4. Die elementaren Zählfunktionen. Definition 165 (Binomialkoeffizienten) 4.1 Untermengen. align

Größe: px
Ab Seite anzeigen:

Download "4. Die elementaren Zählfunktionen. Definition 165 (Binomialkoeffizienten) 4.1 Untermengen. align"

Transkript

1 4. Die elementaren Zählfuntionen 4.1 Untermengen Definition 165 (Binomialoeffizienten) align ( ) n := 1 n N 0 0 ( ) n := 0 n <, n N 0, N ( ) ( ) ( ) n n 1 n 1 := + sonst 1 ( n, N ) Disrete Struturen 4.1 Untermengen 260/571

2 Satz 166 Sei N eine Menge mit N = n Elementen. Die Menge aller -elementigen Untermengen von N wird bezeichnet mit ( ) N. Es gilt: ( ) ( ) N N = = ( ) n. Disrete Struturen 4.1 Untermengen 261/571

3 Beweis: Seien n, 0, a N. 1 ( ) n und > n sind lar. 0 2 Definiere { ( ) } N S a := A ; a A, { ( ) } N S a := A ; a / A. Disrete Struturen 4.1 Untermengen 262/571

4 Beweis (Forts.): 3 Damit gilt Daraus folgt ( ) S a S N a =, S a S a =. ( ) ( ) S a = N \ {a} n 1 = 1 1 (per Indution) ( ) ( ) S a = N \ {a} n 1 = (per Indution) ( ) n = ( ) n ( ) n 1. Disrete Struturen 4.1 Untermengen 263/571

5 Zwischenbemerung zur Nomenlatur: (a + b) n = n =0 ( ) n a b n = (a + b) (a + b) (a + b) Disrete Struturen 4.1 Untermengen 264/571

6 4.2 Partitionen von Mengen und Zahlen Ungeordnete Partitionen 1. Mengenpartitionen Sei N eine Menge der Kardinalität n und sei N 0. Eine Zerlegung von N in nichtleere, paarweise disjunte Teilmengen heißt eine -Partition von N. Die einzelnen Teilmengen heißen auch Klassen. Ihre Anzahl wird mit S n, bezeichnet (die sog. Stirling-Zahlen der 2. Art). Disrete Struturen 4.2 Partitionen von Mengen und Zahlen 265/571

7 Beispiel 167 N = {1, 2, 3, 4, 5}, = 2 S 5,2 = 15. {1} {2, 3, 4, 5} {1, 2} {3, 4, 5} {2} {1, 3, 4, 5} {1, 3} {2, 4, 5} {3} {1, 2, 4, 5} {1, 4} {2, 3, 5} {4} {1, 2, 3, 5} {1, 5} {2, 3, 4} {5} {1, 2, 3, 4} {2, 3} {1, 4, 5} Weiter gilt: S n,1 = 1, S n,2 = Übung, S n,n = 1. {2, 4} {1, 3, 5} {2, 5} {1, 3, 4} {3, 4} {1, 2, 5} {3, 5} {1, 2, 4} {4, 5} {1, 2, 3} Disrete Struturen 4.2 Partitionen von Mengen und Zahlen 266/571

8 2. Zahlpartitionen Sei N 0 n = n 1 + n n mit n 1,..., n N und n 1 n 2... n. Eine solche Zerlegung heißt -Partition der Zahl n. Die Anzahl aller -Partitionen von n N wird mit bezeichnet. P n, Disrete Struturen 4.2 Partitionen von Mengen und Zahlen 267/571

9 Beispiel 168 n = 8, = 4. 8 = = = = = P 8,4 = 5 Disrete Struturen 4.2 Partitionen von Mengen und Zahlen 268/571

10 4.2.2 Geordnete Partitionen 1. Mengenpartitionen Seien N, n, wie vorher. Eine (beliebig) geordnete -Menge N heißt -Permutation aus N. Ihre Anzahl ist n (n 1) (n + 1) = n ( n hoch fallend, fallende Faultät ). Analog: n := n (n + 1) (n + 1) Disrete Struturen 4.2 Partitionen von Mengen und Zahlen 269/571

11 Überlegung: Jede -Menge aus N ergibt! -Permutationen. Also ( ) n! = n oder: Eine -Mengenpartition ergibt ( ) ( ) n = n! = n! n! (n )! = n! S n, geordnete -Mengenpartitionen (Die Klassen sind (beliebig) untereinander geordnet, aber nicht in sich!). Disrete Struturen 4.2 Partitionen von Mengen und Zahlen 270/571

12 2. Zahlpartitionen Eine geordnete Zahlpartition ist gegeben durch N n = n 1 + n n ; n 1,..., n N Betrachte folgende graphische Darstellung: }{{} n Wähle aus den n 1 Trennstellen 1 aus. Jede der ( n 1 1) Wahlmöglicheiten ergibt eine eindeutig bestimmte geordnete -Zahlpartition und umgeehrt. Ihre Anzahl ist also ( ) n 1. 1 Disrete Struturen 4.2 Partitionen von Mengen und Zahlen 271/571

13 4.3 Multimengen Beispiel 169 M := {1, 2, 2, 3, 5, 5, 5} M = 7 Satz 170 Die Anzahl der -Multimengen (also Multimengen der Kardinalität ) aus N ( N = n) ist ( n + 1 ) = n! (n + 1) =.! Disrete Struturen 4.3 Multimengen 272/571

14 Beweis: Sei o.b.d.a. N = {1,..., n}. Betrachte eine Multimenge {a 1, a 2,..., a } der Kardinalität. Sei o.b.d.a. a 1 a 2 a. Definiere die Ersetzung f: f : a 1 a 1 1 a 2 a a 3 a a a + 1 n + 1 Das Ergebnis unter f ist eine Menge [n + 1]. Die Anzahl der Möglicheiten auf der rechten Seite beträgt ( ) n+ 1, und die durch f gegebene Zuordnung ist offensichtlich bijetiv. Disrete Struturen 4.3 Multimengen 273/571

15 Andere Beweisvariante: Beweis: n 1 0 n Von n + Kugeln werden schwarz gefärbt; die erste darf nicht schwarz gefärbt werden. Also bleiben n weiße Kugeln übrig, darunter die erste. Jede dieser weißen Kugeln zählt nun als sooft ausgewählt, wie unmittelbar rechts davon schwarze Kugeln stehen. Es werden also aus n weißen Kugeln ausgewählt (mit Wiederholung). Disrete Struturen 4.3 Multimengen 274/571

16 Beispiel 171 Darstellung zu obigem Beispiel: Zugehörige Multimenge: {1, 2, 2, 3, 5, 5, 5} Disrete Struturen 4.3 Multimengen 275/571

17 4.4 Anzahl von Abbildungen Betrachte Funtionen von N (Urbildraum) nach R (Bildraum), N = n, R = r mit n, r N 0. Die Anzahl beliebiger Abbildungen N R ist r n. Die Anzahl der injetiven Abbildungen N R ist r n. Die Anzahl der surjetiven Abbildungen N R ( geordnete r-mengenpartitionen von N ) ist r! S n,r. Disrete Struturen 4.4 Anzahl von Abbildungen 276/571

Kombinationen und Permutationen

Kombinationen und Permutationen 10 Kombinationen und Permutationen In den nächsten beiden Kapiteln wird die Abzählungstheorie der lassischen Abbildungstypen mit Nebenbedingungen entwicelt. Sie beschäftigt sich onret mit der Frage, auf

Mehr

WS 2015/16 Diskrete Strukturen Kapitel 3: Kombinatorik (3)

WS 2015/16 Diskrete Strukturen Kapitel 3: Kombinatorik (3) WS 2015/16 Diskrete Strukturen Kapitel 3: Kombinatorik (3) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Natürliche und ganze Zahlen, vollständige Induktion und Kombinatorik

Natürliche und ganze Zahlen, vollständige Induktion und Kombinatorik Kapitel 2 Natürliche und ganze Zahlen, vollständige Indution und Kombinatori 2.1 N, Z (Gruppe; Ordnungsrelation Jeder hat eine intuitive Vorstellung von der Menge der natürlichen Zahlen N : {1, 2, 3...

Mehr

Über die so definierten Potenzen beweisen wir nun einige einfache Aussagen. = a m+n a Def.

Über die so definierten Potenzen beweisen wir nun einige einfache Aussagen. = a m+n a Def. 4 NATÜRLICHE ZAHLEN UND VOLLSTÄNDIGE INDUKTION 15 der Eigenschaften von N streng begründen, was hier aber nicht geschehen soll. (Statt Zahlen önnen die a n auch Elemente irgendwelcher Mengen sein.) Über

Mehr

Abzählende Kombinatorik

Abzählende Kombinatorik Kapitel Abzählende Kombinatori Die in diesem Kapitel behandelte abzählende Kombinatori untersucht endliche Struturen und beschäftigt sich mit den Möglicheiten Objete anzuordnen oder auszuwählen Die abzählende

Mehr

Grundlagen der Kombinatorik

Grundlagen der Kombinatorik 60 Kapitel 4 Grundlagen der Kombinatori Einer der Schwerpunte der Kombinatori ist das Abzählen von endlichen Mengen. Wir stellen zunächst einige Grundregeln des Abzählens vor, die wir gelegentlich auch

Mehr

Berechnung von Teilmengen

Berechnung von Teilmengen Berechnung von Teilmengen Satz Anzahl der Teilmengen 2 n = n k=0 k=0 ( ) n k Beweis Korollar aus Binomischem Lehrsatz (1 + 1) n = n ( n k=0 k) 1 k 1 n k. Oder kombinatorisch: Sei M Menge mit M = n. Die

Mehr

Bevor wir mit Analysis anfangen, legen wir erst einige mathematische Symbole fest.

Bevor wir mit Analysis anfangen, legen wir erst einige mathematische Symbole fest. Analysis, Woche Zahlen A. Elementares Bevor wir mit Analysis anfangen, legen wir erst einige mathematische Symbole fest... Logische Symbole Seien A und B Aussagen. So eine Aussage ist zum Beispiel: Gras

Mehr

2.1 Klassische kombinatorische Probleme

2.1 Klassische kombinatorische Probleme 2 Kombinatori Aufgabenstellung: Anzahl der verschiedenen Zusammenstellungen von Objeten. Je nach Art der zusätzlichen Forderungen, ist zu unterscheiden, welche Zusammenstellungen als gleich, und welche

Mehr

Mathematik 1 nach der Vorlesung Mathematik für Physiker 1 Wiebe. Sebastian Ritz

Mathematik 1 nach der Vorlesung Mathematik für Physiker 1 Wiebe. Sebastian Ritz Mathemati 1 nach der Vorlesung Mathemati für Physier 1 Wiebe Sebastian Ritz 2 Inhaltsverzeichnis 1 Einleitung 5 2 Mengen 7 2.1 Liste der Zahlenbereiche....................... 8 2.2 Rechenregeln für Mengen......................

Mehr

1 Natürliche Zahlen und vollständige Indution Beispiel : Für jede Zahl x 6 1gilt die geometrische Summenformel 1+x + x + :::+ x n 1 xn+1 1 x : (I) Für

1 Natürliche Zahlen und vollständige Indution Beispiel : Für jede Zahl x 6 1gilt die geometrische Summenformel 1+x + x + :::+ x n 1 xn+1 1 x : (I) Für 1 Natürliche Zahlen und vollständige Indution Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwer. (L. Kronecer) Wir setzen das System N der natürlichen Zahlen 1; ; 3;::: als beannt

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Disrete Struturen und Logi WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Disrete Struturen und Logi Gesamtübersicht Organisatorisches Einführung Logi & Mengenlehre Beweisverfahren

Mehr

Kombinatorik kompakt. Stochastik WS 2016/17 1

Kombinatorik kompakt. Stochastik WS 2016/17 1 Kombinatorik kompakt Stochastik WS 2016/17 1 Übersicht Auswahl/Kombinationen von N aus m Elementen Statistische unterscheidbare ununterscheidbare Physik Objekte (gleiche) Objekte ( ohne m N m+n 1 ) N mit

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Vorkurs Mathematik. Vorlesung 5. Verknüpfungen

Vorkurs Mathematik. Vorlesung 5. Verknüpfungen Prof. Dr. H. Brenner Osnabrüc WS 2009/2010 Vorurs Mathemati Vorlesung 5 Vernüpfungen Die Addition und die Multipliation auf den natürlichen Zahlen und die Hintereinanderschaltung von Abbildungen auf einer

Mehr

WS 2016/17 Diskrete Strukturen Kapitel 3: Kombinatorik (1)

WS 2016/17 Diskrete Strukturen Kapitel 3: Kombinatorik (1) WS 2016/17 Diskrete Strukturen Kapitel 3: Kombinatorik (1) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Kombinatorische Beweisprinzipien

Kombinatorische Beweisprinzipien Kombinatorische Beweisprinzipien Satz Binomischer Lehrsatz Beweis (a + b) n = n k=0 ( ) n a k b n k k Multipliziere (a + b) n aus: (a + b) (a + b)... (a + b). Aus jedem der n Faktoren wird entweder a oder

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Kapitel 7 Wahrscheinlicheitsrechnung 7.1 Kombinatori Def. 7.1.1:a) Für eine beliebige natürliche Zahl m bezeichnet man das Produt aus den Zahlen von 1 bis m mit m Faultät: m! : 1 2 3 m, 0! : 1. Beispiele:

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente Universität Basel Wirtschaftswissenschaftliches Zentrum Kombinatorik Dr. Thomas Zehrt Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente 2 Teil 1 Endliche Mengen Eine endliche Menge M ist eine Menge,

Mehr

KAPITEL 2. Kombinatorik

KAPITEL 2. Kombinatorik KAPITEL 2 Kombinatori In der Kombinatori geht es um das Abzählen von Kombinationen 21 Geburtstagsproblem Beispiel 211 (Geburtstagsproblem In einem Raum befinden sich 200 Studenten Wie groß ist die Wahrscheinlicheit,

Mehr

Prof. S. Krauter Kombinatorik. WS Blatt04.doc

Prof. S. Krauter Kombinatorik. WS Blatt04.doc Prof. S. Krauter Kombinatorik. WS-05-06 Blatt04.doc Mengenpartitionen:. Auf dem Tisch liegen 7 verschiedene Gegenstände. Wie viele verschiedene Möglichkeiten gibt es, diese 7 Gegenstände in 3 gleiche Schachteln

Mehr

3 Ein wenig Kombinatorik

3 Ein wenig Kombinatorik 3 Ein wenig Kombinatori Definition i) Zu jedem n N definiere 1 2 3 n Saubere Definition ist indutiv 1! 1 (Konvention: 0! 1) (n +1)!(n +1) ii) Für n N und (N {0}) mit0 n setze!(n )! 1 2 n (n +1) (n +2)

Mehr

Formale Sprachen. Spezialgebiet für Komplexe Systeme. Yimin Ge. 5ahdvn. 1 Grundlagen 1. 2 Formale Grammatiken 4. 3 Endliche Automaten 5.

Formale Sprachen. Spezialgebiet für Komplexe Systeme. Yimin Ge. 5ahdvn. 1 Grundlagen 1. 2 Formale Grammatiken 4. 3 Endliche Automaten 5. Formale Sprachen Spezialgebiet für Komplexe Systeme Yimin Ge 5ahdvn Inhaltsverzeichnis 1 Grundlagen 1 2 Formale Grammatien 4 Endliche Automaten 5 4 Reguläre Sprachen 9 5 Anwendungen bei Abzählproblemen

Mehr

Zahlen und Rechenstrukturen

Zahlen und Rechenstrukturen Teil 1 Zähltheorie KAPITEL 1 Zahlen und Rechenstruturen Eine lassische Aufgabe der disreten Mathemati (Kombinatori) besteht darin zu ermitteln, wieviele Konfigurationen (d.h. disrete Objete von einem

Mehr

Binomialkoeffizient. Für n, k N 0 mit n k definiert man den Binomialkoeffizienten. ( ) n n! n(n 1)(n 2) (n k + 1) Binomialkoeffizient 1-1

Binomialkoeffizient. Für n, k N 0 mit n k definiert man den Binomialkoeffizienten. ( ) n n! n(n 1)(n 2) (n k + 1) Binomialkoeffizient 1-1 Binomialoeffizient Für n, N 0 mit n definiert man den Binomialoeffizienten n! n(n 1)(n 2) (n + 1) = =. (n )!! 1 ( 2)( 1) Binomialoeffizient 1-1 Binomialoeffizient Für n, N 0 mit n definiert man den Binomialoeffizienten

Mehr

Diskrete Strukturen. Wilfried Buchholz. Skriptum einer 3-std. Vorlesung im Sommersemester 2009 Mathematisches Institut der Universität München

Diskrete Strukturen. Wilfried Buchholz. Skriptum einer 3-std. Vorlesung im Sommersemester 2009 Mathematisches Institut der Universität München Disrete Struturen Wilfried Buchholz Sriptum einer 3-std. Vorlesung im Sommersemester 2009 Mathematisches Institut der Universität München 1 Vollständige Indution Wir setzen hier das System Z = {..., 2,

Mehr

Kombinatorik. LSGM Leipziger Schülergesellschaft für Mathematik. Toscho Mathecamp 12. Juli 21. Juli 2008 Klasse 11/12. Inhaltsverzeichnis

Kombinatorik. LSGM Leipziger Schülergesellschaft für Mathematik. Toscho Mathecamp 12. Juli 21. Juli 2008 Klasse 11/12. Inhaltsverzeichnis LSGM Leipziger Schülergesellschaft für Mathemati Kombinatori Toscho Mathecamp 1. Juli 1. Juli 008 Klasse 11/1 Inhaltsverzeichnis 1 Grundlagen Aufgaben 3 3 Politi in der Mathemati 3 4 Olympiadeaufgaben

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

1 Mengen. 1.1 Definition

1 Mengen. 1.1 Definition 1 Mengen 1.1 Definition Eine Menge M ist nach dem Begründer der Mengenlehre Georg Cantor eine Zusammenfassung von wohlunterschiedenen(verschiedenen) Elementen. Eine Menge lässt sich durch verschiedene

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen)

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

2 Kombinatorik. 56 W.Kössler, Humboldt-Universität zu Berlin

2 Kombinatorik. 56 W.Kössler, Humboldt-Universität zu Berlin 2 Kombinatorik Aufgabenstellung: Anzahl der verschiedenen Zusammenstellungen von Objekten. Je nach Art der zusätzlichen Forderungen, ist zu unterscheiden, welche Zusammenstellungen als gleich, und welche

Mehr

$Id: reell.tex,v /11/15 13:12:24 hk Exp $

$Id: reell.tex,v /11/15 13:12:24 hk Exp $ $Id: reell.tex,v.8 200//5 3:2:24 h Exp $ 4 Die reellen Zahlen 4.3 Das Vollständigeitsaxiom Wir hatten das Supremum einer Menge M R als die leinste obere Schrane von M definiert, sofern eine solche überhaupt

Mehr

Diskrete Mathematik I Die Mathematik von Paul Erdős

Diskrete Mathematik I Die Mathematik von Paul Erdős Lehrstuhl II für Mathemati Prof Dr Eberhard Triesch Disrete Mathemati I Die Mathemati von Paul Erdős Sript zur Vorlesung Disrete Mathemati Einleitung Die Disrete Mathemati ist die Mathemati der endlichen

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Natürliche, ganze und rationale Zahlen

Natürliche, ganze und rationale Zahlen Natürliche, ganze und rationale Zahlen Zunächst haben die zum Zählen verwendeten natürlichen Zahlen 0, 1, 2, 3,... nichts mit dem reellen Zahlen zu tun. Durch die ausgezeichnete reelle Zahl 1 (Maßeinheit!)

Mehr

1. Übung zur Vorlesung,,Diskrete Strukturen (SS 01)

1. Übung zur Vorlesung,,Diskrete Strukturen (SS 01) 1 Übung zur Vorlesung,,Disrete Struturen (SS 01 Lösung zu Aufgabe Es ist zu zeigen: Für, n N 0 gilt Algebraischer Beweis ( ( n + n + + 1 0 Es sei n N 0 beliebig Wir beweisen die Behauptung durch Indution

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Kapitel IV. Endliche, abzählbare und überabzählbare Mengen. IV.1 Abzählbare Mengen

Kapitel IV. Endliche, abzählbare und überabzählbare Mengen. IV.1 Abzählbare Mengen Kapitel IV Endliche, abzählbare und überabzählbare Mengen Wir haben schon einige Mengen in den Kapiteln I und II kennengelernt, etwa die Zahlenmengen N, Z, Q und R. Jede dieser Zahlenmengen enthält unendlich

Mehr

Analyse von Hashfunktionen

Analyse von Hashfunktionen Analyse von Hashfuntionen Borys Gendler 5. Februar 2007 In dieser Arbeit wird die Anzahl der Kollisionen beim Einfügen eines Elements in einer Hashtabelle untersucht. Wir beantworten die Frage, wie sich

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Bei Permutationen ohne Wiederholung geht es um das Anordnen von n Dingen, die mit den Zahlen 1,2,,n nummeriert sind.

Bei Permutationen ohne Wiederholung geht es um das Anordnen von n Dingen, die mit den Zahlen 1,2,,n nummeriert sind. 6 Kombinatori PermutationenOhneWiederholung@n_IntegerD := Permutations@Range@nDD PermutationenMitWiederholung@n_ListD := Permutations@Flatten@Table@Table@i, 8n@@iDD

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte)

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 007/08 Lösungsblatt 7

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2

= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2 1 Graphen Definition: Ein Graph G = (V,E) setzt sich aus einer Knotenmenge V und einer (Multi)Menge E V V, die als Kantenmenge bezeichnet wird, zusammen. Falls E symmetrisch ist, d.h.( u,v V)[(u,v) E (v,u)

Mehr

: das Bild von ) unter der Funktion ist gegeben durch

: das Bild von ) unter der Funktion ist gegeben durch % 1.3 Funktionen Seien und Mengen nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. Bezeichnungen: : Definitionsbereich : Bildbereich (Zielmenge) von Der Graph einer Funktion: graph!

Mehr

1 Die natürlichen Zahlen und vollständige Induktion

1 Die natürlichen Zahlen und vollständige Induktion 1 Die natürlichen Zahlen und vollständige Indution 1.1 Einführung Mit Æ bezeichnen wir die Menge der natürlichen Zahlen Æ = {1,2,3,...}. Manche Autoren lassen die natürlichen Zahlen auch mit der Null beginnen,

Mehr

Wie viele Möglichkeiten gibt es, n Kinder in einer Reihe zu platzieren, z.b. für n = 5? Für n = 2 gibt es 2 Möglichkeiten.

Wie viele Möglichkeiten gibt es, n Kinder in einer Reihe zu platzieren, z.b. für n = 5? Für n = 2 gibt es 2 Möglichkeiten. n-faultät Wie viele Möglicheiten gibt es, n Kinder in einer Reihe zu platzieren, z.b. für n? Für n gibt es Möglicheiten. Für n 3 hat das 3. Kind 3 Möglicheiten, die beiden restlichen Plätze önnen jeweils

Mehr

Satz 18 (Satz von der totalen Wahrscheinlichkeit)

Satz 18 (Satz von der totalen Wahrscheinlichkeit) Ausgehend von der Darstellung der bedingten Wahrscheinlichkeit in Gleichung 1 zeigen wir: Satz 18 (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse A 1,..., A n seien paarweise disjunkt und es gelte

Mehr

Einschub: Summen, Produkte und Potenzen.

Einschub: Summen, Produkte und Potenzen. Einschub: Summen, Produte und Potenzen. Allgemeine Summen und Produte. n b := b m +b m+1 + +b n (fallsm n) =m n =m b := 0 (fallsm > n, leere Summe) n =m b := b m b m+1... b n (fallsm n) n =m b := 1 (fallsm

Mehr

ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen

ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen MAA.01011UB MAA.01011PH Vorlesung mit Übung im WS 2016/17 Christoph GRUBER Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen

Mehr

2.6 Zahlpartitionen. 2.7 Mehr Rekursionsformeln - Catalanzahlen

2.6 Zahlpartitionen. 2.7 Mehr Rekursionsformeln - Catalanzahlen Beweis. (kombinatorisch): Links steht die Anzahl der k-partitionen einer n-elementigen Menge. Wie entstehen diese? Wir wählen wieder ein festes Element e n aus M. Man kann die k-partitionen von M dann

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 16. November 2017 1/35 Modulare Arithmetik Modulare Arithmetik Definition 3.33 Es sei

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26

Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26 Kombinatorik Dr. Lucia Draque Penso Universität Ulm Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26 Erste Vorlesung Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 2 / 26 Formales Vorlesung:

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

Übungsblatt 13. Lineare Algebra I, Prof. Dr. Plesken, SS (β α) tr = α tr β tr.

Übungsblatt 13. Lineare Algebra I, Prof. Dr. Plesken, SS (β α) tr = α tr β tr. Übungsblatt 13 Lineare Algebra I, Prof Dr Plesen, SS 2008 Aufgabe 1 (Transponierte lineare Abbildung) Sei α : V W linear Zeige: α tr ist injetiv (surjetiv) genau dann, wenn α surjetiv (injetiv) ist Ist

Mehr

2 Aufbau des Zahlensystems Natürliche Zahlen

2 Aufbau des Zahlensystems Natürliche Zahlen 2 Aufbau des Zahlensystems atürliche Zahlen (2.1 Die Menge der natürlichen Zahlen = {1,2,3,...} lässt sich eindeutig durch die Peano-Axiome charaterisieren: (P1 1 (P2 n = n + 1 (P3 n,m, n m = n + 1 m +

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Der Fundamentalsatz der Algebra

Der Fundamentalsatz der Algebra Der Fundamentalsatz der Algebra Vortragsausarbeitung im Rahmen des Proseminars Differentialtopologie Benjamin Lehning 17. Februar 2014 Für den hier dargelegten Beweis des Fundamentalsatzes der Algebra

Mehr

Übersicht Kapitel 9. Vektorräume

Übersicht Kapitel 9. Vektorräume Vektorräume Definition und Geometrie von Vektoren Übersicht Kapitel 9 Vektorräume 9.1 Definition und Geometrie von Vektoren 9.2 Teilräume 9.3 Linearkombinationen und Erzeugendensysteme 9.4 Lineare Abhängigkeiten

Mehr

Ludwig-Maximilians-Universität München SoSe 2009 Institut für Informatik PD Dr. Martin Lange Dipl.-Inf. Markus Latte 25. Juni 2009

Ludwig-Maximilians-Universität München SoSe 2009 Institut für Informatik PD Dr. Martin Lange Dipl.-Inf. Markus Latte 25. Juni 2009 Ludwig-Maximilians-Universität München SoSe 2009 Institut für Informati PD Dr. Martin Lange Dipl.-Inf. Marus Latte 25. Juni 2009 Übung zur Vorlesung Logi für Informatier Übungsblatt 8 Abgabe bis Freitag,

Mehr

Thema 1 Die natürlichen Zahlen

Thema 1 Die natürlichen Zahlen Thema 1 Die natürlichen Zahlen Wir bezeichnen mit N die Menge der natürlichen Zahlen dh N {1,,, } Falls wir das Nullelement 0 dazu nehmen, dann bezeichnen wir die resultierende Menge mit N 0 also N 0 {0,

Mehr

Grundlagen der Graphentheorie. Thomas Kamps 6. Oktober 2008

Grundlagen der Graphentheorie. Thomas Kamps 6. Oktober 2008 Grundlagen der Graphentheorie Thomas Kamps 6. Oktober 2008 1 Inhaltsverzeichnis 1 Definition von Graphen 3 2 Unabhängigkeit von Ecken und Kanten 3 3 Teil- und Untergraphen 4 4 Schnitt, Vereinigung und

Mehr

Theoretische Informatik SS 03 Übung 11

Theoretische Informatik SS 03 Übung 11 Theoretische Informatik SS 03 Übung 11 Aufgabe 1 Zeigen Sie, dass es eine einfachere Reduktion (als die in der Vorlesung durchgeführte) von SAT auf 3KNF-SAT gibt, wenn man annimmt, dass die Formel des

Mehr

Technische Universität München. Kombinatorik. Christian Fuchs

Technische Universität München. Kombinatorik. Christian Fuchs Kombinatorik Christian Fuchs 1.Definition Kombinatorik 2.Grundlegende Zählmethoden 3.Binomialkoeffizienten 4.Permutationen 5.Stirling-Zahlen 6.Catalan-Zahlen 7.Zahlpartitionen 8.Aufgaben 9.Literatur Technische

Mehr

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke Graphen Graphentheorie Graphentheorie Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke 2 Was ist ein Graph? Ein Graph ist in der Graphentheorie eine abstrakte Struktur,

Mehr

Kombinatorik. Simon Rainer 21. Juli Simon Kombinatorik 21. Juli / 51

Kombinatorik. Simon Rainer 21. Juli Simon Kombinatorik 21. Juli / 51 Kombinatorik Simon Rainer sr@mail25.de 21. Juli 2015 Simon Rainersr@mail25.de Kombinatorik 21. Juli 2015 1 / 51 Was ist Kombinatorik? Teilgebiet der diskreten Mathematik Endliche oder abzählbar unendliche

Mehr

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg Universität Freiburg 26.10.2011 Vollständige Induktion Wir unterbrechen jetzt die Diskussion der Axiome der reellen Zahlen, um das Beweisverfahren der vollständigen Induktion kennenzulernen. Wir setzen

Mehr

2. Symmetrische Gruppen

2. Symmetrische Gruppen 14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen

Mehr

Aufgabenblatt 1: Abgabe am vor der Vorlesung

Aufgabenblatt 1: Abgabe am vor der Vorlesung Aufgabenblatt 1: Abgabe am 17.09.09 vor der Vorlesung Aufgabe 1. a.) (1P) Geben Sie die Lösungsmenge der folgenden Gleichung an: 6x + y = 10. Zeichnen Sie die Lösungsmenge in ein Koordinatensystem. b.)

Mehr

Folgen und Reihen. 1. Folgen

Folgen und Reihen. 1. Folgen 1. Folgen Aufgabe 1.1. Sie kennen alle die Intelligenztests, bei welchen man zu einer gegebenen Folge von Zahlen die nächsten herausfinden soll. Wie lauten die nächsten drei Zahlen bei den folgenden Beispielen?

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 4

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 4 Prof. Dr. Bernhard Steffen Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt

Mehr

Lineare Darstellungen von Symmetrischen Gruppen

Lineare Darstellungen von Symmetrischen Gruppen Lineare Darstellungen von Symmetrischen Gruppen 150 232 (Holtkamp) 2st., Mi 12.00-14.00, NA 2/24 1 Beispiel 1. Freies Monoid über Alphabet X Beispiel 2. S 1, S 2, S 3,... Satz 1. (Bijektion zw. Partitionen

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrüc SS 2009 Einführung in die Algebra Vorlesung 15 Der Hauptsatz der elementaren Zahlentheorie Wir beweisen nun, dass sich jede natürliche Zahl in eindeutiger Weise als Produt

Mehr

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme Theoretische Informatik Exkurs Rainer Schrader Exkurs: Komplexität von n Institut für Informatik 13. Mai 2009 1 / 34 2 / 34 Gliederung Entscheidungs- und Approximationen und Gütegarantien zwei Greedy-Strategien

Mehr

Verteilen von Bällen auf Urnen

Verteilen von Bällen auf Urnen Verteilen von Bällen auf Urnen Szenario: Wir verteilen n Bälle auf m Urnen, d.h. f : B U mit B = {b 1,..., b n } und U = {u 1,..., u m }. Dabei unterscheiden wir alle Kombinationen der folgenden Fälle

Mehr

Sachrechnen/Größen WS 14/15-

Sachrechnen/Größen WS 14/15- Kapitel Daten & Wahrscheinlichkeit 3.1 Kombinatorische Grundlagen 3.2 Kombinatorik & Wahrscheinlichkeit in der Grundschule 3.3 Daten Darstellen 3.1 Kombinatorische Grundlagen Verschiedene Bereiche der

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 24.11.2016 (Teil 2) 23. November 2016 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler 23. November 2016

Mehr

4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung

4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung 43 Permutationen Definition Eine Permutation der Elementen {,, n} ist eine bijektive Abbildung σ : {,,n} {,,n} Es ist leicht zu sehen, dass die Hintereinanderführung zweier Permutationen ergibt wieder

Mehr

Maße auf Produkträumen

Maße auf Produkträumen Maße auf Produkträumen Es seien (, Ω 1 ) und (X 2, Ω 2 ) zwei Meßräume. Wir wollen uns zuerst überlegen, wie wir ausgehend davon eine geeignete σ-algebra auf X 2 definieren können. Wir betrachten die Menge

Mehr

Kombinatorische Abzählverfahren - LÖSUNGEN

Kombinatorische Abzählverfahren - LÖSUNGEN Kombinatorische Abzählverfahren - LÖSUNGEN TEIL C: Lösungen 1. Produtregel das einfache Verfahren Aufgabe 1: Auto-Ausstattung Aufgabe 2: Tanzstunde Aufgabe 3: Menüplanung Aufgabe 4: Atenzeichen Aufgabe

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrüc SS 2015 Elemente der Algebra Vorlesung 2 Ringe Die wichtigsten mathematischen Struturen wie Z, Q, R besitzen nicht nur eine, sondern zwei Vernüpfungen. Definition 2.1. Ein

Mehr

Zur Zykelschreibweise von Permutationen

Zur Zykelschreibweise von Permutationen Zur Zykelschreibweise von Permutationen Olivier Sète 16. Juni 2010 1 Grundlagen Definition 1.1. Eine Permutation von {1, 2,..., n} ist eine bijektive Abbildung σ : {1, 2,..., n} {1, 2,..., n}, i σ(i).

Mehr

Gleichungen fünften Grades

Gleichungen fünften Grades Gleichungen fünften Grades Teil 1 Marc Pollak 11. Juni 2013 Motivation Was ist uns bisher bekannt? Allgemeine Lösung einer Gleichung zweiten Grades durch die Mitternachtsformel Vor zwei Wochen, Lösung

Mehr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Centrum für Informations- und Sprachverarbeitung (CIS) 10. Juni 2014 Table of Contents 1 2 Äquivalenz Der Begriff der Äquivalenz verallgemeinert den Begriff der Gleichheit. Er beinhaltet in einem zu präzisierenden

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 0/ Thomas Timmermann 8. Januar 0 Kardinalzahlen und die Mächtigkeit von Mengen Gleichmächtigkeit von Menge Zur Erinnerung: Wir wollen unendlich große Mengen hinsichtlich

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathemati Prof. Dr. Oliver Matte Max Lein Zentralübung 15. Abzählbareit Mathemati für Physier 2 Analysis 1) Wintersemester 2010/2011 Lösungsblatt 3 29.10.2009) i)

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen)

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) WS 2015/16 Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A)

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A) Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, 10.1.009 (Version A) Kennwort: Übungsgruppe: (Sie können ein beliebiges Kennwort wählen, um Ihre Anonymität zu wahren! Da die Probeklausur

Mehr

Klausur zur Vorlesung Analysis 1 (240003) 1. Termin: Aufgaben und Lösungen

Klausur zur Vorlesung Analysis 1 (240003) 1. Termin: Aufgaben und Lösungen Prof Dr M Kaßmann Wintersemester 9/ Faultät für Mathemati Universität Bielefeld Klausur zur Vorlesung Analysis () Termin: 5 Aufgaben Lösungen Aufgaben: Die omplexen Lösungen der Gleichung z = i sind (

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 6 Grundlagen der Mathematik Präsenzaufgaben (P9) Die Ordnung der natürlichen Zahlen I Wir hatten in der Vorlesung

Mehr

15 Grundlagen der Idealtheorie

15 Grundlagen der Idealtheorie 15 Grundlagen der Idealtheorie Definition und Lemma 15.1. Sei R ein Ring, S R. x R nennt man eine R-Linearkombination von Elementen in) S falls n N 0, s 1,..., s n S, λ 1,..., λ n R mit x = n i=1 λ is

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlicheitstheorie Musterlösung zur Probelausur zur Angewandten Disreten Mathemati Prof Dr Helmut Maier, Hans- Peter Rec Gesamtpuntzahl: 130 Punte,

Mehr