv, surjektiv oder bijektiv? (b) f : Z Z, f(x) = x 3. (d) f : R R 0, f(x) = x 2

Funktionen. Aufgabe 1. Welche der folgenden Abbildungen sind injektiv, surjektiv oder bijektiv? (b) f : Z Z, f(x) = x 3. (d) f : R R 0, f(x) = x 2 TH Mittelhessen, Wintersemester 013/014 Lösungen zu Übungsblatt 4 Fachbereich MNI, Diskrete Mathematik 1./13./14. November 013 Prof. Dr. Hans-Rudolf Metz Funktionen Aufgabe 1. Welche der folgenden Abbildungen

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

1. Übung zur Vorlesung,,Diskrete Strukturen (SS 01)

1. Übung zur Vorlesung,,Diskrete Strukturen (SS 01) 1 Übung zur Vorlesung,,Disrete Struturen (SS 01 Lösung zu Aufgabe Es ist zu zeigen: Für, n N 0 gilt Algebraischer Beweis ( ( n + n + + 1 0 Es sei n N 0 beliebig Wir beweisen die Behauptung durch Indution

Mehr

3.8 Redundante Datenspeicherung und Fehlerkorrektur Seien natürliche Zahlen k, t und s so gewählt, dass. k + 2t 2 s 1.

3.8 Redundante Datenspeicherung und Fehlerkorrektur Seien natürliche Zahlen k, t und s so gewählt, dass. k + 2t 2 s 1. 38 Redundante Datenspeicherung und Fehlerorretur Seien natürliche Zahlen, t und s so gewählt, dass + 2t 2 s 1 Sei weiter K = GF (2 s ), und seien c 0,, c 1 K Wir fassen die c i sowohl als Elemente von

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathemati Prof. Dr. Oliver Matte Max Lein Zentralübung 15. Abzählbareit Mathemati für Physier 2 Analysis 1) Wintersemester 2010/2011 Lösungsblatt 3 29.10.2009) i)

Mehr

Ferienkurs Analysis I für Physiker WS 15/16 Aufgaben Tag 1. Aufgaben Tag 1. (1 + i) 2 = 0 + 2i. = i 1 + i = i1 i = 1 2 2 + i 2

Ferienkurs Analysis I für Physiker WS 15/16 Aufgaben Tag 1. Aufgaben Tag 1. (1 + i) 2 = 0 + 2i. = i 1 + i = i1 i = 1 2 2 + i 2 Ferienurs Analysis I für Physier WS 15/16 Aufgaben Tag 1 1 Komplee Zahlen I Aufgaben Tag 1 Berechnen Sie Real- und ImaginÃďrteil von a) (1 + i) (1 + i) 0 + i b) 1 + 1 1 i ( 1 + 1 i ) 1 ( 1 + i i ) 1 i

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Markov-Ketten 1. Definition 2.1

Markov-Ketten 1. Definition 2.1 Marov-Ketten Definition 2. Sei P eine -Matrix mit Elementen {P i,j : i, j,...,}. Ein Zufallsprozess (X 0, X,...) mit endlichem Zustandsraum S{s,...,s } heißt homogene Marov-Kette mit Übergangsmatrix P,

Mehr

Die Binomialreihe. Sebastian Schulz. Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung Prof. Dr.

Die Binomialreihe. Sebastian Schulz. Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung Prof. Dr. Die Binomialreihe Sebastian Schulz Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 008/09, Leitung Prof. Dr. Eberhard Freitag Zusammenfassung: Diese Ausarbeitung beschäftigt sich mit der

Mehr